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ABSTRACT

Associative classification (AC) performs much better than other traditional classifiers. It generates 
a huge number of class association rules (CARs). Since users are interested in the subset of rules, 
constraints are introduced in the generation of CARs. Real-world databases are record-based in which 
data is continuously added which demands incremental mining. Hence, constraint class association 
rules (CCAR) is mined from incremental data. To limit the number of rules and to remove the 
duplicate rules, redundant rule pruning and duplicate rule pruning techniques are applied. To improve 
the accuracy of the classifier, the rule selection using principality metric has been applied and the 
classifier is constructed with rules possessing high principality. Then, classifier is evaluated using 
single rule and multiple rule prediction methods and the accuracy of the proposed classifier are 
measured. Experimental results show that the accuracy of the proposed classifier is relatively higher 
when compared to other algorithms.
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1. INTRODUCTION

1.1 Associative Classification
Associative Classification (AC) (Vishwakarma et al. 2013; Phan-Luong, 2013) is an integration of 
association and classification methods aims to build a classifier describing the classes of the input 
training data set. Class Association Rules (CARs) (Mabu et al. 2011) are basically used to build a 
classification model for which prediction defines the relationship between the itemsets and the class 
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labels. It is mainly used in the medical dataset. Based on the generated rules, it is possible to identify 
population at high risk for a particular disease.

Constructing an associative classifier involves two steps. Given the training dataset, class 
association rules are generated first. Then, a small subset of high- quality rules are obtained using 
pruning methods and an accurate classifier or model is built for the training data. However, in large 
or correlated data sets, rule mining may yield a huge number of classification rules. Hence, pruning 
techniques, in particular, support- based pruning, are exploited to reduce the complexity of the 
extraction task.

1.2 Motivation
A class association rule is a special case of association rule where the rule consequent contains only 
a class label (Nguyen et al., 2016). The basic objective of any user in mining class association rules 
(CARs) is to determine a complete set of CARs in such a way that it satisfies user-specified minimum 
support and minimum confidence thresholds. In literature there exists several methods and techniques 
have been proposed to manage this issue in CARs. In fact, the CAR mining has been widely used 
in various practical domains, namely tourism management ((Rong et al., 2012; Leung et al., 2013), 
social media security (Zhang et al., 2007), healthcare (Nahar et al., 2013), and education sectors 
(Luna et al., 2015). However, it is also observed by previous researchers that the results obtained as 
a result of CARs mining has redundancy.

Many real time applications are dynamic in nature such that the data is incrementally added to 
the database. The major problem with incremental mining is updating knowledge which was mined 
from the original database. Methods for mining frequent itemsets from incremental datasets have 
been proposed by (Cheung et al. 1996; Hong et al. 2001; Le et al. 2011, 2012 ; Vo et al. 2014). These 
methods reduce the execution time and memory usage compared to those obtained from rescanning 
the original dataset. Thus the techniques of incremental frequent itemset mining can be integrated 
into constraint CAR Mining. Hence, the incremental method generates all CARs satisfying the 
given constraint whenever the original dataset is added with new records. However, there exists the 
possibility of generation of duplicate and redundant CCARs. It can be addressed by applying post 
processing techniques such as pruning and selection of rules.

In the post-processing step, the Constraint Class Association Rules (CCARs) can be pruned, 
ranked and then quality rules are selected in order to build a compact and high quality classifier. The 
classifier is evaluated by measuring the number of correct classifications made for a given set of test 
instances. Finally, the prediction of test instances is made by selecting the single rule or multiple 
rules satisfying the antecedent of test instances.

1.3 Constraint Class Association Rule (CCAR) Mining
Class Association Rules (CARs) (Mabu et al. 2011) are basically used to build a classification model 
for prediction. These rules define the association between the itemsets and the class labels and it is 
useful in various application domains. However, the users are interested in only the subset of CARs, 
for instance, those rules that contain at least one itemset from a user-defined set of itemsets. Giving 
constraints on itemsets reduces the number of generated CARs and decrease the search space. Thereby, 
it improves the performance of the mining process. Moreover, constrained CARs help to discover 
interesting or useful rules specific to the end user. For example, while analyzing the patient data to 
identify those people who are at the high risk of HIV infection, analyst may focus on the rules that 
include information such as age, marital status, and the gender information in the rule antecedents. 
Similarly, biologists focus on rules involving new drugs to understand the effectiveness of new 
treatment strategies for cancer treatment applications.

Constraint-based mining (Nguyen & Vo 2014; Nguyen et al. 2015; 2016) provides

•	 Flexibility to user to express their interestingness using constraints
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•	 Reduce search space by exploring only the constrained patterns rather than looking for all possible 
patterns. It also improves effectiveness and efficiency of mining methods.

The constraints can be considered in the form of Boolean expressions over the presence of 
itemsets in the antecedents of classification rules. For example, to find the most popular shoes in 
winter, the constraint can be set to season as winter. The general approach for constraint based mining 
tries to extract all frequent patterns and then validate those patterns according to the constraints. 
Otherwise, the constraints are integrated while looking for frequent patterns. This will generate only 
the constrained frequent patterns.

Hence, in this work, Constraint Class Association Rule based Associative Classifier (CCAR_AC) 
algorithm is proposed and the framework of the proposed CCAR_AC algorithm is given in Figure 
1. The objective of this CCAR_AC algorithm is to mine the Constraint Class Association Rules 
incrementally and apply the rule pruning and selection methods to build a compact and accurate 
associative classifier. For prediction, single and multiple rule prediction methods are used to evaluate 
the accuracy of the proposed classifier.

The algorithm generates CCARs incrementally whenever the original database is added with 
new records using the proposed Incremental CCAR (ICCAR) algorithm. For pruning the Constraint 
Class Association Rules (CCARs), redundant rule pruning is applied along with the removal of 
duplicate nodes. Then, the rule ranking is done using the support, confidence, length of the rule. The 
principality (Chen et al. 2014) of the ranked rules is then measured and the rules are sorted based 
on the principality. Classifier is constructed using these sorted rules and test instances are classified 
using single rule prediction and multiple rule prediction methods.

2. RELATED RESEARCH

Constraint based class association rule mining algorithms were developed to restrict the number of 
rules according to the user specific constraints. There are two approaches for the generation of CARs 
with constraints: Pre-processing and Post processing approaches. In Post processing method (Yafi 

Figure 1. 
Framework of the Proposed CCAR_AC Algorithm
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et al. 2012), the CAR mining methods suggested in Nguyen et al. (2013) and Vo & Le (2008) can 
be used to generate all CARs from the given input and then filtering of CARs is done against the 
constraints. The issue in this method is the generation of large number of CARs and lots of CARs 
has to be tested in post processing step. CAR-Miner-Post (Nguyen & Vo 2014) is an example for 
Post Processing approach. In pre processing method, input dataset is filtered for so that it contains 
only constraint itemsets. The benefits of this method are size of the input dataset is greatly reduced 
and an improvement of mining time is obtained. However, this method has to generate all CARs 
which are complex one and degrade the performance of mining. To resolve the issues in Pre and 
Post processing methods, a method was proposed in Nguyen et al. (2015) in which constraints are 
integrated into the rule generation phase.

These algorithms work with static datasets. However, real world databases are dynamic i.e set of 
new transactions are added to the original input. When the class association rules are derived from 
the input data, some redundant rules (i.e rules that can be inferred from others) are generated. These 
rules could be eliminated because they may occupy high storage and leads to poor classification 
accuracy. Selecting high quality rules is a challenge while constructing the classifier.

The accuracy of the associative classification depends on finding the relevant and appropriate 
rule for predicting the value of the unknown test instance.CBA algorithm proposed in Ma & Liu 
(1998) uses single rule prediction method. In this method, rule with higher precedence and matches 
the attributes of test instance is selected for predicting the class label of the test instance. CMAR 
algorithm proposed in Li et al. (2001) uses multiple rules that matches the given test instance for 
prediction instead of a single rule. These rules are grouped according to the class value and the strength 
of each group is measured based on the correlation levels of the elements in that group.

Some of the limitations observed in the existing approaches are:

•	 In case of incremental data, the Constraint Class Association Rules (CCAR) Algorithm (Nguyen 
et al. 2015; 2016) has to be invoked for the whole dataset i.e original records and the additional 
records in order to update the rules.

•	 Existing algorithm generates huge number of CCARs along with duplicate nodes (Nguyen et 
al. 2015;2016).

•	 Selecting the interesting and appropriate rules for constructing the classifier is a challenge.

These limitations influence the need of proposed CCAR_AC algorithm. The proposed algorithm 
integrates the constraints during rule generation and the generated CCARs are updated whenever 
the database is added with new records by controlling the number of re-scans over the database by 
adapting the safety threshold measure proposed in Hong et al. (2001). Then, rule pruning and selection 
methods are applied to restrict the number of rules and to build a compact classifier. For rules selection, 
principality metric proposed in Chen et al. (2014) is applied to select the high quality rules. Finally, 
the built classifier is evaluated using single and multiple rule prediction methods.

3. PROPOSED APPROACH

The proposed Constraint Class Association Rule based Associative Classifier (CCAR_AC) algorithm 
consists of five modules as shown in Figure 2. Each module of the CCAR_AC algorithm is described 
below.

The detailed description about the phases of the proposed Constraint Class Association Rule 
based Associative Classifier (CCAR_AC) algorithm is given below.
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3.1 Mining CCARs using Incremental CCAR Algorithm
Let D be a dataset consists of ‘n’ attributes {A1, A2,...,An} and |D| records or objects in which each 
record has an object identifier called OID. Let C ={C1,C2,...,Ck} be a list of class labels. The distinct 
value of an attribute Ai and class C are denoted by aim and cj, respectively. For instance, an item is 
considered to be attribute- value pair denoted by <(Ai,aim)>. For example, <(A,a1)> and <(C,c3)> are 
items and an itemset is described as collection of items given by <(A,a1),(B,b2)>, <(B,b3),(C,c2)>.

A Constraint_Itemset is a user-defined set of itemsets in which each itemset is said to be a 
constrained itemset. For example, Constraint_Itemsets = {á(A,a1),(B,b1)ñ,á(C,c1)ñ}.

A Class Association Rule R is of the form itemset ® Cj where Cj ϵ C is a class label. A rule R 
satisfies Constraint_Itemsets, if it’s antecedent (itemset) contains atleast one itemset in Constraint_
Itemsets.

An incremental algorithm called ICCAR proposed in Subbulakshmi & Monisha (2016) is used 
for generating CCARs from incremental data. The proposed algorithm makes use of a tree structure 
called Incremental Constraint Class Rule-tree (ICCR-tree) (Subbulakshmi & Monisha 2016) for 
incremental data.

3.1.1 ICCR-tree structure
The ICCAR algorithm proposes the ICCR-tree structure for the input data. In the ICCR-tree, every 
node consists of the following fields in addition to the itemsets:

i. 	 Obidset1, Obidset2, …,Obidsetk: It is the set of object identifiers of the itemsets of each class. 
Here, k is the number of classes in the dataset.

ii. 	 Position: Stores the position of the class with the maximum cardinality of Obidseti.
iii. 	 Total: stores the sum of cardinality of all Obidseti where i varies from 1 to k
iv. 	 Tsupport: It stores the temporary support value of itemsets for updating the ICCR-tree (in case 

of incremental data).

The itemset is converted to the form att   ́values, where
Att: a list of attribute.
Values: a list of values, each of which contains one attribute in Att.
Consider the sample dataset given in Table 1 with three attributes and six objects.
For example, itemset X = á(A,A2),(B,B1)ñ is denoted as X = 3´A2B1. A bit representation is 

used for itemset attributes. Attributes AB can be represented by 11 in bit representation and the value 

Figure 2. 
Steps in Proposed CCAR_AC Algorithm
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of these attributes is 3.The itemset X = á(A,A2),(B,B1)ñ is contained in objects 1,2 and 3, of which, 
two objects belong to class Yes. Therefore, the node that contains itemset X has the form 3 ´  
A2B1(12,3) in which Obidset1 = {1,2} (i.e. objects 1 and 2 contain both itemset X and class Yes), 
Obidset2 = 3 (i.e. object 3 contain both itemset X and class No), pos = 1 (denotes class with highest 
count) and total = 3. 

Rule R, which is generated from a node in the ICCR-tree, has the form itemset ® cpos with Supp(R) 
= |Obidsetpos| and Conf(R) = (|Obidsetpos|)/(total).

For example, node 3  ́A2B1(12,3) generates rule R:á(A,A2),(B, B1)ñ®Yes (i.e. if A = A2 and 
B = B1, then Class = Yes) with Supp(R) = 2 and Conf(R) = 2/3.

The first level node in the ICCR-tree is a tuple containing the following:

<attr-values, (Obidset1,......,Obidsetk), position, total>	

The first level of ICCR-tree stores constrained itemset and frequent 1-itemsets.The constrained 
itemset is joined with other frequent 1-itemsets to generate constrained frequent k-itemsets for k 
>=2. At successive levels, the tree contains only those itemsets that satisfy the constraints. The 
successive levels store the difference in Obidsets, when the constrained nodes are added to the tree. 
Finally, the tree is mined to generate all Constraint Class Association Rules (CCARs) incrementally. 
While the nodes of the tree are joined together, nodes with the same attributes and nodes with parent-
child relationship need not be combined. Each node contains attribute values, differences of object 
identifiers, support count of each class, the position of the class and temporary support to handle 
incremental data. This ICCR-tree stores only those itemsets that satisfy the constraints. Hence, it 
reduces the memory storage and improves the mining time.

When new transactions are added to the original database, a measure called safety threshold ‘f’ 
given in Hong et al. (2001) is used to maintain and update the Constraint Class Association Rules. 
This measure controls the number of re-scans made over the original database in order to update the 
previously mined class rules.

The safety threshold ‘f’ is computed using the formula given in equation (1):

f
S S D

S
U L

U

=
−( )×
−

�
1

	 (1)

where, |D| denotes the number of records in the original database and SU and SL are the upper and 
lower support thresholds respectively.

Table 1. 
Sample dataset

Object Identifier Attribute A Attribute B Attribute C Class

1 A2 B1 C1 Yes

2 A2 B1 C1 Yes

3 A2 B1 C1 No

4 A1 B2 C2 Yes

5 A1 B2 C2 No

6 A1 B1 C2 Yes
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If the number of added transactions exceeds the safety threshold value, then ICCR-tree is to 
be reconstructed for both original and inserted database. Otherwise, the ICCR-tree is updated (i.e. 
temporary support, support values and object identifiers are updated). If the updated support value 
of the node satisfies the minimum support, then that node is marked for future reference. Finally, the 
ICCR-tree can be mined to extract all possible CCARs.

The proposed ICCAR algorithm (Subbulakshmi & Monisha 2016) has the following advantages:

•	 Itemset constraints reduce the search space by extracting only the constrained patterns and 
minimize the number of rules.

•	 The use of safety threshold measure controls the number of re-scans over the original database.
•	 Since the nodes of ICCR-tree store the difference of object identifiers, memory usage of each 

node is reduced.

3.1.2 Incremental CCAR (ICCAR) algorithm
Input: Original Dataset D, minSup, minConf, Constraint_Itemsets
Output: CCARs, ICCR-tree 
Procedure Initialization (Dataset D, minSup, Constraint_Itemsets) 
1.  Find the constraint nodes using itemset constraints and minSup 
2.  Scan the dataset to find frequent 1-itemsets using minSup and 
store them as frequent nodes 
3.  Initialize the level- 1 tree (L) with constraint nodes and 
frequent nodes 
4.  Invoke ICCAR (L, minSup, minConf)
Procedure ICCAR (Level L, minSup, minConf) 
	 1.   
	 2.       
	 3.       
	 4.       
5.  CCARs = null; 
6.  For all I

i
 ϵ L.Children& I

i
 ϵ constraint node do

7.  GENERATE-RULE (Ii, minConf)
8.  T

i
 = null;

9.  For all I
j
 ϵ  L.Children with j>i do

10.  O.attribute = I
i
.attribute | I

j
.attribute;

11.  O.values = I
i
.values È I

j
.values;

12.  O.obidset = I
i
.obidset \ I

j
.obidset;

13.  set O.Tsupport = 0;  
14.  Update O.obidset, O.position, O.total 
15.  if new node O satisfies minSup then 
16.  T

i
 = T

i 
È O;

17.  Invoke Recursive_ICCAR (Ti, minSup, minConf)
Procedure Recursive_ICCAR (Level L, minSup, minConf) 
18.  For all I

i
 ϵ L.Children do

19.  GENERATE-RULE (Ii, minConf)
20.  T

i
 = null;

21.  For all I
j
 ϵ L.Children with j>i do

22.  O.attribute = I
i
.attribute | I

j
.attribute;

23.  O.values= I
i
.values È I

j
.values;

24.  Set O.Tsupport = 0; 
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25.  O.obidset = I
i
.obidset \ I

j
.obidset;

26.  Update O.obidset, O.position, O.total 
27.  If new node O satisfies minSup then 
28.  T

i
 = T

i 
È O;

29.  Invoke Recursive_ICCAR (Ti, minSup, minConf)
Procedure GENERATE-RULE (l, minConf) 
30.  conf = |l.Obidset

l.position
| / l.total;

31.  if conf  3 minConf then
32.   CCARs = CCARs È{l .itemset → C

position
 }

3.1.3 Incremental method for mining CCARs
For incremental mining, the ICCAR algorithm is modified with the following changes:

The ICCAR algorithm has to use two support thresholds (SL and SU): For rule generation, upper 
support threshold (SU) is used and for updating the support of itemsets, lower support threshold 
(SL) is used.

•	 The GENERATE-RULE procedure is called with three parameters: l, Upper Support (SU) and 
minConf. To generate rules, this procedure checks whether the support and confidence of node 
satisfy SU(with respect to original database) and minConf.

•	 For building the ICCR-tree, the procedures INITIALIZATION, ICCAR and Recursive_ICCAR 
use the SL value (with respect to original database)

3.1.4 Algorithm for updating the ICCR tree for incremental datasets
Input: ICCR-tree with L as root node, Original Database D, 
Incremental Database D’, upper support threshold S

U
, lower support 

threshold S
L
 and minConf

Output: CCARs satisfying the S
U
 and minConf from D+D’

Procedure Inc_CCAR () 
1.  Compute safety threshold for the original database using 
equation (1) 
2.  If f == 0 or f < |D’| then  
3.  Invoke ICCAR algorithm to mine CCARs in D+D’ using SL 

4.  Compute safety threshold  f
S S D D

S
U L

U

=
−( )× +

−

′
�

1
5.  Else 
6.  Clear the Obidset information in all the nodes  in the ICCR-
tree  
7.  Update the node information in level 1 (L1) of the ICCR-tree 
8.  Mark those nodes whose information has been changed and  
     support satisfies the minSup (S

L
)

9.  Invoke UpdateICCRTree (L1) 
10.  Invoke GENERATE-UPDATED-RULES to generate CCARs 
       from the updated tree 
11.  f = f - |D’|  
12.  D = D + D’  
Procedure UpdateICCRTree (Level L) 
13.  For all I

i
 ϵ L.Children do

14.  If I
i
 is marked then

15.  For all I
j
 ϵ L.Children with j >i do
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16.  If I
j
 is marked then

17.  Let node O be the direct child of I
i
 and I

j

18.  if O exists then  
19.  if O.itemset.count = 1 then  
20.  O.obidset = I

i
.obidset \ I

j
.obidset;

21.  else 
22.  O.obidset = I

j
.obidset \ I

i
.obidset;

23.  O.Tsupport = I
i
.Tsupport - O.obidset.count;

24.  if O.Tsupport > 0 then  
25.  O.support = O.support + O.Tsupport; 
26.  if O.support 3 S

L 
´ (|D| + |D’|) then 

27.  mark the node O  
28.  Invoke UpdateICCRTree(Ii)
Procedure GENERATE-UPDATED-RULES(L, SU, minConf) 
29.  For all I

i
 ϵ L.Children do

30.  Compute the support of I
i

31.  If support (I
i
) 3 S

U
   ́|D| then  

31.  Compute the confidence for I
i

32.  If confidence of I
i
 satisfies minConf then

33.  CCARs = CCARs È{ I
i
.itemset→ class }

34.  Invoke GENERATE-UPDATED-RULES (Ii, SU, minConf)
Procedure Initialization is invoked to find the constrained nodes using itemset constraints and frequent 
nodes containing frequent 1-itemsets by satisfying the minimum support. The constraint nodes are 
inserted at the first level of the tree along with the frequent 1-itemsets. Then, the constrained nodes 
are combined with all frequent nodes to generate successive levels of the ICCR –tree.

The procedure ICCAR takes each node and joins it with all other nodes by checking the condition 
that the attributes of these nodes are not same to generate a child node O. For this child node, it then 
computes its attribute-values, difference of object identifiers, position and total values. It also checks 
whether the support of new child node O satisfies minSup. Then, the new child node O is added to Ti. 
Then, the Recursive_ICCAR procedure is called with this new set of child nodes (Ti). The procedure 
GENERATE-RULE is used to generate a rule from the nodes of ICCR-tree by checking the rule’s 
confidence with the minConf value.

Figure 3 shows the generated ICCR-tree for the sample dataset given in Table 1 with minsup 
= 2. The ICCR-tree is mined for rules that satisfy the minimum confidence. In this example, 
attribute A=A2 is set as a constraint and it is inserted into the ICCR-tree as first level nodes. 
The dataset is scanned and frequent 1-itemsets are also inserted in the first level of the tree. 
Since attribute B2 does not satisfy the minimum support, it is ignored. The constraint node (A= 
A2) is combined with other nodes containing frequent 1-itemsets to generate only constrained 
nodes in the successive levels.

For incremental mining, initially the CCARs are mined from the original database and the 
safety threshold value is calculated based on the number of records in the original database. If 
this value is equal to zero or less than the number of new transactions in the increment database, 
then the procedure ICCAR is called using SL for generating rules for both original and increment 
databases and the safety threshold is updated. Otherwise, the incremental CCAR algorithm updates 
the frequent and infrequent nodes in the ICCR-tree by calling the updateICCARTree procedure 
and generates updated rules by calling GENERATE-UPDATED-RULES procedure. The safety 
threshold value is updated as f = f - |D’|. Finally, the database is updated so that, it contains both 
records of original and inserted records.
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3.2 Pruning CCARs using Redundant Rule Pruning
The generated Constraint Class Association Rules (CCARs) are pruned using a redundant rule pruning 
technique. The concept of redundant rules is defined in Vo & Le (2008) is given as:

Given a rule ri in the set of rules mined from a dataset D. The rule ri is called a redundant rule, if 
there is another rule rj in the set of CARs such that rj is a sub-rule of ri, and rj has higher precedence 
over ri. Based on this definition, a method as defined in Nguyen et al. (2012) is used to remove the 
redundant rules i.e. if a rule r has a confidence of 100%, then all the other rules that are generated 
later than r and having r is a sub-rule, are redundant. Hence, the rule pruning removes the redundant 
rules from the set of rules mined.

3.3 Ranking CCARs based on Support, Confidence, Length of the Rule
The rules are sorted based on rule ranking procedure. The rule ranking procedure given in Chen et 
al. (2014) considers a rule Ri over Rj, if the confidence of Ri is greater than that of confidence of Rj. 
When the confidence is equal, it considers the rule with higher support. If the support is also same, 
then the length of the rule is considered. The longer rules are preferred over shorter rules because, 
the longer rule includes more constraints. Thus, the rules with high significance and necessity are 
retained to build the classifier.

3.4 Classifier Construction based on Principality
Confidence based rule generation methods generate all rules satisfying minconf as the candidate 
rules. To classify a new test instance, the candidate rule with the highest confidence is chosen. 
But, confidence alone cannot be used as the best criterion to choose a rule in classification. Hence, 
as in Chen et al. (2014), the completeness of the rule is given by: A rule of the form R: X®C, the 
completeness of R is the proportion of objects in class C that are correctly predicted by the rule R: 
Comp(R) = |XC|/|C|.

Figure 3. 
ICCR-tree for the sample dataset in Table 1
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Completeness is the proportion of instances that are predicted by the rule, while confidence is 
the fraction of correct predictions made by the rule. Confidence measures the predictive accuracy of 
a rule, whereas completeness measures the coverage or applicability of a rule to a specific class label.

Considering both the accuracy and coverage of a rule for a given class, a Principality metric for 
each CAR of the form R: X® C is given as:

Principality Confidence Completeness= × − −( )×� l l1 	 (2) 

i.e. P(R,C) =l  ́conf(R) + (1 –l )  ́comp(R) = »´  |XC|/|X| + (1-l ) ´ |XC|/|C|where, |C| is the 
number of objects belonging to class C in the training data set, |X| is the frequency count of the 
condition of R, and |XC| is the co-occurrence count of rule R’s condition X and consequent C. 0 <= 
l <=1.0 is a weight specified according to the user preference. 

The principality metric provides richer information than the confidence metric. This is especially 
useful, when multiple rules with close degrees of confidence satisfy a test instance. The metric 
evaluates the accuracy and coverage of rule and it has a higher influence on the classifier performance.

Hence, the principality measure is calculated for each rule. For an associative classifier with 
multiple class association rules, the confidence and completeness of each rule contribute towards 
determining the performance of the classifier. However, the performance of the classifier does not 
solely depend on these metrics, and also on how the rules are chosen to construct the associative 
classifier. Thus, the database coverage technique is applied to construct the classifier using principality 
measure.

Therefore, a classifier is constructed by finding the rule with higher principality and then, it is 
inserted into the classifier until all the database objects are covered by at least one rule. After that, 
all the training objects covered by the rule will be removed from the training set and the remaining 
candidate rule’s principality is recalculated.

3.5 Classification of Test Data
This phase assigns a class label to a new test instance using the trained associative classifier.

Let Te be the test dataset. For each object te ϵ Te in the test dataset, find all rules that match the 
given object. If there exists only one rule and that fully matches te’s antecedent, then the class label in 
the rule consequent is assigned to te; otherwise, select the rule with the highest precedence to classify 
te. If there is no rule matching te, then the default class, i.e. the dominant class in training dataset is 
assigned to it. Two types of predictions are applied to classify test instances.

3.5.1 Single Rule prediction
In single rule prediction, the first rule with higher principality, that matches the test instance, is taken 
into consideration. The rule that matches first has higher principality than the other rules. Hence, the 
test instance is assigned with the class label of the matched rule.

3.5.2 Multiple Rule Prediction
All the rules covering the test instance are selected and principality is used to weigh the predictions 
made by each of these rules. The majority of this weighted prediction is selected as the prediction 
for the test instance. Rules matching the test instance are selected and principality is used as the 
weight to select the appropriate class. The weight of each prediction is calculated by summing up the 
principality values for different classifications from the rules that cover the test instance.

Thus, in multiple rule prediction, the sum of the principality is measured for each class and the 
test instance is assigned with the class having higher principality value. For instance, if three rules 
match the test instance, then the rules are grouped based on their class and the weight of each group 
is calculated i.e. for every group, the sum of principality values of all rules is computed. Finally, the 
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test instance is assigned with the class having a higher weight. The accuracy measures the ability of 
the classifier to correctly classify the unseen data objects and it is defined as:

Accuracy
Numberof Instancescorrectlyclassified

Total nu
= 

    

 mmberof Instances  
	 (3)

3.6 Constraint Class Association Rule Mining with Post-processing
The Incremental CCAR algorithm updates the mined CCARs, whenever the original database is added 
with new records. And then, the Incremental CCAR algorithm has been extended with the additional 
procedures to implement rule pruning, selection, and classifier construction phases.
Input: Root node L of the updated-ICCR tree after the increment 
database, minConf 
Output: Set of rules in the classifier
Invoke procedure PRUNE-RULE (L, R)
Invoke procedure CONSTRUCT-CLASSIFIER (R, S, T)
Procedure PRUNE-RULE (Level L, RuleSet R)
1.  For all Ii

 ϵ L.children do 
2.  For all I

j
 ϵ L.children with  j>i do 

3.  Node O be the direct child of I
i
 and I

j

4.  Compute the confidence of node O           
5.  If confidence (O) ==100% then  
6.  Generate rule from O and add it to RuleSet R 
7.  Delete all the child nodes of O 
8.  Else if confidence (O) < minConfidence 
9.  No rule is generated 
10.  Else if confidence (O) < minConfidence(I

i
)

11.  No rule is generated 
12.  Invoke PRUNE-RULE(Ii, R)
Procedure CONSTRUCT-CLASSIFIER(RuleSet R, New-RuleSet S, Training 
Data T)
13.  For all R

i
 ϵ R do

14.  Rank rules in R based on support, confidence and the length 
of the 
      rule 
15.  Calculate the principality for each rule in R using equation 5.2 
16.  While R is not empty or T is not empty do  
17.  Select the rule r* with the highest principality 
18.  If the rule r* classifies at least one instance correctly 
19.  Add the rule to new RuleSet S  
20.  Delete r* from R 
21.  Delete all instances covered by r* from T

The PRUNE-RULE procedure is used to eliminate all redundant rules. Every node is traversed 
by breadth-first traversal and the node satisfying minimum support and confidence is checked for 
100% confidence. If so, the child nodes are deleted from the tree. The remaining nodes are mined 
for further processing and a subset is fed to the CONSTRUCT-CLASSIFIER procedure to build 
an associative classifier using rule ranking and selection methods. The selection method computes 
principality metric for each rule and sorts them based on their highest value of the principality. Only 
those rules with the highest principality value are then used to build a classifier.
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4. RESULTS AND DISCUSSION

The proposed associative classifier CCAR_AC has been tested using five datasets namely, Hungarian 
Heart Disease, German Credit, Breast Cancer, Mushroom and Diabetes dataset. These datasets are 
downloaded from UCI machine learning repository (http://mlearn.ics.uci.edu), and are pre-processed 
according to the implementation of the proposed algorithm. For the continuous-valued attributes, the 
data are discretized into bins and the discretized values are used. Pre-processing and discretization 
are done using WEKA tool, an open source software package for machine learning. The description 
of each dataset is given in Table 2.

4.1 Results for Incremental Mining of CCAR
The proposed approach checks whether the original database is added with new records or not. If the 
original database is not added with new records, then the constraint class association rules are mined 
from the original database only. Otherwise, the mined rules are updated, whenever the database is 
added with new records using the Incremental CCAR algorithm.

In this experiment, comparison of execution time is made between the CCAR and Incremental 
CCAR algorithms with minimum support of 5% and minimum confidence of 25%. The algorithms 
are executed with different selectivity values ranging from 20 to 80. Selectivity is defined as the ratio 
of number of constraint itemsets selected to the total number of itemsets. If there are 20 items, the 
selectivity of 10% implies that 2 items are selected as constraints. The total run time of the incremental 
algorithm for five runs is measured with SU = 5% and SL = 3% by considering two records for each 
increment and it is compared with a non-incremental algorithm with SU = 5%. For example, in the 
heart disease dataset, the original database size is varied from 262 records to 270 records. The CCAR 
algorithm (non incremental) is executed five times by considering a different sized original databases 
with 262, 264, 266, 268 and 270 records for each execution and the run time of each execution is 
added. Similarly, the Incremental CCAR algorithm is executed five times. For the first execution, the 
algorithm considers that the original database contains 260 records and two records are added as an 
increment. Then, the runtime of incremental CCAR algorithm is noted. For the second execution, the 
original database contains 262 records and another two records are added. The run time of incremental 
algorithm for each execution is summed up to compare with the batch - processing method (non-
incremental algorithm). Experiments are done to show the execution time of Incremental CCAR and 
CCAR algorithms for different selectivity values. The increment size varies for different datasets. 
Depending upon the number of records inserted, the proposed Incremental CCAR algorithm either 
updates the information in the ICCR tree to generate the updated CCARs or rebuilds the tree for both 
original and inserted database by rescanning the original database.

For example, consider the heart disease dataset. As shown in Figure 4, the execution time of 
Incremental CCAR is 11.65ms whereas, for CCAR, it is 13.54ms for a selectivity value of 80%. 

Table 2. 
Description of datasets

Dataset Instances Classes Class Distribution Attributes Items

Hungarian 
Heart Disease 270 2 (150,120) 13 52

German Credit 1000 2 (700,300) 7 30

Breast Cancer 699 2 (458,241) 9 18

Diabetes 768 2 (500,268) 8 35

Mushroom 8124 2 (4208,3916) 21 115
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Therefore, the speedup achieved is 1.16ms. However, for a selectivity of 20%, the CCAR and 
Incremental CCAR algorithm give only minimal variation in execution time.

From the Figures 4 – 6, it is depicted that the incremental CCAR algorithm gives minimal 
execution time compared to a CCAR algorithm for Heart disease, German credit and Mushroom 
datasets. However, for Diabetes and Mushroom datasets, CCAR algorithm (batch-processing method) 
gives minimal execution time compared to an incremental CCAR algorithm for some selectivity values.

On an average, for a heart disease dataset, the execution time of CCAR is 10.4ms and for 
Incremental CCAR, it is 9.6ms. Therefore, the speedup achieved is 1.09ms. Similarly, the speed-ups 
achieved for German, Breast, Diabetes and Mushroom datasets are 1.11, 0.98, 1.03 and 1.1ms.

4.2 Performance Analysis of proposed CCAR_AC algorithm
During the mining or updating of rules, the proposed approach applies the rule pruning method to 
remove the redundant rules. Then, for constructing the classifier, the pruned rules are ranked and 
then evaluated using principality metric. The rules with higher principality values are used to build 
a classifier. Hence, the proposed classifier makes use of only a subset of rules for classification, due 
to the application of rule selection and pruning techniques. The proposed approach eliminates the 

Figure 4. 
Execution time of CCAR, incremental CCAR in the Heart and German dataset with the constraint selectivity

Figure 5. 
Execution time of CCAR, Incremental CCAR in the Breast and Diabetes dataset with the constraint selectivity
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redundant rules from further processing. The results shown in Figures 7 – 9 indicate that the number 
of rules is significantly reduced by applying the pruning method.

Then, the rule selection technique using principality measure is applied, and it computes the 
confidence and completeness of the rules. l  is a key parameter for the principality metric, and it 
determines the weight of confidence and completeness. A value of l  = 0.5 is used while performing 
rule selection. The total number of rules in classifier for various datasets is summarized in Table 5.3 
and the results are depicted in Figures 7 – 9. It is observed that choosing rules of high principality 
leads to a more compact classifier. Finally, the classifier is constructed using rules of high principality 
values and by applying the database coverage method.

To evaluate the performance of the proposed Constraint Class Association Rule based Associative 
Classifier (CCAR_AC), accuracy is considered as the performance metric and the percentage split 
method (60% of data for training and 40% for testing) is used as a model evaluation technique. 
Accuracy denotes the ability of the classifier to correctly classify the unseen data. It is defined as 
the ratio of the number of correctly classified instances over the total number of instances. The 
accuracy of the proposed classifier is compared with CBA and a ZeroR algorithm by incorporating 
the constraints. The execution of CBA and ZeroR algorithms is done using Weka, an open source 
software package for machine learning. The accuracy of the proposed classifier is relatively higher 
compared to other algorithms for all the datasets as shown in Table 3 and the corresponding results 
are depicted in Figure 10.

Figure 6. 
Execution time of CCAR, incremental CCAR in the Mushroom dataset with the constraint selectivity

Figure 7. 
Number of rules before, after pruning and in classifier for Heart and German datasets
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Further, single rule and multiple rule prediction methods are used to assess the performance of the 
proposed classifier. These prediction methods are used to identify the class label of the test instances. 
Experiments are done to study the effect of the parameter  l , i.e. the weight of conðdence. Table 4 shows 
the results of accuracy for single rule prediction, as   l varies from 0.5 to 1.0. Note that bold ðgures of 
each row in Table 4 indicate the best accuracy ratio with various l  values for the same data set. The 
corresponding results are shown in Figure 11. The classiðcation accuracy tends to be balanced on most 
datasets, when l > 0.75 and the maximal accuracy is reached, when l ϵ [0.75, 1.0].

Figure 8. 
Number of rules before, after pruning and in classifier for Breast and Diabetes datasets

Figure 9. 
Number of rules before, after pruning and in classifier for Mushroom dataset

Table 3. 
Comparison of testing accuracy (%)

Datasets CBA ZeroR CCAR_AC

Heart 77 79 81

German 81 69 90

Breast Cancer 92 91 97

Diabetes 74 70 76

Mushroom 78 75 80

Average 80.4 76.8 84.8
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Figure 10. 
Comparison of classification accuracy of CBA, ZeroR and CCAR_AC algorithms

Table 4. 
Comparison of testing accuracy (%) with different l  for single rule prediction

Datasets
Testing accuracy (%) with different l

0.5 0.65 0.75 0.9 1.0

Heart 78 75 82 82 82

German 76 78 80 80 80

Breast 88 90 90 90 91

Diabetes 62 61 65 70 70

Mushroom 74 72 76 80 81

Average 75.6 75.2 78.6 80.4 82

Figure 11. 
Testing accuracy with different l  values using single rule prediction
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Table 5 shows the accuracy results of multiple rule prediction as l varies from 0.5 to 1.0. Note 
that bold ðgures of each row in Table 5 indicate the best accuracy ratio with various l values for the 
same data set. The corresponding results are shown in Figure 12. The classiðcation accuracy tends 
to be high for breast and diabetes datasets, when λ = 0.5. This shows that the incorporation of 
completeness during rule selection yields better accuracy for these datasets. For the heart and 
mushroom datasets, the higher weight of confidence gives higher accuracy i.e. when l = 0.9 and 
1.0. The larger value of l  reduces the effects of completeness during rule selection. For the German 
dataset, maximal accuracy is reached, when l = 0.75.

It is seen from the results that the accuracy using multiple rule prediction is relatively higher 
compared to accuracy using single rule prediction for all the datasets.

5. CONCLUSION

In this work, an efficient method for mining of class association rules using itemset constraints for 
the incremental data is proposed. Initially, CCAR algorithm mines only those rules satisfying the 

Table 5. 
Comparison of testing accuracy (%) with different l  for multiple rule prediction

Datasets
Testing accuracy (%) with different l

0.5 0.65 0.75 0.9 1.0

Heart 76 82 82 81 85

German 80 80 97 96 95

Breast 98 97 96 97 96

Diabetes 81 80 80 70 70

Mushroom 76 76 75 88 87

Average 82.2 83 86 86.4 86.6

Figure 12. 
Testing accuracy with different l  values using multiple rule prediction
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itemset constraints and an incremental algorithm is used whenever the original database is added with 
new records. The Incremental CCAR algorithm computes the safety threshold value which is used 
to control the number of re-scans over the database. If the number of inserted records is less than 
the safety threshold, then the ICCR - tree is updated and the updated rules are generated. Otherwise, 
the ICCR - tree has to be rebuilt for the original and inserted database in order to generate the rules.

The proposed incremental algorithm is tested to compare the execution time of the incremental 
and non-incremental CCAR algorithm with different selectivity values. The execution time of the 
proposed Incremental CCAR algorithm gives a speedup of 0.93ms to 1.11ms compared to CCAR 
algorithm.

Since the number of rules produced by the incremental algorithm is large, the rule pruning and 
selection methods are used to extract high-quality rules. The rule pruning method gives a significant 
reduction in the number of rules and for rule selection, principality metric is used and it computes 
both the completeness and confidence of the rules. The use of completeness results in the reduction 
of rules. As the weight of the completeness decreases, more rules are generated i.e. higher weight is 
given to confidence. Results of rule selection highlight that the number of rules in the classifier is 
minimal, since the selection methods use only those rules with high principality values.

And then, the performance of the proposed Constraint Class Association Rule based Classifier 
(CCAR_AC) is evaluated with test data. The accuracy of the proposed classifier is compared with 
the existing associative classifiers such as CBA and ZeroR by incorporating constraints. Results 
demonstrate that the average accuracy of the proposed classifier (CCAR_AC) across the different 
datasets is higher (85%) than the other two classifiers (80% and 77%). For prediction, the proposed 
algorithm uses single rule and multiple rule prediction methods with different l  values. It is observed 
from the results that multiple rule prediction gives higher accuracy values compared to the single 
rule prediction method for all datasets.

Hence, this work has proposed a method for extracting the CCARs incrementally, when the 
database is added with new records and the rule pruning and the selection methods are applied to 
construct the classifier. The classifier’s performance is evaluated using single and multiple rule 
prediction methods.

The proposed work can be extended by applying constraints not only to the rule antecedent but 
also to the rule consequent. Also, some other rule pruning and rule selection techniques can be used 
to further improve the accuracy of the classifier.
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