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ABSTRACT

While big cities are expected to exercise cost-effective, evidence-based planning, many are under 
reactive management, facing simultaneous problems and limited resources. This project develops a 
proof-of-concept workflow for the automatic monitoring of physical urban problems by combining 
remote sensing for detection and cartography for visualization. The example problem treated was the 
obstructive parking of vehicles on pavements as proxy for restricted urban mobility. Nine aerial images 
of UK urban areas were processed by a deep learning object detector of standard cars, achieving an 
F-score of 70.72%. Two large scale map reports of 200m wide areas were produced, featuring car 
detections and overlaps with topographic mapping features. Complementary analysis included the 
calculation of total detection window overlap per roadside pavement and its change with time. The 
proposed method combines uniform city-wide coverage with fast interpretation and can inspire the 
development of professional urban planning tools.

Keywords
Object Detection, Urban Monitoring

INTRODUCTION

The global trend of rapid urbanisation (Potsiou et al., 2010) entails planning challenges for modern 
cities. Large disorderly congregations of diverse and interdependent stakeholders create material 
problems regarding traffic, waste, infrastructure, air quality and health (Chourabi et al., 2012), 
amplified by outdated traffic-centered planning (European Commission and Directorate General for 
Mobility and Transport, 2017) and by individualist or traditionalist behaviours (Rode & Hoffman, 
2015). Recognitions of the importance of urban space to quality of life have begun to appear at the 
international policy level (EEA, 2015), including the New Urban Agenda, a UN standard calling 
for robust science-policy interfaces, sharing mechanisms for globally standardised geographical 
information and transparent e-governance (United Nations Conference on Housing and Sustainable 
Urban Development, 2017). Sustainable Development Goal 11 of the UN 2030 Agenda pushes for 
‘inclusive and sustainable urbanisation and capacity for participatory, integrated and sustainable 
human settlement planning and management in all countries’ (Rosa, 2017).
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In line with the above, standardising the monitoring of urban environment quality bears promise 
in terms of evaluating the current state of infrastructure and planned interventions (Gould, 2011; 
Leach et al., 2019), but also in creating healthy inter-city competition (Giffinger et al., 2010). Many 
cities still obtain the state of infrastructure by chance observation of personnel working outdoors. 
Current monitoring suffers from small coverage, infrequency and unreliability, while legal demands 
are rising. ‘Large amounts of costly technical evidence’ are demanded by UK city councils towards 
local plan making decisions in periods of tight budgetary constraints (Harris, 2017).

The aim of this study was to develop a proof-of-concept for a digital tool that detects well defined 
manifestations of urban problems in remotely sensed imagery and produces cartographic visualizations 
to assist urban planners in efficient management, intervention prioritization, and policy.

To this end, an approachable instance of urban problem was found in pedestrian mobility 
obstructions. Specifically, the inconsiderate parking of vehicles in a way that obstructs pedestrian 
movement on street-side pavement – fully or partly occupying pedestrian space – was deemed suitable 
for testing an urban image detector due to the availability of detection software focusing on vehicles, 
as well as of appropriate geospatial representations of pavements in the UK.

Specific objectives were to:

1. 	 Achieve workable accuracy in detecting cars in remotely sensed imagery.
2. 	 Superimpose detections on topographic geospatial data, perform spatial analysis and output 

suitable large-scale maps.
3. 	 Integrate the process into one application that conforms to determined user requirements.

The proposed solution involves the massive automatic interpretation of satellite and aerial 
imagery of urban environments using an appropriate Computer Vision (CV) object detector, with the 
goal of locating objects related to geographically definable urban problems and superimposing them 
on geospatial data to extract insight towards more effective urban planning. Existing approaches to 
gathering urban insight for planners were rejected because they are not scalable (field surveying and 
local urban sensors), not efficient (manual imagery interpretation, ground observation), not easily 
manageable and consistent (citizen reporting, big data), or too generic (esri™ geoprocessing tool). 
Additionally, a preliminary planner survey carried out before the analysis (see below) confirms the 
professional demand for a relevant tool, and justifies the current focus on automation.

The paper focuses on the demonstration of feasibility and potential in automatic detection, and 
not the development of a fully documented prototype application. The detection target is also not of 
primary importance. Parked vehicles serve as an example of freely definable problematic occurrences 
in the city. Furthermore, the paper only considers infrastructure and environmental issues.

BACKGROUND

In a global 2007 study (Potsiou et al., 2010), seven megacities suffered from largely mutual problems: 
high density, lack of green areas, loss of cultural heritage; unlawful development and city centre 
dilapidation; unsustainable land use; congestion and commuting problems; basic resource insecurity; 
and lacking basic services. In the early 2000s reference was made to pockets of deprivation, exclusion 
and run-down environments in even the most ‘successful’ cities (Carpenter, 2006) and an unsustainable 
quality of life, occasionally even in face of health risks (EEA, 2009).

Urban mobility, vital for keeping cities productive and for maintaining welfare, is threatened by 
traffic-centred planning (European Commission and Directorate General for Mobility and Transport, 
2017) and by individualist or traditionalist behaviours (Rode & Hoffman, 2015). Pedestrians 
struggle with tight space, obstacles, pollution and risk of accidents in the majority of modern urban 
environments (Gehl, 2010). At the same time, however, a shift in focus is observed in EU mobility 
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plan implementation guidelines: from traffic flow capacity to accessibility and quality of life, from 
infrastructure to cost- effective integrated actions; from expert exclusivity to interdisciplinary and 
participatory planning; from limited impact assessment to regular monitoring (Wefering et al., 2014).

Central among inhibitors of urban mobility is inconsiderate and obstructive parking, especially 
in regions with lenient traffic law enforcement (Bajçinovci & Bajçinovci, 2019). Its effects include 
increased accidents, severe access problems for residents and businesses, increased enforcement 
expenses, promotion of a disrespect for the law, increases in traffic congestion and deterioration 
of visual attractiveness (Cullinane & Polak, 1992). Traditional enforcement practices seem more 
irrelevant as cities grow larger without sustainable city planning (Bajçinovci & Bajçinovci, 2019). 
Figure 1 illustrates two examples of obstructive parking creating unfavourable conditions for 
pedestrians in a European city, what inspired this research into better monitoring.

In this context, innovative monitoring approaches have been moving away from manual data 
collection and onto urban sensing. New parking occupancy detection makes use of in-ground sensors, 
portable GPS-enabled cameras, video recording and license plate recognition (Dey et al., 2017), 
and even matching GPS trajectories of shared bikes to urban maps (He et al., 2018). The remote 
sensing of urban phenomena, utilising aerial or satellite platforms, is said to be entering a new era 
of ‘high-definition’ with studies in urban growth, morphology, biophysical characteristics and land 
cover (Weng et al., 2012), urban socio-economics (Patino & Duque, 2013; Stathopoulou et al., n.d.) 
and applications in urban problems (Carlson, 2003). Many private urban observation services have 
developed, including critical infrastructure assessment.

Satellite, aerial and Unmanned Aerial Vehicle (UAV) imagery is generally produced faster than is 
possible to manually process (Liu et al., 2017, Singh, 2019), making automatic interpretation necessary for 
wide geographical coverages. Numerous CV algorithms have been applied to optical overhead imagery, with 
machine learning detection and classification achieving human-like performance (Cheng & Han, 2016). 
Detectable urban objects include vehicles (Abraham & Sasikumar, 2014; Audebert et al., 2017; Eikvil et 
al., 2009; Leitloff et al., 2010; Razakarivony & Jurie, 2016; Tayara & Chong, 2018; Xueyun Chen et al., 
2014), roads, buildings, solar panels and storage tanks (Mujtaba & Wani, n.d.; Tayara & Chong, 2018).

Modern urban planning applications include classifications of urban areas, impervious surface 
estimation, land use change tracking, services routing, green space mapping (From Urban to Rural 
| GIM International, 2020), and in the context of urban sprawl, detection of disused factories and 
unused parking lots (Disused Factories and Satellites Helping Thwart Urban Sprawl | Research and 
Innovation, 2016), understanding trends in street and car park usage (Kamenetsky & Sherrah, 2015). 
All of the above involve the use of remote sensing data in cartographic applications.

Attempts in integrating remote monitoring data into Geographical Information Systems (GIS) 
are accelerating, examples including a determination of parking lot occupancy (Yu, n.d.) and a 
classification of swimming pools in land parcels (Jha, n.d.). esri™, the market leader in GIS technology, 

Figure 1. 
Examples of obstructive parking in Ilisia, Athens (Lempesis, 2019)
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is investing in deep learning applications, having recently launched a deep learning image classification 
geoprocessing tool and related projects (Singh, n.d.).

PLANNING SURVEY

A preliminary user survey was carried out during July and August 2019, aiming at obtaining a first 
image of existing user interests, concerns, and tool requirements, among 34 respondents from planning 
departments of the most populous Local Authorities and London Boroughs in Great Britain, some 
municipalities in Greece, and some academic professionals in related fields. There were 13 questions 
on respondent consent, identification and location, current city monitoring practices and potential 
future tool implementation. It is noted that six of the 23 respondents who made their location known 
were from Glasgow, UK. A summary of the survey findings follows.

The problems most visible to city councils under current monitoring are illegal parking, 
the condition of green spaces, unused land or abandoned places, urban sprawl and illegitimate 
development. Most councils monitor obstacles to pedestrian movement in some way, with the 
state of infrastructure and especially the road network being key priorities. Information collected 
includes problem location, description and classification. Information collection weighed towards 
ground observations by municipal employees (85%), including city technical services, with resident 
testimonials considered important. Dedicated surveyors are relied on in 20% of councils. Only 17% of 
councils monitor problems periodically by a set schedule (31% in the UK). The problems are usually 
registered in standard digital databases in about half of cases, with a 44% of respondents adopting 
geographical databases for storing city information.

A 40% of respondents confirmed that either coverage, frequency, accuracy or usefulness 
(comparability) of collected data, or combination thereof, is hard to achieve. Some answers hinted to 
the lack of technical capacity and expert skills, as well as the lack of a ‘strategic system for monitoring, 
funding and staffing in local agency under required needs,’ so that only the most urgent problems 
are ever studied. Irregular monitoring was said to lead to discontinuity, but the lack of staff, or the 
overwhelming workload of relevant officials persists.

Nine in ten respondents replied positively with respect to implementing a potential detection tool, 
with 62% considering implementation cost a significant factor. The most desirable feature (73%) was 
control over map output in terms of style, scale and content. More than half of the respondents would 
like the option to select the object types/categories detected, the detection algorithms and custom 
data input. Two interesting responses concerned integration: output maps should include existing 
and planned public apparatus, and results should be compatible with other internal GIS datasets.

Some use cases were proposed by planning professionals: detecting long-term trends as well 
as shorter flows and relationships in the urban fabric; providing further evidence base for planning 
decisions and guidance; monitoring the condition of buildings; special parking restrictions; fault 
reporting in parallel with public reporting apps; detection of unlawful tree felling; loss of green space 
and unlawful development; and complementing site visits for a more complete picture. A concern 
was raised about the temporal responsiveness of remote imagery compared to sources like CCTV 
or citizen reporting apps.

Integration over a web map database would be beneficial to collaboration within organisations 
but also externally, linking with other planners, presenting results to the public or delivering open 
data. Simplicity and usability are called for to maximise user understanding and impact, meaning clear 
interface design, complete documentation, unambiguous cartography and strict definition of output data.

METHOD

Georeferenced overhead images were tested by a deep learning algorithm and output detections were 
superimposed on a detailed topographic backdrop in a GIS to generate spatial metrics (see Figure 2).
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Data
The imagery consisted of nine aerial true-color captures by Getmapping Plc of various ground 
locations and dates between 2010 and 2015 (see Table 1). Sensor specifications can be found in 
(Aerial Data - GB Imagery | Getmapping, n.d.). The locations were chosen to represent a variety of 
urban landscapes, including motorway (A), suburbs (B), dense city centre (C, D, H, I) and industrial 
areas (E, F, G). Images B and E were used to test the main workflow and produce two urban map 
reports. Images H and I were used for complementary analysis.

The imagery was resampled into the detection network nominal input Ground Sampling Distance 
(GSD) of 0.15 m (see below), using cubic convolution. All areas of interest were clipped into 200 m 
squares. No images overlapped regions used in network training. Standard deviation (n = 2) contrast 
stretching with no gamma correction was applied. The resulting image reference system metadata 
and final pixel shape were validated through the respective image world files.

The Ordnance Survey (OS) MasterMap Topography layer served as topographic background 
for the UK regions. MasterMap is the most detailed set of topographic spatial data in Great Britain, 
with regular updates, consistent standards and detailed documentation (Survey, 2017). Furthermore, 
it is accessible to public services and city councils. Physical features are uniquely identified and 
linked to attribute themes. Of particular interest was the ‘Roads, Tracks and Paths’ theme, which 
includes Descriptive Groups ‘Paths’, ‘Railways’, ‘Road sections’, ‘Verges and Pavements’, further 
differentiated by other attributes.

Figure 2. 
General workflow
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Vehicle Detection
Object detection was carried out by a pre-trained deep learning network developed by the United States 
government Lawrence Livermore National Laboratory (LLNL) for governmental applications in traffic 
and parking volume monitoring, chosen due to its public availability and wide training sample base. 
The training dataset Cars Overhead With Context (COWC) contained aerial samples (standardised 
GSD 0.15 m from unspecified original resolutions), at six developed cities around the world, of 32,716 
unique annotated cars (as well as vans and pickup trucks but no larger vehicles) with marginal context 
and 58,247 unique negative examples. The network ResCeption architecture achieved precision and 
recall rates of 92.59% and 96.15% in development tests, respectively (Mundhenk et al., 2016).

Testing was carried out using the Caffe Deep Learning Framework (Jia et al., 2014) in CPU 
mode. Imagery was scanned by a window of 224 by 224 pixels (including a 32 pixel margin) with a 
horizontal and vertical stride of 8 pixels. Each window was forwarded to the network and yielded a 
probability of car-containment. Windows over the 0.75 threshold were non-maximum suppressed with 
a maximum overlap of 20 pixels. Detections were plotted as 48 by 48 pixel rectangles (equivalent to 
7.2 m, the maximum vehicle size permitted by LLNL) around their central pixel. The list of detection 
pixel coordinates was converted into metres from origin (Easting-Northing pairs) by multiplying by 
pixel size. North-South pixel orientation and projected length units were assumed.

The detection accuracy was assessed manually over the nine aerial images (A–I) following 
(Mundhenk et al., 2016). Detections were labelled as true positive (TP), if they contained more than 
half a car and false positive (FP) if they contained less than half a car or if another true positive pointed 
to just the same car. Undetected cars and detections covering more than one car yielded false negative 
(FN) for every extra car. Rates of Precision P (fraction of detections made that were true) and Recall 
R (fraction of existing objects that were detected) as well as the F-score (a joint measure of P and R) 
were calculated according to Equations 1 to 3 for λ = 0.5 (area overlap between correct detection and 
object) and β = 1 (weight coefficient for relative importance of P over R) as per (Cheng & Han, 2016).

P
TP

TP FP
=

+
	 (1)

Table 1. 
Testing imagery from Getmapping Plc

Easting (m) Northing (m)

ID Description Capture Min Max Min Max

A Glasgow City Centre 02/09/2010 258010 258210 666040 666240

B Paisley Suburb 08/05/2011 246760 246960 662470 662670

C Birmingham City Centre 09/07/2013 406550 406750 287140 287340

D Birmingham City Centre 09/07/2013 406435 406635 287010 287210

E Birmingham Industrial 09/07/2013 407730 407930 286350 286550

F Leeds Industrial Area 19/10/2000 431000 431200 434665 434865

G Leeds Industrial Area 17/07/2017

H London Marylebone 04/05/2014 528800 529000 181450 181650

I London Marylebone 07/06/2015

Coordinates in British National Grid EPSG:27700
Ground Sampling Distance (Spatial Resolution): 0.25 m
Time of Capture Not Available.



International Journal of E-Planning Research
Volume 12 • Issue 1

7

R
TP

TP FN
=

+
	 (2)

F
PR

P R
=

+
	 (3)

Geospatial Integration
The geospatial library PyQGIS was used to integrate the detection coordinate list with underlying 
topography (see Figure 7 in Appendix 1). The topography layers were clipped to the rectangular 
bounding extent of the detections layer, to improve geoprocessing performance. A 100 m buffer of the 
actual extent was used to avoid predicate problems in spatial joins. Detection points were attributed 
the fields of their underlying Topographic Area and cars per Topographic Area type were counted.

The available detection algorithm did not allow for the exact localization of overhead car footprints 
but only square windows (small image crops) of high probability of car-containment. Consequently, 
cars that were parked next to pavements had windows that partly covered roadside areas, and cars 
parked on the roadside had windows that partly covered roads. To get around this, the ratio of road 
area covered by each window was calculated as per Figure 8, Appendix 1, to indicate a probability 
that cars were on the road.

Layer symbology was configured by precompiled QGIS style files. This provided modularity in 
cartography as styles were decoupled from the source. An A4 layout at scale 1:1,250 was chosen to 
combine the large scale necessary for local urban map reports or field surveys with a feasible image 
size for timely processing using available resources. A list of the number of detections per topographic 
area within the map extent was output below the annotations. The map extent was automatically 
configured using the input imagery, and the layout was exported in PDF format.

To demonstrate the quantitative capability of the method, an additional workflow obtained a 
measure of ‘vehicle pressure’ on individual geospatial pavement features. This ‘vehicle pressure’ 
could be directly used by planners to sort features and prioritize intervention across the city. The 
multiple detection window polygons were merged, intersected with the topographic area layer and 
dissolved by the unique OS Topographic Identifier (TOID, across all OS mapped features), to get an 
aggregate polygon per pavement feature. The area of each of these polygons was calculated into a new 
attribute, which was then joined to the topographic layer using TOID. Pavements were symbolised 
according to the ‘Detection Overlap Ratio’, i.e. the ratio of window area to total pavement area (see 
Figures 5 and 6).

The above process was repeated for two images of identical location to demonstrate the potential 
for temporal comparison and resulting detection window areas were joined to one aggregation 
topography layer. This layer was symbolised by the difference in Detection Overlap Ratio between 
image capture dates, reflecting the temporal trend. Finally, heatmap-style symbology was tested for 
potential visualization implementations in city-wide maps, where car detection density was shown 
as a proportionally red overlay.

RESULTS

The variation of detection performance across the images was considerable, inviting further testing, 
but some results were adequate for the proof of concept. Workable results were obtained for aerial 
imagery (see Table 2). A large discrepancy was observed in Recall between older (A, B, F) and 
more recent imagery. The photographic clarity of the lowest ranking image F was visibly inferior, 
potentially attributable to changes in photographic equipment. In post-2011 imagery, the algorithm 
precision was uniform across different urban landscapes. The small number of false positives was 
spread throughout the images in high-contrast edges of buildings and rooftops, and dense details in 
yards or shaded areas.
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Two urban map reports were produced (Figures 3 and 4). The former portrays a suburb of Paisley, 
Glasgow and the latter a local industrial street in Birmingham. The layouts were intended to support 
sketching, ideating, communicating and monitoring solutions, as well as engaging the public. The 
maps demonstrate the potential for visualising pattern distributions, e.g. a high parking demand 
in the industrial area combining with a lack of available space leading to pavement parking. The 
automatic geospatial metrics (see below) take a quantitative perspective and could help standardize 
this pattern recognition.

Images H and I were chosen to demonstrate quantitative results visualization and temporal 
comparison. An extended map illustrating ‘vehicle pressure’ would provide a straightforward means 
of intervention prioritisation (Figure 5). The comparison of imagery at a constant location, combined 
with uniquely identifiable topographic features means problems can be tracked through time (Figure 
6), and location history becomes accessible in a city-wide database scheme. Fast deteriorations of 
public space quality or other trends can be directly queried in the database or GIS.

It is worth noting the flexibility in defining observable metrics. Some other possibilities include 
the proximity of car detections, the number of problematic cases per neighbourhood classification, 
or the relationship of overlaps to the width of sidewalks. The exact definition of what is problematic 
(here a detection overlapping pavement over 50%) is also an independent variable, meaning the 
planner can handle edge cases (see Figure 3) according to their implementation.

DISCUSSION

Limitations
The main limitations of the process lie with imagery capture and base map data availability.

The nature of remote imagery presents some difficulties in urban sensing. The photographic angle 
may make some buildings partially hide adjacent ground, and vegetation may often block portions 
of vehicles. This might become an issue in detecting smaller objects such as hydrants or potholes, 
among dense construction. Numerous cloud removal techniques exist but may depend on ancillary 
data (Eckardt et al., 2013). Simply picking imagery from different providers is a viable option. Another 
noteworthy limitation is the lack of exact timestamps of image captures by the chosen provider which 

Table 2. 
Detection accuracy across nine aerial images. F-score shows high variation in performance

ID Year Count Detections Precision Recall F-Score

%

E 2013 167 170 94.12 95.81 94.96

H 2014 179 157 99.36 87.15 92.86

D 2013 127 127 90.55 90.55 90.55

C 2013 230 192 98.44 82.17 89.57

G 2017 275 222 96.85 78.18 86.52

I 2015 89 58 98.28 64.04 77.55

B 2011 69 38 100.00 55.07 71.03

A 2010 110 21 90.48 17.27 29.01

F 2000 88 3 66.67 2.27 4.40

Average 92.75 63.61 70.72

Standard Deviation 10.42 33.27 32.14



International Journal of E-Planning Research
Volume 12 • Issue 1

9

Figure 3. 
Urban map export for Image B, featuring a quiet residential area. The response to edge cases is observed, i.e., vehicles fully on 
private property and vehicles right on the edge of the sidewalk

Figure 4. 
Urban map export for Image E, featuring a busy industrial area. Some sidewalks are clearly more obstructed than others
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limits the temporal precision of scene comparisons. Any ensuing statistical analysis will be dependent 
on available information within remote sensing and mapping data.

OS MasterMap features accuracy, completeness and continuous support, and offers a range 
of opportunities for analysis. Outside countries with strong geospatial infrastructure and accurate 
topographic mapping, especially where urban problems are most prominent, however, such data is 
not available. A very interesting alternative would be OpenStreetMap (OSM), a free, global, crowd-
sourced map database with a versatile attribute scheme and large potential for innovation in planning 
applications. At the time of writing, roadside pavements are only recorded as attribute entries for linear 
road features, making pedestrian mobility evaluation difficult. There is considerable active research on 
OSM data quality (Lin, 2011), and exploitation in the present application should be further examined.

Evaluation
Generally desirable imagery characteristics were identified: wide coverage; high spatial resolution; 
low inclination (capture zone near nadir); capture times with short shadows; and accessibility. 
However, the specific requirements leading to optimal detection accuracy will ultimately depend on 
the characteristics of the detection algorithm. The accuracy of the ResCeption algorithm was inhibited 
by using imagery out of specification, but in professional applications detectors will be trained on 
target imagery. Object detection usually makes use of true-colour composites, but the potential of using 

Figure 5. 
Vehicle pressure on pavements (from Images H and I). Detection window overlap ratio. Topographic data from: Getmapping 
(2000–2017) and OrdnanceSurvey(GB) (2019)
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multispectral data in this application field could be examined, as it could enable the discrimination 
of otherwise unseen urban details, e.g. moving objects, vegetation health or ground pollution.

The contributing data layers involved varying geolocation accuracies (see Table 3). The geospatial 
analysis of detections would be meaningless if the horizontal accuracy of any utilised data (topography, 
imagery or other) was comparable to the size of detected objects.

Figure 6. 
Vehicle pressure on pavements (from Images H and I). Ratio change in 2014–2015. Topographic data from Getmapping (2000–2017) 
and OrdnanceSurvey(GB) (2019)

Table 3. 
Horizontal accuracy of mapped layers

Layer Horizontal Accuracy Indication

OS MasterMap Absolute 0.8 m at 95% Confidence

RMSE 0.5 m

Getmapping Aerial RMSE 1.0 m

WorldView-2 Satellite (for reference) 3.5 m CE90 Without Ground Control

RMSE: Root mean square error between observations.
CE90: Circular error at the 90th percentile.
Sources: (OS MasterMap Topography Layer Support 2019; DigitalGlobe 2013; Vertical Aerial Photography and Digital Imagery 2010)
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Aerial imagery is expected to be adequate, but satellite accuracy is similar to the short 
dimension of standard cars and analysis of smaller objects may be limited. The horizontal accuracy 
of satellite imagery depends on numerous factors and changes with time. The geolocation accuracy 
of orthorectified imagery will generally be lower due to the additional correction using a digital 
elevation model (DigitalGlobe, n.d.). Additionally, the detection algorithm plays a significant role 
in how precisely it can pinpoint detections with respect to the image. The transformation of data 
into different coordinate systems may also lead to multi-metre error. With respect to cartography, 
features should be accurate within 0.5 mm at map scale, which is 0.6 m at 1:1250 (Longley, 2015).

The concept underlying the method involves a mass-treatment of the urban environment, in that it 
analyses urban areas in a uniform manner not accounting for vernacular customs, popular preferences, 
history or identity. The solutions inspired by the generated insight do not have to be equally mass-
solutions, or treat city regions uniformly, and locally tailored approaches are possible. Attention is 
drawn to Section 8 of the Royal Town Planning Institute Ethics and Professional Standards Guide 
which stresses the need for professional inclusive consultation of affected communities in proportion 
to the degree of planning intervention (Royal Town Planning Institute, 2017). Calls have been made 
for fundamental changes in urban life styles and needs, and concerns are raised on the effectiveness 
of the technocratic focus of smart city workflows (EEA, 2009). Following suggestions by (Liu et 
al., 2017), this urban evaluation method relates to a tool, not a directive, and should be treated by 
professionals as indicative.

Furthermore, the systematic collection of location based involuntary overhead data is sensitive in 
terms of ownership, privacy and security. Urban sensing must be subject to public acceptance and privacy 
laws (Potsiou et al., 2010). Software implementation would require rigorous contract management, user 
training and interoperability with other IT systems used by city councils (Harris, 2017). How automatic 
detection might adapt to address these issues is a stimulating area for further research.

Opportunities
Planners were found to avoid satellite sources due to limited investigation in urban applications, lack of 
expertise in imagery handling, and low resolution (Carlson, 2003), but they are crucial as they unlock 
the potential for wide coverage, standardised and cost-effective analysis. The satellite acquisition 
properties are constant and this may benefit international standardisation efforts, especially as spatial 
resolution and cost-effectiveness are rapidly improving. The public sector would ideally benefit from 
free imagery and in many cases national geospatial infrastructures may provide an answer (“Space for 
Smarter Government Programme (SSGP)”, n.d.; “Public Sector Bodies Can Access Aerial Photo and 
Height Data for Free — Getmapping”, n.d.; “7 Top Free Satellite Imagery Sources in 2019”, n.d.). 
As an alternative to the training of a completely new detection network to handle satellite imagery, 
retraining an existing network using the Transfer Learning technique can save resources without 
significantly compromising accuracy (Donahue et al., 2013; “How to Retrain an Image Classifier 
for New Categories — TensorFlow Hub”, n.d.). An example of a transfer of an aerial detector to 
the satellite domain can be found in (Cao et al., 2016). Under professional implementations, strong 
computer equipment would process a square area the size of central London, about two miles wide 
(McDonald & Swinney, 2019), in under one hour (“Running Caffe AlexNet/GoogleNet On Some 
CPUs Compared To NVIDIA CUDA - Phoronix”, n.d.). The performance limitation is further 
minimised by the late emergence of cloud services offering state-of-the-art, fast machine learning 
computation at affordable prices.

To extend the potential of geospatial integration, Image Semantic Segmentation may be utilised, 
a deep learning technique classifying image content at the pixel level. Vehicle detections could be 
converted to geospatial polygons corresponding to the overhead pixel footprints, making exact overlap 
and orientation analysis available.

Concerning the detection target, suggestions for detection object types in future implementations 
include signage, railings, waste bins, litter, road markings, potholes, pavement cracks, pavement surface 
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and pedestrians. State of infrastructure analysis could expand to unused parking space, vegetation 
health, illegitimate development and urban sprawl. Expanded target sets would require dedicated 
detector networks. The geospatial processing can be developed in many directions. Vehicular density 
may indicate parking demand and may be linked to proximity to services or safety risks. City-wide 
parking occupancy may become measurable if parking places are mapped. In terms of pavement 
obstacles, the most affected areas may take priority in ground survey and intervention. Detectable 
objects like misplaced garbage, signage and outside seating may be considered in combination in 
terms of spatial arrangement for analysing complex mobility problems.

The above suggestions are particularly relevant when considering the potential for UAV (drone) 
surveys in cities. Given the reduced flight height, UAVs exhibit unparalleled resolution for the cost 
and easiness of capture. The sacrificed areal coverage may not be detrimental to urban applications.

Quantification of mobility through walkability indexes can also be considered in detection 
(Amoroso et al., 2012; COEH, 2011; Sousa et al., 2019; Tribby et al., 2016). Temporal analysis may 
reveal repeatedly and disproportionately burdened areas. Temporal trends can be used to monitor 
long-term pressures or the performance of past interventions and obtain the quantification necessary 
for evidence-based planning.

The map output may adapt to address different problems, including small scale maps showing 
frequency distributions and emphasising patterns in whole cities or quarters, or large scale maps 
overlaying urban problems on other thematic data, such as water infrastructure. In all cases, the maps 
presented here were strictly for demonstration of method potential.

In practical terms, urban planners who would want to enhance monitoring, would have to clearly 
define the geospatial manifestation of the analyzed problem, define the required detection targets, 
desired output visualization and action plan, obtain a relevant object detector and follow the above 
methodology. The steps above are notably open to participatory practices (problem definition), as 
well as the outsourcing of technological (and not directly planning-related) work to industry.

CONCLUSION

The aim of this project was to develop a proof of concept for a digital tool that detects urban problems 
in remotely sensed imagery and produces maps to assist urban planners in management and policy. 
The focus was on obstructive vehicle parking occupying pavement space and hindering pedestrian 
mobility.

A preliminary user survey was carried out to gauge the interest of professionals for a potential 
urban detection tool. The most important findings were that: monitoring currently mostly comes 
in the form of observations by municipal employees; irregularity in data capture affects planning 
priorities and often means that only urgent problems are dealt with; there is willingness to improve 
the monitoring process and the opportunities of digitisation and automation are understood.

Objective 1 was carried out successfully by automatically interpreting aerial urban imagery using 
an open-source CV object detector to detect standard sized car locations with workable accuracy 
(F-score 70.72%). Objective 2 was achieved by integrating detection results into existing backdrop 
topographic data. A workflow was developed for the semi-automatic production of single page 1:1250 
map reports of detections and analysis results. Two example map exports were provided for Paisley 
and Birmingham, UK. Some complementary geospatial analysis, involving feature-based detection 
counts and temporal comparison between consecutive years showcased the potential for additional 
planning insight. Partial progress was made towards Objective 3. This was mainly due to the diversity 
of user requirements discovered in the relevant survey. Fully executing identified user requirements 
into an integrated application will require a production application development process.

The overall method was justified in terms of ease and cost of implementation, and the workflow 
is replicable with free software (Caffe, QGIS) and a personal computer.
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This project has shown that the combination of automatic object detection in remotely sensed 
imagery with existing geospatial data can deliver efficient monitoring of well defined manifestations 
of urban problems and cartographic visualizations to assist urban planners in efficient management, 
intervention prioritization, and policy. A proof of concept for a smart city tool capable of long-term 
impact was developed. New ways to monitor the complexities of the urban environment will aid to 
combat unsustainable living.
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APPENDIX 1

Figures 7 and 8 illustrate the geospatial manipulation of detection and topography data to reach results.

Figure 7. 
Geospatial integration workflow
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APPENDIX 2

This appendix provides the questions of a questionnaire survey distributed via e-mail to professionals 
engaged with the field of urban planning, in local governance, academia or out of personal interest, from 
early July to the middle of August 2019. Full consent was established before respondent participation 
and anonymity was respected where requested. Participant contact information and city of residence/
work was requested. None of the questions (except for consent and position/role) were mandatory. 
The questionnaire was hosted by Google Forms.
Positions/roles of respondents included:
• Planning Officer
• Senior Planner
• Postdoctoral Researcher
• Concerned Urban Resident
• Planner (Development Management)
• Town Planner
• Planner
• Associate Professor
• Built Heritage Officer
• Urban Planner
• Technical Officer
• Freelancer
• GIS Officer
• Commissioner for Urban Development
Question 1: What problems does your city monitor in the physical urban environment?
Question 2: What kind of information is collected?
Question 3: How is this information collected?
Question 4: How often?
Question 5: How is the information stored?
Question 6: What challenges do you face in monitoring urban problems?
Question 7: Would you implement an automated remote monitoring solution where feasible?
Question 8: What tool features would be necessary?
Question 9: Why would you benefit and what would you use the tool mostly for? Would you like to 
share additional thoughts, or feedback?

Figure 8. 
Calculation of detection windows road areas
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