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ABSTRACT

This research aims at teaching solfeggio and ear training in college music and proposes a teaching 
method for college music note recognition that combines the musical instrument digital interface 
(MIDI) and hidden Markov models (HMM). The experiment showcases that after preprocessing the 
music frequency sample signal using HMM model, it achieves the target accuracy after 20 times of 
training. From the HMM transition probability matrix diagram estimated from all training data sets, 
it can be seen that the transition matrix is close to the diagonal matrix. This indicates its high transfer 
efficiency. This study compares the HMM model with the other two algorithms, and the results show 
that its accuracy rate is about 99.56%. The probability of insertion errors and elimination errors is 
0.52% and 2.58%. This is superior to the other two algorithms. In summary, the HMM model proposed 
in the study has extremely strong performance in the teaching of music note feature recognition in 
universities and can provide better teaching methods.
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1. INTRoDUCTIoN

With the development of technology, digital music teaching has become an increasingly popular 
method in modern music teaching. The digitization of musical works is also receiving more and 
more attention. Due to the increasing cost of piano teaching in universities, the teaching tasks of 
university music teachers are also becoming more and more difficult. Therefore, it is important to 
improve the efficiency of teaching and creation (Abeysinghe et al., 2021; Zeng et al., 2020). Today, 
with the continuous improvement of phonetic feature recognition, the accuracy rate of phonetic feature 
classification using traditional methods is not high. Traditional music teaching requires specialized 
teachers to guide and improve students’ music level through repeated practice. Repetitive work not 
only greatly reduces the efficiency of teachers, but also increases the cost of one-on-one tutoring. 
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This makes it difficult for low-income families to systematically learn music. In addition, in teaching, 
musicians’ judgment of pitch is based on their rich teaching experience, and is based on the pitch 
heard by the human ear. However, this method of judgment is too subjective, inaccurate and prone 
to error. Introducing computer algorithm technology into music teaching can help students to reduce 
work pressure on the one hand, and can also help students to escape the influence of teachers to a 
certain extent. This can reduce the cost of learning (Lee et al., 2020). Among them, MIDI (Musical 
Instrument Digital Interface) serves as a digital interface for musical instruments, which uses the 
digital control signals of notes to record music. It can achieve the minimum size recording of music 
files, greatly reducing the cost of composition and orchestration. This MIDII technology is known as 
the “computer-understandable score” and can improve the efficiency of music creation. In traditional 
music teaching, the effectiveness of solfeggio and ear training is inevitably limited by classroom 
teaching techniques and individual differences among students, making it difficult to demonstrate 
good application effects. Therefore, this study aims to propose a teaching method for college note 
feature recognition that combines MIDI and HMM. The approach proposed in the study can combine 
traditional music teaching methods with modern technology, providing a more efficient and flexible 
learning approach. MIDI technology can achieve real-time performance, real-time feedback, and 
automatic grading functions, enabling students to learn musical knowledge and skills by interacting 
with electronic devices. At the same time, the multimedia function of digital music teaching software 
can effectively display the playing sounds of various instruments, deepen students’ understanding of 
music theory and skills, and stimulate students’ interest in learning while enriching teaching content, 
improving learning motivation. The Solfeggio teaching method based on MIDI technology can be 
quantified and customized according to students’ performance, provide targeted guidance, accelerate 
the learning process, realize the personalization, interaction and intelligence of music teaching, provide 
students with a wider learning space and more efficient learning methods, and improve the quality 
and effect of music teaching. The exploration of music teaching methods under MIDI technology can 
provide new technological means and tools for university teaching in universities and personalized 
learning for students. From a social perspective, the Solfeggio teaching method in the context of digital 
music teaching can help cultivate more music talents and improve the popularity and effectiveness of 
music education. The widespread application of digital music technology provides new tools, means, 
and approaches for music teaching. The Solfeggio teaching method based on MIDI technology can 
effectively combine digital technology with traditional teaching methods, improve students’ mastery 
and understanding of music knowledge, enhance their interest and learning motivation in music, and 
cultivate more outstanding music talents. In addition, the promotion and application of digital music 
teaching can also help promote the development of music education and enhance the country’s cultural 
soft power. From a theoretical point of view, the Solfeggio teaching method based on midi technology 
can better integrate music theory and practice, providing more specific and visual learning materials 
and teaching methods. Through MIDI technology, students can intuitively see the symbols, melodies, 
intervals and other elements of music, and deepen their understanding of music theory and practice 
by combining actual instrument performance and arrangement. In addition, the application of MIDI 
technology to Solfeggio teaching can also expand the research field of music education and explore 
new teaching modes and methods.

2. ReLATeD WoRK

There are various types of music, and the characteristics of various notes are also different. In 
music creation, many composers have used speech recognition software for note features to achieve 
automatic recognition of note features. However, in the recognition process, the classification accuracy 
of musical notes is relatively low. Therefore, an effective note teaching and recognition technology 
needs further exploration (Yl et al., 2020; Fonseca et al., 2020). Sosiawan et al. (2021) discussed the 
implementation of using HMM-GA in time series data. This research aims to improve the accuracy 
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of prediction by developing an algorithm that combines Hidden Markov Model (HMM) and Genetic 
Algorithm (GA). This research has provided valuable contributions to the prediction field of time series 
data. Dinesh K et al. studied the implementation and analysis of FAR and FRR for face and speech 
recognition (multimodal) using KNN classifiers. Compared to other recognition methods, the KNN 
classifier achieves higher overall accuracy when used in face and speech recognition. The research 
results also reflect that FAR and FRR can be improved by using KNN classifiers. This indicates that 
KNN classifier is a reliable and effective method for face and speech recognition (Dinesh et al., 2020). 
Lg et al. (2020) explored the relationship between the estimation of voice similarity between human 
listeners and automatic speaker recognition systems that include speech features. The results illustrate 
that the use of speech features improves the accuracy of the system’s speech similarity estimation 
compared to the use of acoustic features alone. Pandeya Y.R. et al. proposed a visual object detector 
for cow sound event detection. The proposed visual object detector is based on the ResNet-50 deep 
learning model for cow detection in video. The model was trained on a dataset consisting of cow and 
non cow images. The results demonstrate that the proposed visual object detector can accurately detect 
cows in the video, with an accuracy rate of 97.5% (Pandeya et al., 2020). Wu et al. (2021) analyzed 
the acoustic near-field characteristics of acoustooptic modulators (AOMs). They used numerical 
simulation methods to analyze the acoustic field distribution of AOM. The results indicate that there 
is an acoustic near-field that depends on the aperture size and the angular frequency of the acoustic 
wave. This study provides valuable information that can be used to improve the performance of 
acoustooptic devices.

Mittapalle et al. (2022) observed the laryngeal flow characteristics of vowels emitted by speakers 
with heart failure. The author collected voice samples from 16 male speakers with heart failure and 16 
healthy male speakers. Both sets of samples were analyzed using throat flow analysis software. The 
results demonstrate that people with heart failure have significantly lower throat flow rates, steeper 
slopes, and larger area values. Zhao et al. (2021) studied how aircraft noise affects the spectral temporal 
acoustic characteristics of frog species. The research has shown that aircraft noise may have a greater 
impact on frog species that with long calls than on frog species that communicate with short, long 
calls. This study provides an insight into how aircraft noise affects the vocal behavior of amphibians 
and helps to further understand the potential impact of human activity on amphibian populations. 
Ding et al. (2020) proposed the problem of genomic privacy inference attacks using Hidden Markov 
Models (HMMs) and Recursive Convolutional Neural Networks (RCNN) models for unrelated 
individuals. Experimental results indicate that the proposed improved HMM model and RCNN 
model achieve excellent performance compared to traditional HMM models and other deep learning 
models. These findings provide useful insights into privacy inference attacks on genomic data and 
suggest possible directions for further research. Vioria et al. (2020) studied the segmentation process 
and spectral characteristics to determine music genres. They use a segmentation process to segment 
music into segments, and then extract spectral features from the segmented music to identify music 
genres. Experiments illustrate that the proposed method can successfully identify music genres with 
an accuracy of up to 86%. The results of this study provide important significance for understanding 
the characteristics of music genres and developing more effective genre recognition systems. Richard 
et al. (2020) studied the characteristics of frequency following responses to speech in newborns and 
their potential applicability in clinical practice. The results showcase that newborns have a frequency-
following response to speech and are enhanced by sound cues. The frequency-following response of 
newborns to speech can be used to assess auditory temporal resolution and higher-order temporal 
processing. The authors conclude that the frequency-following response to speech can be a useful 
tool in the clinical evaluation of newborns.

Through the analysis of the application of HMM model in the teaching of music note feature 
recognition in universities by scholars at home and abroad, there are currently many algorithms for 
music note feature recognition and other feature recognition. However, there are relatively few HMM 
models used in the teaching of music note recognition in universities. Therefore, this study mainly 
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focuses on the application analysis of HMM model combined with MIDI technology in music note 
recognition teaching in universities. Compared with other methods, the recognition rate is improved, 
and its feasibility and optimization are well verified.

3. CoNSTRUCTIoN oF A NoTe FeATURe ReCoGNITIoN MoDeL 
IN CoLLeGe SoLFeGGIo AND eAR TRAINING TeACHING

Strengthening the effectiveness of visual singing and ear training teaching in music classrooms is an 
important teaching content. Among them, staff notation recognition is currently the main means of 
note feature recognition in universities. However, the staff notation covers a lot of content, and some 
of the content still has some ambiguity. The position and pitch of each note corresponding to the 
staff notation together form music audio data. To improve the accuracy of note feature recognition, 
research is conducted on computer simulation audio streaming based on MIDI technology, which 
includes digital signal transmission and reception, computer simulation of instrument sound, and 
mixing all simulated sounds to present the final music effect. At the same time, in order to ensure 
the accuracy of the feature extraction of digital signals, the acoustic characteristics of the human 
auditory system are satisfied with the help of Mel-frequency cepstrum coefficient and first-order 
Markov chain model, and the accurate recognition of the fundamental frequency characteristics of 
notes is realized, thus effectively improving the teaching effect of solfeggio.

3.1 Computer Simulation Based on MIDI Technology 
to Realize Audio Streaming Method
Computer simulation of acoustic wave propagation can be accomplished using digital frequency propagation 
technology (DFT). The Fourier transform can be used to transform sound signals from the time domain 
to the frequency domain, and then the frequency-domain signal can be propagated in the air. When sound 
propagates through air, it is affected by environmental factors, such as air density, airflow velocity, and 
sound reflection and absorption. These factors can affect the propagation path of the sound, as well as the 
intensity and frequency characteristics of the sound. Therefore, digital frequency propagation techniques 
can be used to simulate the propagation process of sound waves. In this way, the propagation of sound can 
be better predicted. A simple computer simulation of sound waves is shown in Figure 1.

Figure 1. Computer simulation of sound wave demonstration diagram
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A certain number of digital particles are evenly distributed in a plane; The four corners of the 
matrix are distributed as sound sources, and the sine wave emitted by the sound source is fixed 
in both the transverse and longitudinal directions of the particles in three-dimensional space-
time. The vertical coordinate is moved a new height by the sound wave, and the same row of 
particles moves up and down at the same time as the sound wave. This forms a wave. Computer 
simulation of computer sound simulation streaming can be divided into three parts: receiving 
MIDI signals, analyzing and processing MIDI signals, and mapping MIDI data to simulate audio 
streaming experimental variables. First of all, this study first receives MIDI signals: MIDI signals 
are a technology used to exchange digital music information. It can transfer music data from one 
device to another, such as a keyboard, musical instrument, mixer, etc; Secondly, the experiment 
simulates sound: Once a MIDI signal is received, the computer uses complex algorithms to 
simulate the sound of an actual musical instrument. The computer then uses predefined sound 
frequencies and environmental parameters to simulate the sound of an actual musical instrument; 
Finally, this study mixes sounds: The computer mixes all the simulated sounds to produce the 
final musical effect. This step can use predefined sound parameters such as EQ (Equalizer), 
reverberation, delay, and so on. This can change the final effect of the music. Sound is caused by 
the vibration of objects. The human ear can sense many sounds, but not all of them can become 
the basis of music. The sound used in music can convey people’s lives and thoughts, and form 
a fixed system. This can be used to express people’s thoughts and musical imagery. Tones are 
composed of single tones arranged in chronological order, with many individual tones in a 
continuous musical sound. In a physical sense, the basic components of a single note include 
three parts: fundamental frequency, amplitude, and octave (Bt et al., 2020). The frequency ratio 
of each adjacent key on a piano is the same, with their pitch frequency ratio being 1/12 times 
that of 2. The details are showcased in Equation (1):

f f
2 1

1 122/ /=  (1)

In Equation (1), f
n

 is the frequency of the n th key; f
n+1  is the frequency of the n+1 th key. 

Taking the piano as an example, the variation of its pitch frequency is demonstrated in Figure 2.

Figure 2. Piano note frequency relationship
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The twelve-tone average rhythm provides a scientific basis for quantitatively describing the 
tones of musical sounds. Intervals in different ranges can cause differences in pitch levels. The 
difference between the sweet and vigorous sounds of musical instruments is that they are composed 
of different materials; Commonly used vibration materials include steel strings, reeds, diaphragms, 
etc. Due to the differences in the sound quality of the components, their timbre is different (Wang 
et al., 2021). Original music without preprocessing is generally divided into two categories: one is 
power frequency interference caused by electromagnetic radiation; The other is that the energy of 
the frequency component is uniformly distributed in a specific auditory region. For power frequency 
interference, a high pass filtering method can be used to improve the high-frequency component in 
the fundamental frequency. Then, a low-pass filter is used to directly eliminate Gaussian noise. To 
determine the basic frequency of each note and calculate the instantaneous energy of each frame, 
it is necessary to divide it into a single note. The calculation equation is indicated in Equation (2):

E i x k
i

i

m

( ) ( )=
=
∑ 2

1

 (2)

In Equation (2), m  is the frame length. Research divides it into k  frames, where i  serves as a 
specific frame to identify a note; x k

i
2( )  is expressed as a functional function for calculating the energy 

of a single note. In a single frame note signal, its instantaneous energy has a significant impact on 
the sound. This experiment uses the average amplitude of the instantaneous energy to divide the silent 
and musical basebands. The expression is showcased in Equation (3):
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The instantaneous zero crossing rate reflects the frequency of a note. The study set the sampling 

frequency as f
s

 and the sampling frequency as f
0
; Its zero crossing rate is 

2
0
f

f
s

. It sets the instantaneous 

zero crossing rate as illustrated in Equation (4):
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In practical applications, when the difference between two sampled note signals is greater than the 
set threshold, the instantaneous energy and zero-crossing rate of the note are normalized to facilitate 
the identification of fundamental frequencies (Nasrabadi et al., 2022). The normalization equation 
is shown in Equations (5) and (6):

E i
x k

x k

i
i

m

i
i

m( )
, ( )

, ( )
=

≥

<











=

=

∑

∑

1

0

1

1

δ

δ
 (5)



International Journal of Web-Based Learning and Teaching Technologies
Volume 18 • Issue 1

7

ZCR i
x i x i

x i x i
[ ]

, ( ) ( )

, ( ) ( )
=

∗ + ≤
∗ + >








1 1 0

0 1 0
 (6)

In Equation (5), δ  is its threshold value. It detects a subsequent t  frame. If it is found that all 
tones contain tones, then take this frame as the starting point and move it out of the basic frequency 
containing the music tone; If an instantaneous minimum occurs, subsequent t  frames must also be 
detected; If there is no sound, the frame is used as the endpoint. After filtering, the signal is pre-
emphasized. The pre-emphasis processing uses a digital pre-emphasis filter with a frequency of 6 
dB/times. This is typically a first order digital filter (Sevilgen et al., 2022). Equation (7) showcases 
the details:

H z z( )= − −1 1µ  (7)

In Equation (7), µ  is its frequency coefficient, with a value close to 1. For single tone signals, 
continuous segmentation can be used for windowing and framing. However, to ensure a smooth 
transition between frames, overlapping segmentation is often used. The overlap between the previous 
frame and the subsequent frame is called frame offset, and its frame offset ratio is usually 1/2.

3.2 Solfeggio ear Training Note Feature Recognition Model Based on HMM Model
The Mel Frequency Cepstrum Coefficient (MFCC) is an acoustic characteristic that was created from 
the research results of the human auditory system. The Mel scale is a way to measure this critical 
bandwidth. The conversion relationship between Mel frequency (in mils) and linear frequency f (in 
hertz) is shown in Equation (8):

Mel f

f
f

( )
ln( )

ln( )
ln( ) log(=

+

+
≈ + =

1000 1
700

1
1000
700

1125 1
700

2595 11
700

+
f

)  (8)

Generally, MFCC features are effective in speech recognition and recognition of various musical 
instruments in music. This feature has been studied as a method for piano single tone recognition. 
Because this method can reflect the sound energy distribution at different frequencies, and the energy 
of different piano single tones is concentrated in a specific frequency band. Therefore, MFCC can 
well describe the characteristics of monophonic sounds (Ham et al., 2020). The feature extraction 
principle of MFCC is shown in Figure 3.

In the study, the order of the cepstrum is selected as 16, thus obtaining a cepstrum feature 
with 16 dimensional output features. Due to the different length of each syllable, it is necessary to 
normalize the characteristic parameters of each syllable in time domain and amplitude for better 
processing. Finally, the unified characteristics of 16 * 4 dimensional monosyllables were obtained 

Figure 3. Block diagram of MFCC feature extraction
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in the experiment. The basic frequency information of a note signal is reflected by the parameters 
of its basic frequency characteristics. To accurately identify the fundamental frequency of a note, it 
is necessary to extract its corresponding fundamental frequency characteristics. The notes in multi-
part music are related to each other, and the frequency of the notes, which determines their pitch, is 
an important aspect of music development. Music audio includes both meaningful and meaningless 
parts, with the vocal part carrying more information and the silent part containing more fundamental 
features. The application of common feature recognition methods based on filter adaptation and 
differential washing of fundamental frequency features is relatively limited, and cannot be applied to 
the fundamental frequency recognition of notes in multiple parts. The HMM model proposed in the 
study is based on the first-order Markov chain model, and is mainly realized through the two Stochastic 
process of state description and the description between state and observation value. With the help 
of the HMM model, the note pitch recognition of multi-vocal score can realize the frame processing 
of fundamental frequency, parameter calculation, and the recognition of feature weight vector. To a 
certain extent, it has application value and effectiveness in music teaching. The topological structure 
of the notes is shown in Figure 4.

As shown in Figure 4, ent is an input state that has no physical significance. This marks the 
beginning of the mode, where a is the beginning of (vocalization), the instantaneous characteristic of 
a person speaking; “S” refers to the duration of the (delayed) sound. At the beginning, the sound will 
enter a stable duration; “R” is the last sound, and at the end, the sound has a brief attenuation until it 
disappears; Exit is an output state that has no physical meaning and is marked at the end of the model. 
In this experiment, the HMM mode is used to identify the fundamental frequency of multi vocal music 
scores. The HMM mode must be established for the fundamental frequency of each note. This process 
requires the use of multiple basic frequencies in HMM mode learning and training. The fundamental 
frequency characteristic is superior to the energy characteristic. According to the characteristics 
reflected by the music score characteristic, multiply each fundamental frequency characteristic 
parameter by the corresponding weighting. Then, the fundamental frequency characteristic parameters 
of each frame are combined to form a five-dimensional fundamental frequency characteristic vector. 
The existence relationship is shown in Equation (9):

Figure 4. Topology of a note model
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a a a a a
1 2 3 4 5

1+ + + + =  (9)

In Equation (9), a a a a a
1 2 3 4 5
, , , ,  serves as its weight. Typically, empirical values are taken and 

the characteristic parameters are multiplied by corresponding weighting coefficients, as shown in 
Equation (10):
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In Equation (10), M
i
 is the vector of the fundamental frequency characteristic parameter between 

frames; F
i0
 serves as the fundamental frequency of the tone of the i th frame; E

i
 serves as the note 

energy at frame i. The characteristic of scale contour (PCP) is used by Fujishima as a characteristic 
of musical chords. The perception of music involves two completely different characteristics, namely 
pitch and scale. “Tone level refers to when a tone circulates within a certain octave (octave) period, 
while pitch refers to the increase in the sound of music as the frequency increases.”. Therefore, the 
sound levels for two different octave ranges are the same. The sampling rate for music signals is 
typically 45.68 KHz. This sampling rate can well guarantee the quality of music and extract its 
characteristics. Therefore, the sampling rate is not required to be too high, and all music data is 
reduced to 11.351 kHz using the cool edit 3.0 software. Figure 5 is a flowchart for calculating the 
PCP characteristics.

Figure 5. Flowchart of PCP feature calculation
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The specific steps are as follows: First, dividing it into frames, and dividing it into overlapping 
frames of 4088 sampling points. Subsequently, Fourier transform is performed, as shown in 
Equation (11):

X q n x n m w m e
STFT

m

N
j km N( , ) ( ) ( ) /= − ⋅ ⋅

=

−
−∑

0

1
2π  (11)

In Equation (11), q  serves as the coordinate frequency, and 0 1≤ ≤ −k N ; n  serves as the 
center of the Fourier transform; w m( )  serves as the Hanning window at N=4088. Secondly, map 
X k n
STFT
( , )  to p k( ) . It typically includes 12 dimensional vectors, each representing the intensity of 

a chromatic scale. The mapping from frequency to scale is calculated using a logarithmic method in 
steps of 100 milliseconds, which is 10 PCP frames per second. Map k to p in PCP in STFT. The 
corresponding relationship is shown in Equation (12):

p k k N f f
sr ref

( ) [ log ( / / )]mod= ⋅ ⋅12 12
2

 (12)

In Equation (12), f
ref

 is the reference frequency corresponding to PCP; f
sr

 is the sampling 
rate. Finally, the frequency values of all frequency points corresponding to a particular scale are 
accumulated to the corresponding PCP unit values at each moment. The specific equation is 
shown in Equation (13):

PCP p X k
k p k p

( ) ( )
: ( )

=
=
∑

2
 (13)

In this study, accuracy, insertion errors (by detecting the proportion of musical notes in a non 
tonal fundamental frequency), and elimination errors (by eliminating the proportion of fundamental 
frequencies of notes containing musical notes) were selected as the method evaluation indicators. 
As shown in Equation (14):

Accuracy

insert error

e inate errors

=

=

=







α
χ
β
χ

ε
χ

1

2

1

 

 lim







 (14)

In Equation (14), α  is the number of points whose fundamental frequency identification is 
correct and not zero; χ

1
 is the number of points where the actual fundamental frequency is not 0; 

χ
2

 is the number of points where the actual fundamental frequency is 0; ε  is the number of elimination 
points. The insertion point refers to a point where the actual base frequency is 0 and the budgeted 
base frequency is not 0. The elimination point refers to a point where the actual basic frequency is 
less than 0 and its basic frequency is 0.
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4. ANALySIS oF THe APPLICATIoN eFFeCT oF THe NoTe FeATURe 
ReCoGNITIoN MoDeL IN CoLLeGe SoLFeGGIo TeACHING

The research selected the teaching tracks from the music courses of University A. It uses multi vocal 
music with a strong rhythm. The study used four hours of humming recordings, with one hour of 
bootstrap training and three hours of embedded training. The data is approximately 500 M, with nearly 
20000 notes in the entire dataset; The entire test sample includes four female students and three male 
students as testers, trying to meet different student characteristics as much as possible. Each user 
hummed out 10 recordings at a sampling rate of 45.68 KHz, quantized at 16 bits, and filtered out 6 
bass segments. Then this study obtained an experimental sample group, with a total of 64 humming 
segments, including 1073 notes. Then, the note data is pre-processed to remove Gaussian noise and 
normalize it. The comparison of the effects of the audio signal dataset before and after preprocessing 
is shown in Figure 6.

From Figure 6 (a), it can be seen that the maximum value of the signal frequency exhibited by 
the audio signal before preprocessing reached 9000Hz, and the overall fluctuation was more obvious, 
especially when the tag numbers were 0-500. When the sequence number is between 500 and 900, 
most of the signals exhibit concentrated high and low frequencies, and the signal data contains a 
lot of noise data. The frequency variation of the signal shows obvious abnormal fluctuations. After 
preprocessing the audio signal, the abnormal frequency change of the signal data in Figure 6 (a) has 
been significantly improved, with a signal frequency change amplitude range of (5800Hz, -5000Hz) 
and a smoother signal change. Figure 6 shows that the preprocessing not only removes the power 
frequency noise in the notes, but also removes the Gaussian white noise, making it close to the non-
interference state. Based on this, an HMM model suitable for the fundamental frequency characteristics 
of a large number of notes was selected in the experiment; The fundamental frequency was identified 
through the filtered frequency domain. This reduces the impact of noise on the fundamental frequency 
interference, thereby improving recognition accuracy.

Figure 7 shows that the slope of the error curve of the pre processed music frequency sample 
signal is relatively large, and after 100 training sessions, the accuracy of the music frequency sample 
signal still does not reach the target value. The error value reaches 0.23 when the number of iterations 
is 10. After preprocessing the music frequency sample signal and 20 training sessions, the accuracy 
of the music frequency sample signal reached the target value; Moreover, the overall curve changes 
relatively smoothly, indicating a relatively stable data processing ability. The above results show that 

Figure 6. Comparison diagram of sound frequency signal before and after preprocessing
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the music frequency sample signal is preprocessed. This can effectively improve the efficiency and 
accuracy of music frequency sample signal recognition, and save time and cost.

Figure 8 indicates an estimated HMM transition probability matrix from all training data sets. 
From the observation results, it can be seen that the transfer matrix is very similar to the diagonal 
matrix. Since its time length is generally larger than the frame length, it will not change in the next 
few screens. This leads to a high probability of being transmitted to oneself.

Figure 7. Comparison of training results

Figure 8. Transition probability matrix for HMM
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Figure 9 shows that changes in chords based on musical theory can also be identified by the 
possibility of transmission. For example, the large C chords mentioned above are most likely to remain 
in the same condition. The reason for keeping the large C chord unchanged is that the frame changes 
much faster than the changing chord. In addition, the possibility of moving from a large C chord to a 
large G or small F chord is higher than that of other chords, and the fundamental scale of a chord is four 
levels up. The major chord of the C key is 1, and its four ascending levels are 5, which is also called G. 
In Western music, it is very common for them to switch to each other. The big C chord is also the main 
chord of the bass F, so there are many times to tune from big C to big F. The non-diagonal area shown 
in Figure 7 also indicates a deviation of 4 to 5 semitones between the tonic tone and its tonic tone.

Figure 10 reflects the observed distribution parameters of the large C-chord estimated from 
the training data. Figure 9 (a) shows the average PCP vector of major C chords in the HMM, with a 
relatively uniform distribution of the overall average vector. There are obvious peaks on the three major 

Figure 9. HMM major C chord transition probability

Figure 10. HMM algorithm vector comparison chart: (a) Major C chord PCP means vector, (b) large C chord covariance vector
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tones C, E, and G, with peaks of 0.17, 0.14, and 0.13, respectively. Figure 9 (b) shows the covariance 
vector of the large C-chord in HMM, which has a high degree of autocorrelation. The autocorrelation 
of D #, E #, and G # is very small, with values of 0.002, 0.0007, and 0.0008, respectively, which 
proves the good performance of the HMM model. For ease of description, the collected note fragments 
are ordered in this article. They are A, C, B, and D. The fundamental frequency of the fundamental 
spectrum is identified through adaptive filtering, fundamental frequency feature identification, and 
HMM mode identification methods. Then it compares the recognition effects of the three methods, 
and the comparison results are shown in Table 1.

According to the analysis in Table 1, the recognition results of the filter adaptive method have 
significant errors, specifically manifested as the elimination errors of 89.67%, 84.89%, 86.45%, and 
93.65% on the recognition results of four music segments, respectively. Moreover, the recognition 
accuracy of this recognition method on music segments does not exceed 70%, and the maximum 
recognition accuracy is only 68.52%. The elimination errors of the recognition method based on 
the fundamental frequency features of musical notes are 35.98%, 43.86%, 24.58%, and 16.97%, 
respectively, with an overall average accuracy of 67.04%. The recognition accuracy of the HMM model 
proposed in the study on music segments A, C, B, and D is 99.65%, 99.96%, 99.86%, and 98.95%, 
respectively, with an overall elimination error of less than 5%. On music segment C, the insertion error 
of the HMM model is higher than the insertion error adjusted by the filter, which effectively achieves 
error elimination and recognition of the fundamental frequency characteristics of notes. However, 
the insertion error of this method is relatively large, indicating that the method for detecting notes is 
incorrect. Therefore, the HMM model is superior to the other two methods in terms of insertion error 
and insertion error, and has a higher accuracy rate. Then, the algorithm is used to construct a project-
based teaching method reform evaluation model. Moreover, the actual evaluation effect of different 
algorithms used in project-based teaching method reform software engineering teaching remains to 
be observed. By selecting 1000 music major students from a certain music university to participate 
in the experiment on a voluntary basis, the experimental subjects will learn the two teaching modes 
before and after the improvement, and there is no significant difference in the individual data of the 
students. Data on their satisfaction and learning performance under different teaching systems were 
collected and organized, and the results are shown in Figure 11.

Figure 11 indicates the accuracy and student satisfaction of the four algorithms in the evaluation 
model for solfeggio teaching reform. In the research, four algorithms are applied to the evaluation 

Table 1. Recognition result comparison chart

Result
Music Clip

Fragment A Fragment B Fragment C Fragment D

Filter Adaptive 
Method 
Identification 
Results

Eliminate errors/% 89.67 84.89 86.45 93.65

Insertion error/% 0.95 0.68 0.98 1.59

Correct rate/% 43.30 39.68 50.98 68.52

Recognition 
result of note 
fundamental 
frequency feature 
recognition 
method

Eliminate errors/% 35.98 43.86 24.58 16.97

Insertion error/% 1.85 2.56 1.96 1.48

Correct rate/% 54.98 79.56 44.26 89.36

HMM model 
recognition 
results

Eliminate errors/% 2.65 3.79 2.56 1.65

Insertion error/% 0.35 0.98 0.19 0.73

Correct rate/% 99.65 99.96 99.86 98.95
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model of solfeggio teaching reform. According to the evaluation results, the HMM algorithm has 
the best evaluation accuracy. The algorithm can accurately evaluate the parameters and indicators 
that affect the teaching reform, with an evaluation accuracy rate of 93.2%. The evaluation accuracy 
rates of BP neural network, GA algorithm, and PSO-BP algorithm are 77.5%, 81.6%, and 86.3%, 
respectively. In addition, the experiment also collected the satisfaction of music majors with the 
evaluation results of the four algorithm models. Student satisfaction can provide more effective ideas 
for the future direction of curriculum reform. The evaluation satisfaction of music majors with BP 
neural network, GA algorithm, PSO-BP algorithm, and HMM algorithm was 79.2%, 78.3%, 87.6%, 
and 95.6%, respectively. According to the satisfaction results, students are most satisfied with the 
evaluation effect of using HMM algorithm in the evaluation model.

5. CoNCLUSIoN

Traditional music teaching in universities requires specialized teachers to provide guidance, and 
its repeated practice and repetitive characteristics greatly reduce teachers’ work efficiency and 
invisibly increase teaching costs. At the same time, this teaching method mainly requires teachers 
to judge notes and pitches through human ear listening, which requires high comprehensive quality 
and professional ability of teachers, and has strong personal subjectivity, which is not conducive to 
students’ self-learning and growth, and is also not conducive to the cultivation of professional music 
talents. Therefore, the study proposes the application of MIDI technology and HMM model in the 
teaching of note recognition in universities. The results illustrate that the algorithm achieves the 
expected accuracy after 20 times of training after preprocessing the music frequency sample signal. 
The study then used all training data for estimation. The results illustrate that the method is very 
close to the diagonal matrix, indicating that the self transfer efficiency is extremely high and the 
algorithm performance is extremely strong. It is significantly superior to the other two algorithms. 
This also indicates that the HMM model proposed in the study has extremely strong performance 
in the teaching of music note feature recognition in universities and has practical significance. The 
model is also helpful for the development of music teaching in universities and the improvement of 

Figure 11. Accuracy and student satisfaction of different algorithms in the evaluation model of MIDI technology for the reform of 
sight-singing and ear-training pedagogy
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teaching efficiency. Strengthening the Solfeggio teaching of midi technology in practical performance 
and arrangement is one of the important research contents needed in the future. At the same time, 
developing midi teaching materials and tools suitable for students of different ages and degrees is 
necessary to study the direction and ideas for future improvement. It is necessary to strengthen the 
personalized recommendation and customization functions of music performance and arrangement 
under the support of MIDI technology, strengthen the expansion of sample size for this method, and 
more practical results that need to be strengthened in the future.
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