
DOI: 10.4018/IJCINI.326752

International Journal of Cognitive Informatics and Natural Intelligence
Volume 17 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

A Coevolution Algorithm Based on Spatial 
Division and Hybrid Matching Strategy
Hong-Bo Wang, University of Science and Technology, Beijing, China*

 https://orcid.org/0000-0002-4765-4584

Wei Huang, University of Science and Technology, Beijing, China

ABSTRACT

With the rapid development of social economy, people’s demand for diversified and precise goals 
is increasingly prominent. In the face of a specific engineering application practice, how to find a 
satisfactory equilibrium solution among multiple objectives has been the focus of researchers at home 
and abroad. Aiming at the convergence and diversity imbalance in the current high-dimensional 
multi-objective evolutionary algorithm based on reference points, this article suggests a constrained 
evolutionary algorithm based on spatial division, angle culling, and hybrid matching selection strategy. 
Experimental practices show that the proposed algorithm has better performance compared with 
other related variants on DTLZ/WFG benchmark functions and in solving the problem of electricity 
market price.
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INTRoDUCTIoN

Many practices need consider multiple objective problem (MOP) (Cohon, 1978) at the same time to 
optimize the overall effect in recent years. Typical work includes the second generation non-dominant 
sequencing genetic algorithm (NSGA-II) proposed by Deb et al. Furthermore, Zitzler et al. put 
forward the second-generation strength Pareto evolutionary (SPEA2) (Deb et al., 2002). NSGA-II 
and SPEA2 perform well in solving 2-3 objective problems with high operating efficiency and good 
distribution of solutions. However, when they face with higher dimensions (more than 4 targets), 
their disadvantages of low efficiency and poor diversity will occur, just like works in (Ikeda et al., 
2001, & Khare et al., 2003) and (Purshouse et al., 2003).

Therefore, a high-dimensional multi-objective evolutionary algorithm has become a hotspot in 
this field. The latest MOEA/D-M2M (Liu et al., 2014) can overcome two shortcomings of MOEA/D 
(Zhang et al., 2007). A new improved algorithm based on MOEA(Deb et al., 2003, & Ghoreishi et 
al., 2015), as well as the high dimensional multi-objective evolutionary algorithm based on corner 
point sorting are proposed with non-dominant sorting and etc. Due to it is more difficult to calculate 
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the performance index, the following problems exist. (1) The inefficiency of Pareto dominance may 
lead to density-based diversity methods according to the pressure of environmental selection. (2) The 
recombination operator may be invalid. (3) The visualization of Pareto’s optimal front is very difficult.

In order to trade off the relationship between convergence and diversity in high-dimensional 
evolutionary algorithms based on reference points and constrained multi-objective optimization 
problems, a Many-Objective Optimization Algorithm based on Space-Partition and Angle-based 
culling strategy (MaOEA-SDAC) is proposed in this paper. To meet the requirements of high-
dimensional multi-objective problems with constraints, a Constrained Many-Objective Evolutionary 
Algorithms based on Hybrid Mating Selection (CMaOEA-HMS) is suggested in this article, which 
is integrated an approach of reference-point with non-dominated sorting.

The remainder of this paper is organized in the following. In the second section, two coevolution 
strategies and their corresponding implementation are proposed. Section III and IV design some 
experiments and compare the two new variants (MaOEA-SDAC and CMaOEA-HMS) with practicable 
strategies with the related algorithms, and summarizes the experimental results. Section V discusses 
that MaOEA-SDAC is applied into a joint calculation problem of residential ladder and peak-to-valley 
time-of-use electricity price. Conclusions are made in Section VI.

Two IMPLeMeNTATIoN STRATeGIeS

The Framework of MaoeA-SDAC
Algorithm 1 in Table 1 is the overall pseudo code of Many-Objective Optimization Algorithm based 
on Space-Partition and Angle-based culling strategy (MaOEA-SDAC). In Table 1, λ  represents a 
vector of reference points, P

0
 represents an initial population, t  represents an iterator, Pt represents 

the current generation t of a population, Qt represents its offspring population generated by the 
recombination operation, Rt represents a population generated after the merger of Pt and Qt, Pt+1  
represents the next generation produced by Pt environmental selection.

In Table 1, lines 01-03 in algorithm MaOEA-SDAC initialize some operations for a population. 
Lines 05-21 are an iterative process of the population, which is also its core part. Lines 08-20 run 
some actions in its environmental selection stage of the population.

The specific process of MaOEA-SDAC is as follows. The first step generates reference points 
λ , initialize the population P

0
 and set the number of iterations t=0. The second step enters a loop, 

and the condition of the loop judgment is whether the maximum number of iterations is reached. If 
the related condition is met, the solution set is output; otherwise, the loop is entered. In the cycle, 
P
t

 is first matched and is selected to generate P
t
' , then P

t
'  is cross-mutated to generate Q

t
, and R

t
 

is generated by combining P
t

 and Q
t
. Do non-dominated sorting on R

t
, and merge the sorted result 

with P
t+1  to generate new P

t+1 . Then, a judgement condition will be entered, which is to generate 
the next population through environmental selection operation on R

t
. Lines 12 and 18 are two the 

strategies of spatial partitioning and angle-based Culling introduced by this algorithm MaOEA-SDAC.

The Framework of CMaoeA-HMS
Algorithm 2 in Table 2 is the overall pseudo code for CMaOEA-HMS. Lines 01-03 include some initial 
operations. Lines 05-25 are population iterations, and lines 05-19 are its core part in this stage, which 
carries out matching and selection operations on a population. Lines 20-21 run the crossover mutation, 
and lines 22-25 are the environmental selection stage of the population. Among them, CV x( )  represents 

a degree of constraint violation of an individual, d x x
i j i j,

,( )  is the Euclidean distance between 

individuals, d x,λ( )  represents the distance between an individual and its reference vector.
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The specific chart is as follows. Firstly, the constraint violation degree CV x( )  of individuals is 

calculated, the Euclidean distance d x x
i j i j,

,( )  between individuals is calculated, and the distance 

d x,λ( )  between individuals and reference vectors are calculated. Then in lines 8-19, if t maxgen≤ *τ  
is satisfied, that is, in the early stage of population evolution, T solutions are randomly selected, and 
then an individual with the closest Euclidean distance to the i-th current individual joins the mating 
pool. Otherwise, if the number of feasible solutions is greater than or equals 1, the distance between 
feasible solutions and the reference point is calculated, and the smaller solution is selected. If there 
is no feasible solution, the infeasible solution with a lower constraint violation is selected into the 
matching pool.

eXPeRIMeNT AND ANALySIS oF MAoeA-SDAC

Test Function Set and Performance Metrics
DTLZ (Huband et al., 2006) test function: for test functions DTLZ1-DTLZ3, the target dimension is 
3, 5, 8, 10 and 15, respectively. And the number of decision variables is n = n + k − 1 and m is the 
target dimension. WFG (Deb et al., 2002) test function: for test functions WFG1-WFG3, the target 
dimension is 3, 5, 8, 10, and 15, the number of decision variables is 2*(m- 1)+20, m is the target 
dimension, and the k and l in the WFG problem are set to 2*(m-1) and 20, respectively.

Table 1. Pseudo code of MaOEA-SDAC
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Performance Indicators
Two comprehensive performance evaluation indexes are used to simultaneously verify the convergence 
and diversity of the algorithm. Inverse generational distance (IGD) (Veldhuizen et al., 1999) is the 
retrograde distance index, and Hyper-volume Measure (HV) (Emmerich et al., 2005) is the super 
volume index. The IGD value is obtained by computing the Euclidean distance from the final solution 
set to the true Pareto front surface. The smaller the IGD value, the better its convergence and diversity 
of an algorithm is. The value of HV is obtained by calculating the space enclosed between its final 
solution set and reference points. The greater the HV value, the better the convergence and diversity 
of an algorithm is.

Table 2. Pseudo code of CMaOEA-HMS
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Results and Analysis on DTLZ Test Functions
Cells with a bold font in Table 3 represent the optimal IGD value obtained from the six algorithms. 
It can be seen from Table 3 that for the 8 target DTLZ2 problem, MaOEA-SDAC has the smallest 
IGD value and that the method in this paper, which can obtain a smaller IGD value in most problems 
compared with the other five methods. For DTLZ1-DTLZ3 problems, MaOEA-SDAC performs better 
than others. The second is algorithm MOEAD, which obtains two minimum IGD values on DTLZ1 
and one on DTLZ2 and DTLZ3, respectively. In general, MaOEA-SDAC can obtain a good IGD 
value. It can be seen from Table 4 that for DTLZ1-DTLZ3 problems, the MaOEA-SDAC performs 
well and obtains most of the highest HV values. The second is algorithm IBEA, which obtains the 
three highest HV values.

Six algorithms were used to solve the change of IGD values of DTLZ1-3 test set of 8 targets with 
the number of assessments. The relevant data results are plotted in Figure 1, Figure 2 and Figure 3.

As can be seen from Figure 1, Figure 2 and Figure 3, Algorithm NSGA-III can obtain a good 
solution set for all the DTLZ1-DTLZ3 problems of 8 targets, but its convergence speed is slow, and 
there is a little fluctuation for the DTLZ1 problem of 8 targets. Algorithm MOEA/D has good 
performance on the DTLZ1-DTLZ3 problem of 8 targets, and a good solution set is obtained with 
good convergence speed. Algorithms MOEA/D-DE and IBEA have better performance on the DTLZ1 
and DTLZ3 problems of 8 targets, and can converge quickly to obtain a better solution set, but they 
cannot obtain a better solution set for the DTLZ2 problems of 8 targets. Algorithm θ -DEA can 
converge quickly on the DTLZ1-DTLZ3 of 8 targets.

Algorithm MAOEA-SDAC can obtain a good solution set for the DTLZ1-DTLZ3 problems of 
8 targets, and its performance is relatively stable. The convergence speed of DTLZ1-DTLZ3 for 8 
targets is faster than that of NSGA-III.

Results and Analysis on wFG Test Functions
As you can see from Table 3, for the 3 target WFG1 problem, MaOEA-SDAC has the smallest IGD 
value 1.9501E-01. For the WFG1/WFG3 problems, the MaOEA-SDAC has better performance and 
has obtained most of the optimal IGD values. In general, MaOEA-SDAC can obtain a good IGD 
value. The second is algorithm IBEA, which obtains the four smaller IGD values.

It can be seen from Table 4 that algorithm MaOEA-SDAC still maintains a good performance with 
the optimal HV Mean Values on DTLZ1-3 and WFG1-3. In the designed 30 independent experimental 
competitions, the best running performance reached as many as 16 times, which is much higher than 
that of the second place. The second is algorithm IBEA (7/30).

eXPeRIMeNT AND ANALySIS oN CMAoeA-HMS

Test Function Set and Performance Metrics
In order to verify the performance of algorithm CMaOEA-HMS when dealing with constrained 
multi-objective optimization problems, CMaOEA-HMS were compared with the results of the three 
current related algorithms A-NSGAIII, C-MOEA/DD and C-RVEA on two constrained test sets 
(C1_DTLZ1/C2_DTLZ2), synthetic indicators IGD and HV are still used to measure the performance 
of evolutionary algorithms.

Results and Analysis on Two Test Sets
Table 5 collects the IGD mean and standard deviation obtained by the four candidate algorithms 
running independently for 20 times to solve the C1_DTLZ1 and C2_DTLZ2 problem of 3-15 targets.

For the 3-C1_DTLZ1 problem, the mean IGD of A-NSGAIII, C-RVEA, C-MOEA/DD and 
CMaOEA-HMS are 2.6283e-02, 2.1455e-02, 2.1179e-02 and 2.0783e-02 respectively. It can be 
seen that the mean IGD of CMaOEA-HMS algorithm is the smallest. It can be seen from the table 
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that CMaOEA-HMS obtains almost all the optimal values in solving C1_DTLZ1 problem and has 
a good performance. In the designed 10 independent experimental competitions on C1_DTLZ1 
problem, the best running performance reached 9 times. According to the standard variance value 
of IGD, CMaOEA-HMS has good stability. Secondly, algorithm C-MOEA/DD performs better than 
A-NSGAIII and C-RVEA. Compared with A-NSGAIII, C-RVEA obtains the best IGD values, but 
those invalid values appear, which shows that algorithm C-RVEA does not solve the real solution set 
of the problem when dealing with the C1_DTLZ1 problem of 10 targets.

Table 6 collects the HV mean and standard deviation obtained by the four candidate algorithms 
running independently for 20 times to solve the C1_DTLZ1 and C2_DTLZ2 problem of 3-15 targets.

It can be seen from Table 5 that algorithm CMaOEA-HMS has the smallest IGD mean value for 
C2_DTLZ2 of 8 targets. In addition, CMaOEA-HMS has a good performance in dealing with C2_
DTLZ2 of 3 targets, obtaining a better IGD mean value and standard variance. In terms of C2_DTLZ2 
of 5 and 8 targets, CMaOEA-HMS has better performance and stability. On the C2_DTLZ2 problem 
of targets 10 and 15, CMaOEA-HMS obtained the optimal standard variance of IGD and had better 

Table 3. Six algorithms with different IGD mean values on DTLZ 1-3 and WFG 1-3



International Journal of Cognitive Informatics and Natural Intelligence
Volume 17 • Issue 1

7

stability. From Table 6, for the C2_DTLZ2 problem of 8 targets, the HV mean of algorithm CMaOEA-
HMS is the largest, namely, CMaOEA-HMS algorithm has a good performance in C2_DTLZ2 of 3, 
5 and 8 targets, and has obtained the optimal HV mean and good stability, on the C2_DTLZ2 of 10 
targets, there is a good HV standard variance, indicating a relatively good stability.

Comparative Analysis of Running Time
Figures 4 and 5 record the average time taken by the four algorithms to process two constraint problems 
of 3, 5, 8, 10 and 15 targets for 20 times.

Figure 1. IGD mean values curves of six algorithms on DTLZ 1-8

Figure 2. IGD mean values convergence curves of six algorithms on DTLZ 2-8
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For the C1-DTLZ1 problem of 3 targets, the required time of A-NSGAII, C-RVEA, CMAOEA-
HMS, and C-MOEA/DD were 23.2, 24.7, 36.4, and 350.4 (seconds), respectively, in Figure 4. As can 
be seen from the figure, the cost of time used by the three algorithms A-NSGAII, CMAOEA-HMS 
and C-RVEA is not much different. Algorithm CMaOEA-HMS is slightly running time longer, due to 
its matching selection and computing the Euclidean distance between an individual and its reference 
point. C-MOEA/DD takes the longest time, which has a large gap compared with the other three 
algorithms. It can be seen that different targets correspond to different population sizes. When the 
population size is large, the time taken by the four algorithms will increase. In addition, problem 
C2_DTLZ2 in Figure 5 is complex and its Pareto front is discontinuous. Therefore, the time required 
is relatively long.

SIMULATIoN APPLICATIoN

From the power optimization scheduling (Deb et al., 2002, & Huband et al., 2006), how to guide the 
industrial residents, businesses and users of electricity, and to improve the tense situation of energy, 
is becoming a hot topic.

Model Solving Process Based on MaoeA-SDAC

Step 1: Initialize parameters, generate the reference points, set the upper and lower limits of the 
decision variables according to the scope of α, β, γ(0.5 ≤ α ≤ 1,−0.1 ≤ β ≤ 0.1,−0.7 ≤ γ ≤ 0)
and then initialize the population.

Step 2: Generate an offspring population: the parent population is matched and selected, and then 
the crossover mutation is carried out.

Step 3: Merge the parent with the offspring population, and then make environmental selection for 
the next iteration.

Step 4: Judge whether the terminal condition has been reached or not. If not, loop step 2. If the 
termination condition is reached, Pareto optimal solution set is generated.

Step 5: Select the optimal solution from Pareto optimal set, the specific steps are as follows:
a.  Calculate the membership function u of the i-th Pareto solution to the j-th target value, as 

shown in Equation (1):

Figure 3. IGD mean values convergence curves of six algorithms on DTLZ 3-8
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Table 4. Six algorithms with different HV mean values on DTLZ1-3 and WFG1-3
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In Equation (1) f
ij

 is the j-th target value of the i-th Pareto solution; f
jmin

 and f
jmax

 are the minimum 
and maximum values of the j-th target of Pareto solution, respectively.

b.  Calculate the weight w
i
 of the j-th target, as shown in Equation (2):

w
u u

u u
j

ij kj
k

N

i

N

ij kj
k

N

i

N

j

=
−

−

==

===

∑∑

∑∑∑

( )

( )

2

11

2

111

3
 (2)

c.  Calculate the selection priority F
i
 of the i-th Pareto solution, as shown in Equation (3), and 

select the maximum value of F
i
 as the optimal solution:

F w u
i j ij

j

=
=
∑

1

3

 (3)

Table 5. Four algorithms on C1_DTLZ1 and C2_DTLZ2 with IGD mean and standard variance values
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eXPeRIMeNTAL ReSULTS AND ANALySIS

A user’s actual load data is used to verify the effectiveness of the algorithm. Table 7 lists the optimal 
Pareto solutions α, β, γ and values obtained by the four algorithms. Before the implementation of the 
combined price, the price of the system was P0 (unit: kW/h). After the implementation of the combined 
price, the price of 30% of the total user load was still P0, and the price of the rest 70% of the load in 
peak, flat and valley periods was (1+α ) P0, (1+β) P0, (1+γ) P0, respectively.

Table 6. Four algorithms on 3-15 Objective C1_DTLZ1 and C2_DTLZ2 problem with different HV mean and standard variance values

Figure 4. Comparison of the average running time of the four algorithms on C1-DTLZ1
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Figure 6 shows the user load distribution curve after and before the optimization of algorithm 
MaOEA-SDAC. It can be seen that after the optimization, the user load in the peak period decreases 
somewhat, while the load in the trough period increases somewhat, which can relieve the power 
tension and improve the load rate.

Figure 7 shows the user load distribution curve before and after optimization of the MaOEA-
SDAC algorithms. As can be seen from the figure, MaOEA-SDAC algorithms have achieved good 
optimization results, such as reducing the load difference during peak and valley periods, cutting 
the peak and filling the valley, and reducing the load during peak period after the adjustment of 
electricity price.

Table 8 shows the average electricity consumption of the user before and after the implementation 
of the stepwise and peak-valley timesharing joint optimization of the four algorithms. In the trough 
period of 0, the original load was 27.2, and the load obtained by each algorithm was 28.4247, 28.4595, 
28.4254 and 28.4097(unit: kW/h), all of which effectively increased the load. At the peak time of 10 
o ‘clock, the original load was 34.1, and the load obtained by each algorithm was 32.7115, 32.6772, 
32.7404 and 32.7295(unit: kW/h), all of which effectively reduced the load rate. It can be concluded 
from Table 9 that the performance of each algorithm is relatively good.

Figure 5. Comparison of the average running time of the four algorithms on C2_DTLZ2

Table 7. Values α, β, γ of Four Algorithms
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Table 9 shows the user satisfaction before and after the four algorithms optimize the price of 
electricity. Users’ satisfaction with electricity mode Sm, users’ satisfaction with electricity expense 
Sc, and users’ comprehensive satisfaction So. The IBEA algorithm gives the highest Sm. MaOEA-
SDAC obtains the better performance on Sc and So.

CoNCLUSIoN

Two coevolution strategies are proposed, one is based on space division and Angle culling strategy 
for high dimensional multi-objective coevolution, the other is a constrained high-dimensional multi-
objective coevolution based on hybrid matching selection strategy. The two coevolution strategies 

Figure 6. MaOEA-SDAC before and after load curve optimization

Figure 7. Load curve before and after the electricity price
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perform on DTLZ/WFG benchmark functions, and their IGD and HV values compare with those 
related competitors. The effectiveness of MAOEA-SDAC and CMaOEA-HMS in solving high-
dimensional multi- objective optimization problems has been verified. Finally, the proposed MAOEA-
SDAC is employed to a multi-objective model that solves the joint calculation problem of residential 
ladder and peak-to-valley time-of-use electricity price.

Table 8. Changes in average load before and after electricity price optimization

Table 9. Comparison of satisfaction on electricity price
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