
DOI: 10.4018/IJCAC.342128

International Journal of Cloud Applications and Computing
Volume 14 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

IIoT Protocols for Edge/Fog and 
Cloud Computing in Industrial AI:
A High Frequency Perspective
Telmo Fernández De Barrena Sarasola, Faculty of Engineering, University of Deusto, Mundaitz Kalea, 50, 20012 
Donostia- San Sebastian, Spain & Department of Data Intelligence for Energy and Industrial Processes, Fundación 
Vicomtech, Basque Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastian, Spain*

 https://orcid.org/0000-0001-8577-1995

Ander García, Department of Data Intelligence for Energy and Industrial Processes, Fundación Vicomtech, Basque 
Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastian, Spain & Faculty of 
Engineering, University of Deusto, Mundaitz Kalea, 50, 20012 Donostia- San Sebastian, Spain

Juan Luis Ferrando, Department of Data Intelligence for Energy and Industrial Processes, Fundación Vicomtech, Basque 
Research and Technology Alliance (BRTA), Mikeletegi 57, 20009 Donostia-San Sebastian, Spain

ABSTRACT

Various industrial applications deal with high-frequency data. Traditionally, these systems have 
analyzed high-frequency data directly on the data source or at the commanding PLC. However, 
currently, Industry 4.0 technologies support new monitoring scenarios for high-frequency data 
monitoring where raw data is transmitted in soft-real time to an Edge/Fog or Cloud node for processing, 
enabling centralized computing. This demands efficient communication protocols capable of handling 
high-frequency, high-throughput data. This paper focuses on analyzing the performance of key 
IIoT (Industrial Internet of Things) messaging protocols—AMQP, MQTT, KAFKA, ZeroMQ, and 
OPCUA—to evaluate their suitability, in terms of latency and jitter, for transmitting high-frequency 
data within these new scenarios. The analysis reveals MQTT, AMQP, and ZeroMQ as top performers 
in Edge/Fog computing, while ZeroMQ exhibits the lowest latency and jitter in Cloud computing. 
Finally, a guideline for protocol selection is proposed, aiding industrial enterprises in protocol selection 
for specific AI use cases.
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Traditional industrial automation engineering workflows have long relied on PLC (Programmable 
Logic Controller) or SCADA (Supervisory Control And Data Acquisition) systems to manage 
processes and machines. These systems, typically proprietary products from companies like Siemens, 
Beckhoff, or GE Digital, are programmed using specific tools provided by their manufacturers. They 
primarily offer control functionalities rooted in classical control engineering and often work in relative 
isolation, receiving external orders with limited internal data sharing.
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However, the advent of the Industry 4.0 paradigm has imposed new demands on these systems, 
necessitating enhanced data sharing and utilization. Manufacturing lines are generating an escalating 
volume of data, prompting the monitoring of more variables at higher frequencies. This shift involves 
capturing data that ranges from a few critical variables per batch to time series data of multiple 
variables recorded at frequencies of seconds or even greater (Garcia et al., 2023).

In typical industrial scenarios, the flow of high-frequency data begins with sensors strategically 
placed on machinery to capture relevant signals such as vibration, sound, or acceleration. These 
sensors collect data at high sampling rates, from thousands to millions of data points per second, 
generating a stream of raw information (Fernández de Barrena Sarasola et al., 2023; Kuntoğlu et al., 
2021) and huge volumes of data (Kumar & Agrawal, 2023). This data usually undergoes preprocessing 
in the machine to filter out noise and irrelevant information, ensuring the accuracy and reliability of 
subsequent analysis. Advanced signal processing algorithms are then applied to extract meaningful 
features and patterns from the data, making possible the development of Artificial Intelligence (AI)-
based models for the creation of predictive maintenance, quality control, and similar scenarios to 
classify anomalies, predict failure probabilities, and recommend appropriate maintenance actions.

However, the Industry 4.0 paradigm is changing the way in which data is processed, making 
it possible to send raw data either to the edge/fog or to the cloud from the sensors and centralize 
the processing and machine learning (ML) models or expert systems deployment steps. Thus, there 
is a need to create systems able to efficiently handle data at high throughputs. Here, the employed 
protocols and network play a key role.

To face these new requirements, new architectures are required to integrate the Information 
Technology (IT) and Operations Technology (OT) fields. The convergence of IT and OT represents 
a paradigm shift, breaking down historical barriers and fostering a unified framework where data, 
traditionally confined to either the enterprise or the operational field, can flow seamlessly between 
both. This integration has opened the way to a new era of interconnected and intelligent systems, 
enabling the optimization of operational processes and the development and integration of data-driven 
methods, which bring industries greater agility and competitiveness (Nath et al., 2020).

The combination of AI and ML in industrial processes further amplifies the potential of the IT 
and OT convergence. ML algorithms, deployed at the edge/fog or within the cloud, empower systems 
to detect patterns, predict failures, and optimize performance autonomously (Lecun et al., 2015). 
From predictive maintenance to anomaly detection, ML applications are reshaping the way industries 
operate, providing intelligence into every layer of the value chain (Alshehri & Muhammad, 2021).

In the pursuit of enhanced efficiency and soft-real-time decision making, the integration of 
edge/fog and cloud computing has emerged as a cornerstone in modern industrial communication 
frameworks (Kumar & Agrawal, 2023). Cloud computing is widely regarded as a crucial tool 
for meeting the computing needs of resource-intensive applications. However, the cloud shows 
communication delays and saturated networks due to a lack of bandwidth, which is due to the 
information overload caused by the scaling of Internet of Things (IoT) devices (Oñate & Sanz, 2023). 
The drawbacks associated with cloud computing present challenges in meeting the performance 
demands of time-sensitive applications, such as augmented reality, autonomous driving, and interactive 
online gaming (Mao et al., 2021).

Edge/fog computing brings computation closer to data sources, reducing latency and enabling 
rapid analysis of vast datasets (Mao et al., 2022; Shi et al., 2016). This proximity to data generation 
points is particularly vital in industries where timely insights can dictate operational success (Fernández 
de Barrena Sarasola et al., 2023).

Distributed deployment of real-time applications and high-speed dissemination of massive data are 
key features of Industrial Internet of Things (IIoT) platforms. IIoT applications typically adopt publish/
subscribe (pub/sub) middleware for asynchronous and cross-platform communication. Communication 
protocols play a key role in this integration, enabling the secure and efficient exchange of data across 
heterogeneous systems. The landscape of available protocols is diverse, offering a spectrum of choices 
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tailored to different industrial needs (Ullah et al., 2020), such as Message Queuing Telemetry Transport 
(MQTT), Zero Message Queuing (ZeroMQ) and Data Distribution Service (DDS). Understanding 
the strengths, weaknesses, and interoperability of these protocols is crucial for building resilient, 
future-proof communication infrastructures (Kang & Dubey, 2020).

Under the context of IIoT, the manufacturing industry is moving toward the servitization of servers’ 
allocation, to centralize the computing resources and to minimize the cost and effort associated with 
deploying and maintaining servers. This, along with the integration of communication protocols, 
enables the development and integration of data-driven methods, which bring industries greater 
agility and competitiveness. Thus, the knowledge and monetary cost of deploying AI models for 
different tasks, such as prognosis and health management (PHM) and production optimization, can 
be significantly reduced. For performing those tasks, communication protocols plays a key role, 
enabling secure and efficient exchange of data across heterogeneous systems.

However, after analyzing the existing research in the literature, the researchers of this paper 
observe that there is a need to analyze the performance of different protocols such as Advanced 
Messaging Queuing Protocol (AMQP), MQTT, KAFKA, ZeroMQ, and OP CUA, under cloud and 
edge/fog network and high frequency data scenarios, to understand the strengths and weakness of these 
protocols. Different features are relevant for this analysis, such as stream mean and standard deviation 
latency and jitter, the variation in the latency on a stream flow between two systems. These features 
must be measured and analyzed to gain a clear vision about which networking approach (edge/fog or 
cloud) and protocol each user should choose to fulfill its use case requirements. For example, jitter, 
which is not a widely analyzed element, plays a key role, especially in real-time communications, as 
high values of this element result from network congestion, timing drift and inconsistencies, which 
degrade the quality of communications.

The nature of IIoT protocols is one of the main drawbacks when using them in soft real-time 
performance scenarios. Figure 1 reveals the differences between OT and IT protocols latency 
distributions. OT-based solutions are designed to minimize jitter, which is the variation in time 
delay between when a signal is transmitted and when it is received over a network connection, and 
to provide near-real-time deterministic behavior down to the millisecond. When having a specific 
maximum latency requirement, t + ∆t, due to its deterministic nature, OT protocols can ensure fixed 
range latencies. Figure 1 shows an ideal OT protocol latency distribution, having a jitter of 0, and thus 
a single latency value, represented as a blue vertical line. Unlike OT protocols, the data transfer times 
of IT ones follow a probability positively skewed time distribution, shown in blue in the right side 
of Figure 1. In this case, IT protocols cannot ensure fixed-range latencies, resulting in the possibility 
of having higher latencies than required.

For the abovementioned reasons, this paper compares the performance of different IIoT protocols 
working along with high frequency data in edge/fog and cloud scenarios. Thus, different key parameters 
such as latency, jitter, lost or not-ordered packages, etc. are measured under different working 
conditions, changing the sampling frequency and stream sizes, and consequently the throughput. As 
results in terms of absolute time values are highly dependent on the employed network characteristics, 
this research focuses on a normalized comparison of the protocols performance. Moreover, needed code 
for replicating the experiments and obtained results is provided here: https://github.com/Vicomtech/
IIOT-protocols-study-for-high-frequency-data-in-the-edge-and-cloud/tree/main. Computational 
overhead of each of the tested protocols has also been analyzed.

The initialisms and acronyms used in this paper are listed in Table 1 with their definitions.
This research intends to provide guidelines on which protocol to employ, depending on the use 

case requirements, for developing efficient architectures, centralizing as much as possible the needed 
computing load in the edge/fog or cloud, where more resources are available. Thus, the main objective 
of this paper is to ease the selection of optimum IIoT communication protocols to obtain the best 
performance in terms of latency and jitter when working with high-frequency data and sending it to 

https://github.com/Vicomtech/IIOT-protocols-study-for-high-frequency-data-in-the-edge-and-cloud/tree/main
https://github.com/Vicomtech/IIOT-protocols-study-for-high-frequency-data-in-the-edge-and-cloud/tree/main
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the edge/fog or cloud. This is a key point when integrating soft AI models, such as PHM models, into 
cyber-physical systems (CPS), and deploying data-based models in the edge/fog or cloud.

The remainder of this paper is organized as follows: Section 2 presents the state of the art. 
Section 3 presents an overview of the analyzed protocols. Section 4 describes the experimental setup 
for performing the experiments. Section 5 presents the methodology followed in performing the 

Figure 1. OT and IT Data Transfer Times Distributions

Table 1. List of Initialisms and Acronyms Used in This Paper

Abbreviation Definition

PLC Programmable Logic Controller

SCADA Supervisory Control And Data Acquisition

AI Artificial Intelligence

ML Machine Learning

IT Information Technology

OT Operational Technology

IoT Internet of Things

IIoT Industrial Internet of Things

MQTT Message Queuing Telemetry Transport

DDS Data Distribution Service

AMQP Advanced Message Queuing Protocol

PHM Prognostics and Health Management

CPS Cyber Physical Systems

CoAP Constrained Applications Protocol

RTPS Real Time Publish Subscribe

JMS Java Message Service

ROS Robot Operating System

RTT Round-Trip Time
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experiments. Section 6 shows the results obtained by the performed experiments. Finally, Section 7 
offers concluding remarks.

State of the Art

Several studies have been found comparing the performance of different IoT communication protocols. 
The studies were performed employing different hardware components, such as Arduino, Raspberry 
Pi, etc.

Naik (2017) described the properties of MQTT, CoAP, AMQP, and HTTP protocols, comparing 
them looking at different parameters. The message size, frame size, energy consumption, resource 
requirement, bandwidth usage, latency, stability, supported platforms, security, IoT compliance, and 
standardization parameters were analyzed. The study was based on different scientific studies, not 
providing an experimental environment.

Bayılmıs et al. (2022) claimed that there is no general model, approach, or benchmark for 
performance comparison because the ranges of the IoT-based applications are so versatile. In this 
study differences in energy consumption and throughput for IoT application layer communication 
protocols, such as Constrained Applications Protocol (CoAP), MQTT, and WebSocket on tiny IoT 
devices, were analyzed. Lombardi et al. (2021) discussed the existing framework architectures, 
technologies, protocols, and applications under the IoT paradigm.

Chaudhary et al. (2017) compared MQTT, CoAP, and AMQP protocols in wired, wireless and 
4G connections, employing Raspberry Pi3 as IoT devices. Dizdarevic et al. (2019), performed a 
theoretical survey of IoT communication protocols, including MQTT, AMQP, XMPP, DDS, HTTP, 
and CoAP. Latency, energy consumption, and network throughput parameters were analyzed.

Safarov (2018), employing local Wi-Fi and a Raspberry Pi B on the client side and a laptop with i7 
processor on the server side, compared WebSocket, MQTT, and CoAP. Using a mathematical method, 
throughput parameters on different stream loss rates and the effect of the frame sizes were examined.

Gavrilov et al. (2022) analyzed MQTT, Real Time Publish Subscribe protocol (RTPS, an 
interoperability protocol for DDS implementations), Java Message Service (JMS), and AMQP 
protocols to find out what tasks these protocols should be used for and whether they can be used 
in robotic and autonomous systems where high data transmission requirements are imposed. They 
concluded that RTPS is the best solution for real-time systems with different traffic and that MQTT 
performs well when transmitting short messages.

Profanter et al. (2019) gave an overview on the different features of OPC UA, Robot Operating 
System (ROS), DDS, and MQTT and compared their performance in several benchmarks. They 
concluded that open62541, which is an open source and free implementation of OPC UA, and eProsima 
FastRTPS for DDS, deliver high performance, whereas the MQTT and ROS implementations showed 
a significant slowdown in the round-trip time (RTT) of packages sent to the server.

Suri (2019) compared different protocols over an edge network. The results showed that the 
ZeroMQ implemented outperformed other protocols such as DDS, MQTT, AMQP, and Kafka in terms 
of bandwidth utilization and latency when they operated in a saturated communications environment.

Lazidis et al. (2022) conducted a survey and taxonomy of publish–subscribe systems, of their 
design features and technologies. The latency of Orion-LD, Stellio, Scorpio, Pushpin, Faye, Apache 
Kafka, and RabbitMQ were compared, concluding that for heavy workloads, Apache Kafka and 
RabbitMQ proved to be fast and scalable.

Finally, Kang and Dubey (2020) empirically evaluated the performance of three pub/sub 
technologies: OMG DDS, MQTT, and ZeroMQ, for representative IIoT scenarios (high-frequency, 
periodic, and sporadic) under a cluster with a bandwidth of 95 Mbps. Results showed that in the higher-
frequency scenarios, when the message was smaller than 1 KB, ZeroMQ performed best. However, 
when the message was larger than 1KB, ZeroMQ throughput became lower than DDS. Compared 



International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

6

with DDS and ZeroMQ, the throughput of MQTT was poor at the broker-centric architecture used 
in the paper.

To the authors’ knowledge, no analysis has been performed on the latency and jitter values of IIoT 
protocols working along with high frequency data in edge/fog and cloud scenarios. For this reason, 
the present research compares the performance of different IIoT protocols working along with high-
frequency data in edge/fog and cloud scenarios, analyzing different key parameters such as latency, 
jitter, lost or not-ordered packages, etc. The authors consider the analysis of jitter in high-frequency 
scenarios a key point, as it significantly impacts network performance by introducing irregularities 
and variations in the transmission of data streams.

Protocols Overview

In this section, an introduction of the tested protocols under edge/fog and cloud scenarios is presented. 
AMQP, MQTT, and KAFKA are broker dependent and are used with a pub/sub approach. ZeroMQ 
is employed using the same approach, but being brokerless and opening sockets. OP CUA is tested 
using a client/server approach.

AMQP
The AMQP is an open standard for passing business messages between applications or organizations. 
It connects systems, feeds business processes with the information they need, and reliably transmits 
onward the instructions that achieve their goals (AQMP, 2023).

In this paper, for implementing the AMQP standard, RabbitMQ has been employed as an open-
source message broker. Ionescu (2015) provides detailed information about this message broker. 
Moreover, Pika (version 1.3.1) client library, which is a RabbitMQ (AMQP 0-9-1) client library for 
Python, has been utilized.

MQTT
MQTT is an OASIS standard messaging protocol for the Internet of Things (IoT). It is designed as an 
extremely lightweight pub/sub messaging transport that is ideal for connecting remote devices with 
a small code footprint and minimal network bandwidth. Today MQTT is used in a wide variety of 
industries, such as automotive, manufacturing, telecommunications, oil and gas, etc. (MQTT, 2022). 
Suri (2019) provides detailed information about this protocol.

In this paper, the MQTT standard has been implemented through Eclipse Mosquitto, as open-
source message broker. Moreover, Paho MQTT (version 1.6.1) client library, which is an Eclipse 
Mosquitto client library for Python, has been employed.

Apache KAFKA
Apache Kafka is an open-source distributed event streaming platform for high-performance data 
pipelines, streaming analytics, data integration, and mission-critical applications. It provides a pub/
sub messaging model for data production and consumption and supports the ability to access data in 
real time for stream processing by allowing long-term storage of data (Apache Software Foundation, 
2023). Kafka was designed from the ground up to provide long-term data storage and data replay. It 
has a unique approach to data persistence, fault tolerance, and replay. This approach can be seen in 
how it handles scalability by allowing data access using cross-partition data sharing, topics/partitions, 
data offsets, and consumer group names for data replication persistence in clusters, increased data 
volume, and load. Apache Kafka is also well suited for real-time stream processing applications 
because it is designed to act as a communication layer for real-time log processing. This capability 
makes Apache Kafka suitable for applications running on communications infrastructure that process 
large amounts of data in real time (Nam et al., 2022).
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In this paper, for implementing this platform, Confluent-Kafka-Python (version 2.2.0), which is 
a Python client that provides a high-level producer, consumer, and AdminClient that are compatible 
with Kafka brokers, has been deployed.

ZeroMQ
ZeroMQ looks like an embeddable networking library but acts like a concurrency framework. It 
provides sockets that carry atomic messages across various forms of transport such as in-process, 
inter-process, TCP, and multicast. Sockets can be connected as N-to-N with patterns like fan-out, 
pub/sub, task distribution, and request-reply. ZeroMQ’s asynchronous I/O model allows scalable 
multicore applications, built as asynchronous message-processing tasks. It has a score of language 
APIs and runs on most operating systems (ZeroMQ, 2023).

In this paper, for implementing this protocol, pyzmq (version 25.1.1), which is a package 
containing Python bindings for ZeroMQ, has been employed, making use of the pub/sub approach.

OPC UA
OPC is the interoperability standard for the secure and reliable exchange of data in the industrial 
automation space and in other industries. The OPC standard is a series of specifications developed 
by industry vendors, end-users, and software developers. These specifications define the interface 
between clients and servers, as well as between servers and servers, including access to real-time data, 
monitoring of alarms and events, access to historical data, and other applications (OPC Foundation, 
2023).

Even though OPC UA is used mostly in higher automation levels for the purpose of monitoring 
and control, it also increases device connectivity via standard communication in lower automation 
levels (Hegazy & Hefeeda, 2015). Therefore, OPC UA was named as candidate for communication 
aspects in RAMI4.0. The OPC-UA approach abstracts data from the network technology and software 
application and offers a generic communication interface. It can be seen as one of the key technologies 
for a transparent data representation/ transmission between heterogeneous system components (Imtiaz 
& Jasperneite, 2013). Schleipen et al. (2016) provides detailed information about this protocol. This 
protocol has two operational models, server-client and pub/sub. This paper analyzes the server-client 
approach, in which each client establishes a connection with a server, as it is the most widely used. 
The pub/sub approach uses either UDP or MQTT as transport protocols. For the use presented in 
the paper, MQTT is the most suitable one. As results from OPC UA pub/sub based on MQTT would 
be remarkably similar to the ones obtained using MQTT, OPC UA pub/sub analysis has not been 
included in this paper. In this paper, for implementing the OPC UA standard, the Free OP-CUA 
(version 0.90.6) client library for Python has been employed.

Experimental Setup

To explore the benefits and drawbacks of the different IIoT protocols introduced in Section 3, under 
edge/fog and cloud scenarios, the following two setups, (shown in Figure 2) were employed for 
performing different experiments. The experiments consisted of two or three main components, 
depending on if the protocols were brokerless or not, and all of them dockerized and launched as 
docker containers:

•	 IIoT device simulator (colored in yellow):
◦◦ Producer: Simulated the generation of high-frequency sensor data and sent data streams to the 

AI service located in the edge/fog or cloud. Detailed information about the data generation 
is explained in Section 5.
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•	 AI component (colored in green or blue, depending on the scenario): Simulated an AI service. This 
service simply took the data from the IIoT simulator and sent a response back again, simulating 
an inference performed by a ML model. As the goal of this research was to evaluate only the 
protocols performance, to avoid unnecessary delays due to computational needs, no ML models 
were deployed in the edge/fog or cloud.

•	 IIoT device simulator (colored in yellow):
◦◦ Consumer: Once data was processed by the AI service, the IIoT device simulator received 

the response of the AI service corresponding to the previously sent data stream.

The numbers in the corner of the services of the scenarios in Figure 2 represent the moments in 
which different times have been measured. These numbers represent the following:

1. 	 Time when a data stream was sent from the IIoT simulator.
2. 	 Time when the data stream was received in the AI service.
3. 	 Time when the data stream was sent back from the AI service to the IIoT simulator.
4. 	 Time when the data stream was received back in the IIoT simulator.

After measuring those times, performing the operation (1), the mean latency values were 
calculated.

meanlatency
N

t t t t t t
i

N

i i i i save i i
� ( �

, , , , ,
= −( )− −( )− −(

=
∑
1

1
1

4 3 2 4 )))�	 (1)
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n i,

, n=1,2,3,4, is the timestamp corresponding to each of the explained moments corresponding 
to a data stream; t

save i,
 is the timestamp when that data stream is saved; and N is the total amount of 

streams corresponding to one experiment. By subtracting t t
i i3 2, ,
−( )  and t t

save i i, ,
−( )4  to t t

i i4
1

,
−( ) , 

we obtain the pure latency of the data stream, without considering the processing times of the IIoT 
and AI services. t t

i i3 2, ,
−( )  represents the processing time of the AI service, and t t

save i i, ,
−( )4  

represents the processing time of the IIoT simulator, which are values that must not be considered 
for the analysis.

Equation (2) is used to calculate the mean jitter:

mean jitter
N

l l
i

N

i i
� �= −( )

=

−

+∑
1

1

1

1
	 (2)

where l
i
 is the real latency of the corresponding data stream and l

i+1  is the real latency of the next 
data stream, both AI service and IIoT simulator processing times subtracted. Thus, we obtain the 
jitter corresponding to the protocol.

Moreover, the latency and jitter standard deviation values, not-ordered packages, and lost packages 
have been calculated.

In both scenarios, the IIoT simulator service launched under a computer with the following 
characteristics to simulate high frequency data: Processor Intel(R) Core(TM) i5-10400 CPU @ 
2.90GHz, 2904 MHz, 6 Core(s), 12 Logical Processor(s), 16Gb RAM.

As represented in Figure 2, the first scenario simulated an edge/fog computing based scenario, 
where the broker, if necessary, and the AI service were launched in the edge/fog server. This edge/
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fog server was simulated with another computer with the same characteristics as employed for the 
IIoT simulator. In this case, both computers worked within the same enterprise network. Contrary 
to scenario 1, in the second one, the broker, if necessary, and the AI service were launched on a 
cloud server. This server corresponded to a T2 medium EC2 instances launched in Amazon AWS 
containing 2vCPUs and 4Gb RAM.

Methodology

This section presents the methodology employed to perform the experiments. Table 2 represents 
the different experiments performed for each of the communication protocols in both scenarios. In 
total, nine different experiments were performed for each protocol, stream size, and frequency, and 
consequently the throughput. Thus, we can compare different levels of throughput, which is the best 
protocol in different scenarios. For each of the possible throughput, different stream size and sampling 
frequency combinations were investigated, to analyze the impact of this combination in different 
protocols. The performed experiments used Int32 type data points, corresponding to 4 bytes each 
element. Thus, the experiments ranged from 250 kHz to 2 MHz sampling frequency. The authors 

Figure 2. Scenarios Employed for Performing the Experiments

Table 2. Experiments Performed for Each of the Tested Protocols in Both Scenarios

THROUGHPUT 
(Mbytes/sec)

STREAM SIZE 
(Kbytes)

DATA POINTS/
STREAM STREAMS/s SAMPLING 

FREQUENCY (kHz)

1 25 6.250 40 250

1 50 12.500 20 250

1 100 25.000 10 250

4 100 25.000 40 1.000

4 200 50.000 20 1.000

4 400 100.000 10 1.000

8 200 50.000 40 2.000

8 400 100.000 20 2.000

8 800 200.000 10 2.000
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believe that this range covers a wide range of possibilities that could be realistic in high-frequency 
industrial scenarios.

Each of the experiments was performed with a duration of 30 seconds (cycles). In addition, 
to ensure the consistency of the experiments, each of them was performed 45 times, in batches of 
15, on different days and times, and the mean of the results was obtained. The mean and standard 
deviation latency and jitter distributions were analyzed, to ensure that they were similar and that the 
employed network did not distort the results. As the network congestion could not be controlled, 
this approach was used to minimize the network performance variability and helps to demonstrate 
protocols performance differences in a more realistic manner.

To simulate the generation of data with high precision, the following approach (Figure 3) was 
developed. In most cases, the data was generated and sent faster than the theoretical sampling time 
of one stream, being equal to 1/SamplingFrequency. However, due to the stochastic nature of the 
process, in a few instances it could occur that the data generation and sending lasted more than the 
theoretical sampling time. For that reason, an accumulative variable, T, was created to store the 
accumulated extra time and to try to compensate that time in future iterations.

As mentioned in Section 1, results absolute time values are highly dependent on the employed 
network characteristics and congestion. For that reason, in Section 6 this research presents a normalized 
comparison of the protocols` performance. Thus, the mean and standard deviation latency and jitter 
values of the presented experiments have been normalized. Moreover, all figures are presented in 
logarithmic scale. This helps to clearly visualize the results when values are low. For all the presented 
results, not-ordered and lost packages metrics are not shown, as, in all the experiments, there are not 
lost or unordered packages.

As explained in Section 3., OP CUA is only tested under edge/fog computing scenarios. In cloud 
computing scenarios, this protocol can be implemented with a pub/sub approach employing MQTT. 
However, it is not tested, as the obtained results would be remarkably similar to the ones obtained 
with Eclipse Mosquitto.

Figure 3. High-Frequency Data Generation Algorithm Pseudocode



International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

11

To analyze the computational overhead of each of the protocols, first, edge/fog/cloud device 
services memory and CPU utilization without data traffic were measured (see Figure 2). Next, IIoT 
and edge/fog/cloud devices services memory and CPU utilization were measured, under 100 Kbytes/s 
and 10 streams/s working conditions. To ensure the consistency of the experiments, each of them 
was performed 10 times, and the mean of the results was calculated.

Results

The following section is divided as follows: first, edge/fog experiment results are presented. Next, 
cloud experiment results are presented. Tables 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20, in the 
Appendix, present edge/fog and cloud scenarios results in terms of absolute and normalized values. 
Finally, computational overhead results are shown.

Edge/Fog Experiment Results
Figure 4 compares the IIoT messaging protocols performance for 1Mbytes/s throughput edge/fog 
experiments in mean and standard deviation latency terms. To clearly visualize the results, just the 
positive values of the standard deviation are represented as vertical black lines just above the bars, not 
showing the negative side of them. The legend of the figure is composed of the protocol name, the 
stream size value in Kbytes, and the stream frequency. Each of the protocols is shown in a different 
color. All the figures from that point on follow the same structure.

Sending 25 Kbytes streams at a frequency of 40 streams/s with MQTT is the scenario that obtains 
the lowest latency, closely followed by any of AMQP and ZeroMQ protocols. When employing 100 
Kbytes streams at a sampling frequency of 10 streams/second, MQTT protocol is clearly the one 
that obtains the lowest latency, being 1.23 times faster than ZeroMQ and at least 2 times faster than 
the rest of the protocols.

Figure 5 compares the IIoT messaging protocols performance for 1Mbytes/s throughput edge/
fog experiments in mean and standard deviation jitter terms.

Figure 4. Normalized Latency of 1 MBytes/s Edge/Fog Experiments
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Sending 25 Kbytes streams at a frequency of 40 streams/s, with MQTT protocol, is the scenario 
that obtains the lowest jitter, closely followed by AMQP, KAFKA, and ZeroMQ protocols. When 
employing 100 Kbytes streams at a sampling frequency of 10 streams/second, MQTT protocol again 
obtains the lowest jitter value, being at least 1.395 times lower than the rest of the protocols.

Figure 6 compares the IIoT messaging protocols performance for 4Mbytes/s throughput edge/
fog experiments in mean and standard deviation latency terms.

Sending 100 Kbytes streams at a frequency of 40 streams/s, with ZeroMQ protocol, is the 
scenario with the lowest latency, closely followed by AMQP. When employing 400 Kbytes streams 
at a sampling frequency of 10 streams/second, MQTT protocol again is one that obtains the lowest 
latency, being at least 1.395 times faster than the rest of the protocols.

Figure 7 compares the IIoT messaging protocols performance for 4Mbytes/s throughput edge/
fog experiments in mean and standard deviation jitter terms.

Sending 100 Kbytes streams at a frequency of 40 streams/s, with AMQP protocol, is the scenario 
with the lowest jitter, closely followed by KAFKA, MQTT, and ZeroMQ protocols. When employing 
400 Kbytes streams at a sampling frequency of 10 streams/second, AMQP protocol again obtains the 
lowest latency, being at least 2.17 times lower than the rest of the protocols.

Figure 8 compares the IIoT messaging protocols performance for 8Mbytes/s throughput edge/
fog experiments in mean and standard deviation latency terms.

The scenario with lowest latency is sending 200 Kbytes streams at a frequency of 40 streams/s, 
with any of AMQP, or ZEROMQ protocols. However, under thar scenario, AMQP performs 2.65 
times better in latency standard deviation terms than ZeroMQ. When employing 800 Kbytes streams 
at a sampling frequency of 10 streams/second, AMQP protocol has the lowest latency. While latency 
values for that combination of AMQP, MQTT, and ZeroMQ protocols is similar, the standard deviation 
of MQTT and ZeroMQ protocols are 4.83 and 6.13 times higher, respectively.

Figure 9 compares the IIoT messaging protocols performance for 8Mbytes/s throughput edge/
fog experiments in mean and standard deviation jitter terms.

Figure 5. Normalized Jitter of 1 MBytes/s Edge/Fog Experiments
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Sending 200 Kbytes streams at a frequency of 40 streams /s, with ZeroMQ and AMQP protocols, 
are the scenarios that obtain the lowest jitter. ZeroMQ performs 1.13 times better than MQTT in 
terms of jitter under that scenario. When employing 800 Kbytes streams at a sampling frequency of 
10 streams/second, AMQP protocol clearly obtains the lowest jitter, being at least 2.53 times lower 
than the rest of the protocols.

Figure 6. Normalized Latency of 4 MBytes/s Edge/Fog Experiments

Figure 7. Normalized Jitter of 4 MBytes/s Edge/Fog Experiments
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Cloud Experiment Results
Figure 10 compares the IIoT messaging protocols performance for 1Mbytes/s throughput cloud 
experiments in mean and standard deviation latency terms. To clearly visualize the results, just the 
positive values of the standard deviation are represented as vertical black lines just above the bars, not 
showing the negative side of them. The legend of the figure is composed of the protocol name, the 

Figure 8. Normalized Latency of 8 MBytes/s Edge/Fog Experiments

Figure 9. Normalized Jitter of 8 MBytes/s Edge/Fog Experiments
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stream size value in Kbytes, and the stream frequency. Each of the protocols is shown in a different 
color. All the figures from this point on will follow the same structure.

ZeroMQ is the protocol that obtains lower latency values, being the most stable one. Moreover, it 
is indifferent to the combination of stream size and rate. AMQP protocol, which is the next protocol 
obtaining lower latency, obtains at least 1.12 and 4.48 times worse results in mean and standard 
deviation latency terms.

Figure 11 compares the IIoT messaging protocols performance for 1Mbytes/s throughput cloud 
experiments in mean and standard deviation jitter terms.

Sending 50 Kbytes streams at a frequency of 20 streams /s, with ZeroMQ protocol, is the scenario 
that obtains lower jitter value, performing 1.54 times better than the next best combination, 100 Kbytes 
streams at a sampling frequency of 10 streams/second with ZeroMQ.

Figure 12 compares the IIoT messaging protocols performance for 4Mbytes/s throughput cloud 
experiments in mean and standard deviation latency terms.

The scenario with lowest latency is sending 100 Kbytes streams at a frequency of 40 streams /s, 
with ZeroMQ protocol. However, the difference with the rest of the scenarios employing ZeroMQ 
is significantly low. Under the 4 Mbytes/s use case, the difference between ZeroMQ and the rest of 
the protocols is higher than in the 1 Mbyte/second use case. In mean and standard deviation terms, 
ZeroMQ obtains at least 5.14 and 114.05 times lower results than AMQP, respectively. Kafka is 
clearly the protocol with worse latency, indicating that it is not suitable for high-frequency scenarios.

Figure 13 compares the IIoT messaging protocols performance for 4Mbytes/s throughput cloud 
experiments in mean and standard deviation jitter terms.

Sending 100 Kbytes streams at a frequency of 40 streams/s, with ZeroMQ protocol, is the scenario 
that obtains the lowest jitter results. Moreover, ZeroMQ performs better than the rest of the protocols 
employing any of the combinations. It performs at least 8.83 and 6.96 times better than AMQP in 
mean and standard deviation jitter terms.

Figure 14 compares the IIoT messaging protocols performance for 8Mbytes/s throughput cloud 
experiments in mean and standard deviation latency terms.

Figure 10. Normalized Latency of 1 MBytes/s Cloud Experiments
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The scenario that obtains the lowest jitter is sending 200 Kbytes streams at a frequency of 40 
streams/s ZEROMQ protocol. However, the difference with the rest of the scenarios employing 
ZeroMQ is significantly low. It performs at least 5.46 and 160.88 times better than AMQP in mean 

Figure 11. Normalized Jitter of 1 MBytes/s Cloud Experiments

Figure 12. Normalized Latency of 4 MBytes/s Cloud Experiments
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and standard deviation latency terms. Kafka is clearly the protocol that performs worse, indicating 
again that it is not suitable for high-frequency scenarios.

Figure 15 compares the IIoT messaging protocols performance for 8Mbytes/s throughput cloud 
experiments in mean and standard deviation jitter terms.

Figure 13. Normalized Jitter of 4 MBytes/s Cloud Experiments

Figure 14. Normalized Latency of 8 MBytes/s Cloud Experiments
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Sending 200 Kbytes streams at a frequency of 40 streams/s with ZeroMQ is the scenario that 
obtains the lowest jitter. It performs at least 6.23 and 8.03 times better than AMQP in mean and 
standard deviation jitter terms.

Computational Overhead Results
Table 3 presents the memory usage per service (MB) in the edge/fog/cloud device without data 
traffic. For broker-centric protocols, MQTT is the lighter one, employing 118.45 and 424.36 times 
less memory than AMQP and KAFKA brokers, respectively. For the AI service, all the protocols 
except OP CUA employ a similar amount of memory ZeroMQ being the lighter one. The overhead 
of the OP CUA client is due to the way in which it has been implemented, as the server is generating 
that overhead.

Table 4 presents the CPU usage per service, in % terms, in the edge/fog/cloud device without 
data traffic. For broker-centric protocols, MQTT is most efficient one, while the Kakfa broker is 
the most demanding one. For the AI service, MQTT, AMQP, and ZeroMQ employ the lowest CPU.

Figure 15. Normalized Jitter of 8 MBytes/s Cloud Experiments

Table 3. Memory Usage per Service (MB) in the Edge Device Without Data Traffic
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Table 5 presents the memory usage per service (MB) in the IIoT and edge/fog/cloud devices 
with data traffic. For broker-centric protocols, MQTT is the lighter one, while KAFKA is the most 
memory-demanding one. For the AI service, all the protocols except OP CUA employ a similar amount 
of memory, ZeroMQ being the lightest one. Regarding the IIoT producer service, MQTT, AMQP, 
and ZeroMQ protocols’ clients employ a similar amount of memory, with KAFKA and OP CUA 
protocols’ clients being heavier. Regarding the IIoT consumer service, MQTT, AMQP, KAFKA, and 
ZeroMQ protocols’ clients employ a similar amount of memory, with OP CUA client being heavier.

Tables 6 and 7 present the CPU mean and maximum usage per service, in % terms, in the IIoT 
and edge/fog/cloud devices with data traffic. For broker-centric protocols, MQTT is most efficient 
one, employing 10 times less CPU than AMQP in mean terms. For the AI service, ZeroMQ is the 
one that employs the lowest CPU. Regarding the IIoT producer service, there are no significant 
differences between the performance among the different protocols. Regarding the IIoT consumer 
service, AMQP is the least efficient one and ZeroMQ the most efficient one.

Finally, table 8 provides guidelines for which of the protocols should be used in each of the 
scenarios. For a fixed throughput, server location, and objective, the best scenarios are colored green.

Conclusion

In this paper, the differences between five different IIoT messaging protocols, AMQP, MQTT, KAFKA, 
ZeroMQ, and OP CUA, for high frequency data transmission in edge/fog and cloud scenarios, was 
investigated. Mean and standard deviation latency, mean and standard deviation jitter, lost or not-
ordered packages, etc. have been analyzed under different working conditions, varying the throughput 
(from 1 to 8 Mbytes per second), sampling frequency, and stream sizes. Moreover, the computational 
overhead of each of them was analyzed.

Table 4. CPU Usage per Service (%) in the Edge Device Without Data Traffic

Table 5. Memory Usage per Service (MB) With Data Traffic (100Kbytes Stream Size, 10 Streams/s Conditions)
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In edge/fog computing scenarios, AMQP, MQTT, and ZeroMQ are the protocols that show better 
performance. For experiments with the same throughput, the combination of smaller data streams at 
higher frequencies yields optimal performance across all three protocols. The three of them are suitable 
for soft-real-time scenarios, being able to handle 8 Mbytes/s data throughput. This can be translated 
into employing 1 ultrasonic sensor at 1MHz and 20 accelerometers working at 50kHz at the same 
time, acquiring 4 bytes data points. Particularly, for smaller data streams with higher frequencies, all 
three protocols perform identically. However, for larger data streams employing smaller sampling 
rates, AMQP consistently outperforms MQTT and ZEROMQ, emerging as the best choice, especially 
in jitter terms. It can be concluded that in this scenario, having a broker-centric architecture does 
not affect the performance of the applications. Moreover, in edge/fog scenarios where fewer CPU 
resources are usually available, it is advisable to use lighter protocols such as MQTT and ZeroMQ.

For cloud computing scenarios, the results provide valuable insights into the performance of 
various protocols. ZeroMQ and AMQP are the protocols that show better performance.

For lower (1 Mbyte/sec) throughput experiments, ZeroMQ exhibits slightly lower mean latency, 
but significantly higher stability over time in terms of latency standard deviation. As throughput 
increases, the differences between ZeroMQ and the rest of the protocols increases.

For higher (4 Mbyte/sec and 8 Mbyte/sec) throughput, ZeroMQ consistently outperforms 
the rest of the protocols in all aspects, showing significantly lower standard deviation in latency 
standard deviation. The best combination is sending smaller streams at a higher sampling frequency, 
demonstrating superior jitter performance compared to larger streams at lower frequencies. It can 
be concluded that in this scenario, having a broker-centric architecture affects the performance of 
the applications. On the other hand, the results indicate that ZeroMQ is appropriate for building soft 
real-time edge/fog computing applications for industry.

Future work will begin validating the presented results, working with different libraries for 
implementing the protocols, such as Redpanda for Kafka and QuickOPC for OP CUA pub/sub. 

Table 6. Mean CPU Usage per Service (%) With Data Traffic (100Kbytes Stream Size, 10 Streams/s Conditions)

Table 7. Maximum CPU Usage per Service (%) With Data Traffic (100Kbytes Stream Size, 10 Streams/s Conditions)
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Moreover, the results will be validated under a real industrial scenario, acquiring high-frequency 
signals and processing them in real time. Thus, the IIoT simulator will be replaced by a data acquisition 
device, acquiring high-frequency signals from different sources such as accelerometers, acoustic 
emissions sensors, and energy meters. The AI simulator will be replaced by a real data-based model 
that will be deployed at the edge/fog/cloud, and the inference of the model will be employed for 
sending orders to a machine and generating alerts.
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APPENDIX

Table 9. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Absolute (ms) Values Under 1 Mbyte/s Edge/
Fog Computing Scenario

AMQP KAFKA MQTT OP CUA ZEROMQ

Stream size_rate

25
_4

0

50
_2

0

10
0_

10

25
_4

0

50
_2

0

10
0_

10

25
_4

0

50
_2

0

10
0_

10

25
_4

0

50
_2

0

10
0_

10

25
_4

0

50
_2

0

10
0_

10

latency

4.
09

9

5.
57

5

11
.7

35

14
.0

90

15
.0

89

20
.6

08

3.
64

3

4.
39

1

6.
48

3

21
8.

68
2

23
2.

84
0

24
4.

39
1

3.
91

9

5.
07

8

7.
80

5

latency_stdev

1.
48

1

1.
82

0

2.
81

3

1.
40

0

3.
64

1

21
.9

71

1.
40

4

2.
47

5

3.
55

0

86
.0

84

86
.1

03

79
.0

00

1.
25

0

3.
74

4

11
.2

46

jitter

0.
98

7

1.
31

2

2.
99

2

0.
92

5

1.
68

1

5.
38

7

0.
83

1

1.
23

0

2.
14

6

43
.9

60

75
.8

54

10
3.

33
8

1.
03

6

1.
77

3

4.
31

6

jitter_stdev

1.
94

6

2.
53

5

3.
86

8

1.
97

0

5.
15

9

21
.7

81

1.
91

3

3.
48

3

4.
61

5

68
.1

91

90
.3

24

10
5.

89
7

1.
73

6

5.
27

8

15
.7

99

Table 10. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Normalized Values Under 1 Mbyte/s Edge/
Fog Computing Scenario

AMQP KAFKA MQTT OP CUA ZEROMQ
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Table 12. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Normalized Values Under 4 Mbyte/s Edge/
Fog Computing Scenario

AMQP KAFKA MQTT OP CUA ZEROMQ
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Table 11. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Absolute (ms) Values Under 4 Mbyte/s 
Edge/Fog Computing Scenario

AMQP KAFKA MQTT OP CUA ZEROMQ
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Table 13. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Absolute (ms) Values Under 8 Mbyte/s 
Edge/Fog Computing Scenario

AMQP KAFKA MQTT OP CUA ZEROMQ
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Table 14. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Normalized Values Under 8 Mbyte/s Edge/
Fog Computing Scenario

AMQP KAFKA MQTT OP CUA ZEROMQ
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Table 18. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Normalized Values Under 4 Mbyte/s Cloud 
Computing Scenario

AMQP KAFKA MQTT ZEROMQ

Stream 
size_rate 100_40 200_20 400_10 100_40 200_20 400_10 100_40 200_20 400_10 100_40 200_20 400_10

latency 0.048 0.036 0.047 0.887 1.000 0.250 0.094 0.056 0.099 0.007 0.007 0.008

latency_stdev 0.130 0.091 0.136 0.889 1.000 0.298 0.257 0.138 0.309 0.001 0.001 0.001

jitter 0.100 0.075 0.135 0.569 1.000 0.485 0.426 0.539 0.187 0.008 0.018 0.025

jitter_stdev 0.132 0.111 0.216 0.756 1.000 0.383 0.318 0.357 0.272 0.016 0.025 0.024

Table 15. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Absolute (ms) Values Under 1 Mbyte/s 
Cloud Computing Scenario

AMQP KAFKA MQTT ZEROMQ

Stream 
size_rate 25_40 50_20 100_10 25_40 50_20 100_10 25_40 50_20 100_10 25_40 50_20 100_10

latency 47.536 48.676 53.132 78.688 60.760 66.518 98.278 98.552 60.613 43.572 42.509 43.917

latency_stdev 6.890 6.589 22.129 28.496 27.828 40.661 32.172 44.759 56.284 4.053 1.470 1.473

jitter 1.275 1.347 2.180 19.749 1.797 3.242 36.259 44.861 3.414 2.405 0.865 1.321

jitter_stdev 3.998 3.386 4.732 20.264 6.087 10.643 40.954 46.496 18.926 4.623 1.782 1.953

Table 17. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Absolute (ms) Values Under 4 Mbyte/s 
Cloud Computing Scenario

AMQP KAFKA MQTT ZEROMQ

Stream 
size_rate 100_40 200_20 400_10 100_40 200_20 400_10 100_40 200_20 400_10 100_40 200_20 400_10

latency 295.744 219.556 288.377 5476.131 6174.601 1542.460 579.785 347.323 611.866 42.695 44.926 47.390

latency_stdev 369.336 258.025 386.838 2520.044 2834.921 844.624 727.823 390.823 876.579 2.285 2.994 2.262

jitter 8.559 6.363 11.549 48.493 85.241 41.303 36.334 45.935 15.936 0.720 1.567 2.102

jitter_stdev 17.084 14.377 28.078 98.226 129.875 49.682 41.242 46.387 35.277 2.065 3.272 3.106

Table 16. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Normalized Values Under 1 Mbyte/s Cloud 
Computing Scenario

AMQP KAFKA MQTT ZEROMQ

Stream size_
rate 25_40 50_20 100_10 25_40 50_20 100_10 25_40 50_20 100_10 25_40 50_20 100_10

latency 0.482 0.494 0.539 0.798 0.617 0.675 0.997 1.000 0.615 0.442 0.431 0.446

latency_stdev 0.122 0.117 0.393 0.506 0.494 0.722 0.572 0.795 1.000 0.072 0.026 0.026

jitter 0.028 0.030 0.049 0.440 0.040 0.072 0.808 1.000 0.076 0.054 0.019 0.029

jitter_stdev 0.086 0.073 0.102 0.436 0.131 0.229 0.881 1.000 0.407 0.099 0.038 0.042
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Table 19. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Absolute (ms) Values Under 8 Mbyte/s 
Cloud Computing Scenario

AMQP KAFKA MQTT ZEROMQ
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Table 20. Latency, Latency Standard Deviation, Jitter, and Jitter Standard Deviation Normalized Values Under 8 Mbyte/s Cloud 
Computing Scenario

AMQP KAFKA MQTT ZEROMQ
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