
DOI: 10.4018/IJeC.315782

International Journal of e-Collaboration
Volume 19 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

SACRED:
Software Approach for Collaboration 
and Research Dissemination
Louella Colaco, BITS Pilani, Goa, India*

Arun S. Nair, BITS Pilani, Goa, India

Anurag Madnawat, BITS Pilani, Goa, India

Biju K. Raveendran, BITS Pilani, Goa, India

 https://orcid.org/0000-0003-0749-0295

ABSTRACT

Collaborative research is an opportunity to bring creative minds together and blend multiple disciplines 
to churn out innovative solutions. In this era of massive social media and information overload, a 
streamlined process framework with best practices and procedures is a requirement for genuine 
scientific collaboration. The main aim of this work is to bring forth a software-centric framework 
for harmonizing research. SACRED is the outcome of experiences gained during the development of 
‘ARMS’-An Analysis Framework for Mixed Criticality Systems. ARMS is a collaborative platform 
to disseminate research and literature in real-time mixed criticality systems. ARMS is hosted on 
Amazon Amplify with the user interface implemented using the ReactJS framework. SACRED 
summarizes the software-centric process, practices and procedures followed, and renders it for similar 
collaborations in the future.

Keywords
Collaborative Research Platform, Embedded Systems, Framework, Mixed Criticality Systems, Real-Time 
Systems, Software-Centric Process, Task Models, Task Simulators

INTRODUCTION

“None of us is as smart as all of us” - Kenneth Blanchard
The opportunity of connecting scientific and engineering minds in a collaborative fashion is a boon 

that yields stupendous results. In this era of information technology, collaborative research is feasible 
to a great extent as it brings together academicians and industrial engineers in smaller constellations. 
This provides multi-fold benefits to society and works as a stepping stone for budding researchers. 
The main challenges faced by a collaborative platform are: availability/approachability of domain 

https://orcid.org/0000-0003-0749-0295


International Journal of e-Collaboration
Volume 19 • Issue 1

2

expertise, proper division of labor among contributors, proper utilization of available skills, setting 
common goals among contributors, a common understanding among stakeholders, uniformity in 
work product, focused plan and regular updates to the community without losing zeal. In an effort to 
overcome these challenges, this paper presents a software approach that will harmonize research in a 
wider context. In other words, the work aims to bring the wealth of research contributions generated 
by diverse research groups under a common umbrella.

As part of this work, a group of mixed criticality systems (MCS) researchers launched a novel 
initiative platform - An Analysis Framework for MCS (ARMS), to build a large-scale research 
repository for enabling higher visibility of research results. ARMS aims at providing a framework to 
encourage collaboration between industry and academia thus enabling higher acceptance of research 
results by considering MCS as the test domain. It is a cloud-based platform designed for archiving, 
updating and reporting existing tasks models in MCS. The associated cloud-based database (DB) 
gets updated with on-going and new task models to keep up with recent and ever evolving research 
works. The ARMS platform compares and contrasts domain needs vis-a-vis with task models, 
attributes and presents a comprehensive landscape of the existing task model parameters in the 
mixed criticality domain. It also provides academicians and engineers the opportunity to choose 
task models appropriate to the specifics of the problem under study and provides a holistic view of 
chosen algorithms and models by analyzing, scheduling and generating statistics. The software-centric 
framework used in the development of ARMS is named - Software Approach for Collaboration and 
REsearch Dissemination (SACRED).

SACRED provides a detailed step-by-step software-centric approach that consists of three phases 
namely, setup, rollout and collaboration. The setup phase includes a systematic literature review, 
that results in identification, grouping and clustering of task parameters based on usage scenarios 
and functional attributes. It includes a multi-vocal literature review consisting of published works, 
grey literature and industrial contributions. The rollout phase launches the ARMS framework for 
stakeholder’s use. It is a three-stage process, consisting of platform finalization, design & development 
and validation & deployment of the cloud-based framework. The collaboration phase provides facility 
for pursuits and distribution. It further helps in establishing partnerships that allow comparison of 
existing research results and facilitates in performing regular updates. The software-centric processes, 
practices and procedures followed in the development of ARMS is extensible to other domains/
disciplines wherever collaborative research yields benefits.

The paper is organized as follows: Section 2 presents related literature on collaborative platforms. 
Section 3 provides the software process followed by SACRED. Section 4 presents a case study of the 
SACRED process applied to the cloud-based aggregator platform ARMS. Section 5 lists the challenges 
faced/best practices followed in SACRED and a comparative analysis with other collaborative platforms 
and Section 6 concludes the work.

RELATED WORKS

Software development requires innovation, collective intelligence and collaboration of many minds. 
Collaborative platforms encourage association between industry and academia thus enabling 
dissemination of research results. A large number of collaborative platforms (Beck et al., 2022; Borgho 
& Teege, 1993; Brownson et al., 2021; Chorfi et al., 2022; Gesing et al., 2019; Khan et al., 2021; 
Lautamäki et al., 2012; McLennan & Kennell, 2010; Monnard et al., 2021; Stodden et al., 2012) have 
been presented in literature over the years. HUBzero (Gesing et al., 2019; McLennan & Kennell, 2010) 
is one such platform that allows researchers to collaborate and network to develop simulation/modeling 
tools. These tools are made accessible to the community through the web browser and launched in a 
grid infrastructure. Borgho and Teege (1993) presented a collaborative editor for managing software 
engineering projects. The editor provides facility for distributed editing, notifications and imparts 
consistency through dynamic voting. A web based java editor was proposed by Lautamäki et al. (2012) to 



International Journal of e-Collaboration
Volume 19 • Issue 1

3

support collaboration for development of java applications. The online editor provided support for error 
detection, automatic code generation and social media features. Another collaborative platform to enhance 
programming skills was presented by Chorfi et al. (2022). Geographically distributed learners were able 
to interact with one another and with mentors to solve problems and develop shared programs. Beck et 
al. (2022) proposed an interdisciplinary collaborative research framework to disseminate innovations 
in the field of science. An approach to disseminate research on public health among the general and 
research community was proposed by Monnard et al. (2021). Mentored training for distributing cancer 
research is discussed in Brownson et al. (2021). Khan et al. (2021) studied the adoption of collaborative 
learning through social media during the Covid-19 pandemic. The work aimed at understanding the 
correlation between student performance and social media use, to comprehend the impact of social 
media on students during the pandemic. Stodden et al. (2012) pointed out that the research results 
presented in various works are unavailable for use by the research community. Their work presented a 
cloud based infrastructure that provided support and access to both the code and results from various 
published articles. Users were also able to experiment using their own data. The work by Peng et al. 
(2014) summarizes and compares software collaborative platforms in terms collaboration, co-ordination, 
awareness, communication and value transfer.

Based on the literature survey, it is observed that there are limited collaborative research 
dissemination platforms for the real-time systems community. The scope of ARMS and the 
corresponding software process - SACRED is to build a software-centric design level task modelling 
and scheduling framework of real-time MCS. It also assists the research community to understand 
the state-of-the-art research in the domain and evaluates by comparing with existing solutions thus 
allowing to propose and publish new ideas.

SACRED OVERVIEW

Collaborative research requires a framework as well as a process that describes how things are executed 
with a focused approach towards improvement. It is also important that this process provides a starting 
platform for budding researchers. Situations like the pandemic or other calamities hamper personal 
interactions and collaborations. But technology helps to overcome such situations by bringing about 
a holistic platform where researchers with a common mindset can collaborate and excel together. 
SACRED provides a detailed step-by-step approach to make a simple collaborative research framework 

Figure 1. SACRED- process steps



International Journal of e-Collaboration
Volume 19 • Issue 1

4

and provides a cloud-based platform for researchers’ use. This platform development requires a distinct 
mechanism rather than following well-known methodologies like verification and validation cycle, 
waterfall or agile model as it focuses on software research, collaboration, coordination, awareness, 
communication and value transfer.

SACRED consists of a three-phase software centric approach that includes setup, rollout and 
collaboration phase as depicted in Figure 1 . As part of the setup phase, the researcher starts with a 
systematic literature review, that extends to aid in identification of parameters and subsequently helps to 
list out a uniform nomenclature by assimilating the commonalities among these parameters. Further, these 
parameters are grouped based on domain specific criteria. The rollout phase includes platform finalization 
and the design and development of the cloud-based framework for easier access to the research data. The 
next phase - collaboration - provides facility to compare existing research results and makes it feasible 
to compare one’s own results with the results available in the research fraternity. It also allows industrial 
and academic contributions by researchers. This platform serves as a stepping stone as well as a decision 
support system for existing researchers, designers and budding engineers. The following subsections 
describe the phases with emphasis on the expected outcomes of each phase and the best practices used.

Setup Phase
The purpose of this initial phase is to form a collaborative working group consisting of researchers, 
developers and collaborators and to prepare guidelines for regular communication and day-to-day 
activities. This step also elaborates on activities like literature review, preparation of common 
guidelines, work instructions, checklist and templates. Based on the domain of study, it is feasible to 
come up with a common framework or grouping of state-of-the-art research results. Researchers and 
developers have to also factor in the available time constraints and decide on the resource requirements.

The expected outcomes after the successful completion of this phase include:

•	 Formation of an active core team - Prior to starting the literature review, a team comprising of 
researchers, developers and collaborators who will aid in the review, development and updating 
needs to be put in place. All this is achieved through brain storming and targeted discussions with 
like-minded people which will provide the needed momentum for subsequent stages of research.

•	 Guidelines, checklists, templates, communication framework and systematic literature review - 
This step aids in preparing a common process and communication framework for working together. 
It includes guidelines for information exchange, regular connects and meeting agenda. It also 
includes preparation of checklist and templates to gather information and review of contents. An 
important engineering step that forms the basis of any research is a systematic literature survey. 
This includes collecting existing literature in a specific area and analyzing it to identify gaps and 
feasible improvements required in the domain of study.

•	 Parameter Identification with Uniform Nomenclature - Based on the literature review, high 
level parameters are extracted and classified. The parameter extraction process involves the 
identification and extraction of relevant parameters from the selected papers. These parameters 
may be represented using different notations by various researchers. There is a need to consolidate 
the parameters and provide a uniform nomenclature (including the notations) to make it usable 
by researchers in the relevant domain.

•	 Grouping/clustering state-of-the-art research results- Classification of research results into broad 
groups based on clusters in the landscape or based on industrial needs is an essential step. The 
parameters identified during the identification phase are grouped based on different criteria.

The best practices established during this phase include preparation of work instructions by each 
and every team member, establishment of the frequency and mode of communication, weekly report 
submission on progress and risks, template preparation and guidelines for capturing information, 
regular presentations and demos among team members.



International Journal of e-Collaboration
Volume 19 • Issue 1

5

Rollout Phase
The steps in the rollout phase aim to provide a dissemination framework based on the respective 
domain. It includes selection of the rollout platform, design, development and validation of tools. 
In this framework, codes of algorithms and models of the existing works are tested. The authors 
of the publication are contacted for the code base. If it is provided by them, the development team 
incorporates the same in the framework. If the authors provide only the execution permission to access 
their servers with the help of an interface, then the framework incorporates the work with the help 
of foreign servers. In the worst-case, the developer team codes the algorithms and sends them to the 
authors for correctness test before incorporating the same in the framework.

The expected outcomes after the successful completion of this phase are:

•	 Platform finalization - Platform finalization is the key to providing a user friendly and multi-
platform experience. For the MCS field of research, this work finalized a web/mobile based 
application where the MCS research community can interact with the system through an app or 
web browser. The platform is deployed on a cloud server (Amazon Web Services (AWS)) for 
seamless accessibility and security.

•	 Framework design and development - Different methods can be used for aggregating and 
summarizing findings of various works. For the MCS task model work, a cloud-based aggregator 
is designed and developed. This aggregator is a client-server platform which will help researchers 
in identifying the most appropriate task models for their work. This framework archives the 
state-of-the-art task models and task parameters in MCS and provides various options for the 
researchers to choose task parameters in terms of various usage scenarios and functional attributes.

•	 Framework validation and deployment – A deployed framework needs to be tested with published 
data and validated with the authors wherever possible before rolling out to collaborators. In this 
step, help can be taken from volunteers in the research community to support the process.

The best practices implemented at this stage include object oriented modularized design with usage 
of formal modelling languages like Unified Modeling Language (UML). Collaborative testing by peers, 
like- minded researchers and authors improves the quality and user friendliness of the framework.

Collaboration Phase
The purpose of this step is to collaborate with an extended groups of researchers and yield results as an 
authentic freeware platform. The expected outcomes after the successful completion of this phase are:

•	 Distribution - Distribution, deployment and maintenance is carried out in this phase. The 
freeware version of the framework should be made available to users to decide and finalize on 
appropriate choices for their work. For example, ARMS framework will be administrated and 
maintained by a group formed by MCS researchers. Controlled access will be provided to users 
upon on-demand request.

•	 Research assimilation, decision support system & partnership - Decision support systems aid 
in qualitative analysis. In this work, to facilitate decision making, the task model framework is 
extended with scheduling algorithms to perform schedulability analysis. This will aid designers 
in performing comparative analysis and identifying apt task models for their study. This step also 
allows integration of author’s code base / execution on their server / review of newly developed 
code base by the authors.

•	 Updates - Regular and streamlined updates are vital in order to add new features or improve existing 
ones. Regular updates with industrial and academic contributions on task models and schedulers 
makes the tool a robust guide to researchers and engineers thereby facilitating mutual benefits.



International Journal of e-Collaboration
Volume 19 • Issue 1

6

Swift and speedy responses among collaborators and their active participation to contribute latest 
research and artifacts make the framework up-to-date, relevant and purposeful.

AN ANALYSIS FRAMEWORK FOR MCS (ARMS) 
IMPLEMENTATION - A CASE STUDY

This section describes a factual experience that triggered the SACRED process methodology. It is 
the development of a platform for mixed criticality researchers. This platform follows a cloud-based 
client-server architecture and helps researchers in identifying the most appropriate task models for 
their applications along with detailed analysis. In this platform, the state-of-the-art task models and 
task parameters in MCS are archived. The aggregator tool platform generates task sets based on the 
chosen task model parameters and performs schedulability analysis. It facilitates researchers and 
engineers to add or enhance task models and scheduling algorithms. Regular bi-annual updates with 
industrial and academic contributions make this platform a robust guide to researchers and engineers 
thereby facilitating mutual benefits.

The typical architecture of the task model aggregator platform is depicted in Figure 2 . The app 
server consists of seven software modules - Task Model Updater, Task Model Enhancer, Task Model 

Figure 2. Block schematic of the aggregator platform



International Journal of e-Collaboration
Volume 19 • Issue 1

7

Generator, Task Set Generator, Analyzer, DB Process and Scheduler. The web client/app at the user 
end consists of a User Process, Admin Process and a Display Subsystem. Major functionalities of this 
aggregator platform include task model generation, task set generation with selected task parameters, 
scheduling of task sets with mixed criticality schedulers and detailed analysis of results. The list of 
features supported are:

•	 Administered addition of task parameters and task models based on recent publications of repute.
•	 Collaborative maintenance framework for addition/deletion/enhancement of task models, 

parameters and usage scenarios.
•	 Selection of task models and task parameters based on nature of study and usage scenarios.
•	 Selection of scheduler from the standard set and feasible enhancement with customized or third-

party plug-in schedulers.

Setup Phase
As the first step, a team was setup for literature review and development. The team comprised of a team 
lead, researchers and developers. The team was augmented with a sustenance consortium to nurture 
and maintain the aggregator platform. The group of researchers conducted a systematic literature 
review on task models in the MCS domain. The review covered 15 years of MCS research which 
started with the pioneering work by Vestal (2007) in 2007. After elaborate discussions, brainstorming 
sessions and several iterations more than seventy task model parameters were identified. Few of 
these parameters are listed with uniform nomenclature in Table 1. Further, these parameters were 
analyzed and grouped based on hardware configurations, usage scenarios and functional attributes. 
The hardware configurations include uni-core and multi-core processor types. The usage scenarios 
are resources, quality of service (QoS), context switching, energy efficiency, fault tolerance and 
parallel processing. The functional attributes are defined with respect to each usage scenario. As an 
example, task parameters required for modelling MCS with the resource usage scenario for both uni-
core and multi-core systems can be categorized into three main functional attributes namely, shared 
resource usage, resource synchronization and communication (message passing). When considering 
shared resources such as memory, the basic task model (Vestal, 2007) is extended with parameters 
like minimum/maximum number of memory accesses (Pellizzoni et al., 2010), worst case number 
of cache misses (Yun et al., 2012), worst case memory access time (Li & Wang, 2016), worst case 
number of L1/LL cache misses (Nair et al., 2019), number of memory accesses (Awan et al., 2018) 
and intra/inter-core blocking times (Burns, 2013; Nair et al., 2019). Resource synchronization includes 
parameters like blocking times (Burns, 2013), priority (Zhao et al., 2014), active criticality (Zhao 
et al., 2014) and preemption level (Zhao et al., 2015) to deal with issues of priority and criticality 
inversion. The parameters considered in communication are message size (Tamas–Selicean & Pop, 
2011), release time jitter (Burns & Davis, 2013) and worst case communication time (WCCT) (Dridi 
et al., 2019).

Operating system (OS) overheads due to context switching has substantial impact on the 
schedulability of the system. The task parameters that contribute to context switching include 
priority, address space and context switching times before and after execution of the task in each 
mode of operation (Davis et al., 2018; Evripidou, 2016). In MCS, increasing energy requirements 
demand efficient energy optimization techniques. This necessitates amendments in task modelling 
related to energy parameters like energy/power consumption vector (Awan et al., 2016), processor 
frequency levels (Huang et al., 2014), voltage and frequency scaling factors (Taherin et al., 2018). 
In order to achieve fault tolerance, parameters like failure probability (Guo et al., 2015), worst case 
execution time (WCET) of backups (Pathan, 2014), replication/distribution (Thekkilakattil et al., 
2014), reliability constraints, dropping factor and various overheads (Choi et al., 2018) are considered. 
QoS is a mechanism to improve the schedulability of low criticality tasks. It is a feature that needs 



International Journal of e-Collaboration
Volume 19 • Issue 1

8

to be incorporated while considering all other aspects such as energy, resources, fault tolerance, OS 
overheads etc. The parameters that contribute to this feature include importance (Fleming & Burns, 
2014), tolerance limit (Gu et al., 2015), WCET in degraded mode (Giannopoulou et al., 2013), QoS 
values (Pathan, 2017), etc.

The introduction of multi-core architectures brings ample opportunities to implement parallel 
processing. Parallel processing systems consider parameters like number of threads (Liu et al., 2014), 
number of cores (Gill et al., 2018) and work and span for parallel tasks (Gill et al., 2018). Graph based 
task models are well suited to illustrate inter/intra task dependencies. Mixed criticality applications 
represented as graphs have vertices and edges. Edges can be classified as control flow edges and mode 
switching edges (Ekberg et al., 2013). Some of the parameters associated with graphs include mode 
of the job (Ekberg et al., 2013) and a function that defines the interference among tasks (Huang et 
al., 2013). Probabilistic task models consider parameters of execution time probability mass function 
(B. Alahmad et al., 2011), execution demand random variables and measure of probability (B. N. 
Alahmad & Gopalakrishnan, 2018).

The research team leader reviewed and accepted the task parameter grouping and confirmed the 
authenticity of the task models. The swimlane for this process is shown in Figure 3.

Rollout Phase
ARMS is a client-server web/mobile app that aims to provide an easy-to-use decision support system 
based on contemporary research results in MCS. The ARMS aggregator tool was hosted on Amazon 
Amplify (Version 4.43.0). The user interface was implemented using ReactJS 17.0.1. The DB is 
managed using Amazon DynamoDB and communication with the DB is handled using GraphQL 
application programming interfaces (APIs). Amazon S3 storage bucket and Amazon Cognito are 
used for storage and controlled access respectively.

Based on user preferences all task models that match the user selection criteria are displayed. 
The user selects one of the displayed task models for further analysis. The swimlane for task model 
generation, scheduling and analysis is shown in Figure 4. Upon selection of a model, the user can 
choose task parameters and retrieve task sets. The user is provided with facility to customize task 
parameter values before invoking the scheduler. The scheduler service, standard or custom, is used 
for scheduling and analyzing task parameters. The user is allowed to choose from the standard list of 
existing schedulers for analysis. They also have options of using customized schedulers or third-party 
solutions for scheduling task sets. The results of the scheduler are used for detailed analysis. The 
sequence diagrams for these processes are devised. Figure 5 shows the task model and task set generator 
sequence diagram. Here, the user selects attributes and usage scenarios. It views all the appropriate 
task models based on its selection. The user then selects a task model and chooses parameters. These 
values are used for the generation of sample task sets. The user is allowed to customize these task sets 
on a limited scale. These task sets are sent to the scheduler that generates schedules and statistics. 
Figure 6 shows the sequence diagram for scheduling and statistics generation. The task set customized 
by the user is used for scheduling. The user selects the appropriate scheduling mechanism. If the user 

Figure 3. MCS aggregator - setup phase



International Journal of e-Collaboration
Volume 19 • Issue 1

9

prefers standard scheduler, the schedules and statistics generated by this scheduler are displayed to 
the user. If the choice is a custom scheduler, the user creates and uploads the same. The schedules 

Table 1. Task parameters for MCS

Symbols Interpretation References

Resource Parameters

b⃗̅ /B Intra/Inter-core blocking times Nair et al., 2019

λ Preemption level Zhao et al., 2015

J̅⃗ Release time jitter Burns and Davis, 2013

∧min / ∧max Minimum / Maximum number of memory accesses Pellizzoni et al., 2010

Q/Q̅⃗ Number of memory accesses Awan et al., 2018

C̅⃗ Worst case communication time Dridi et al., 2019

Context Switching Parameters

Ccs Context switching time Davis et al., 2018

A Address Space Davis et al., 2018

Energy Parameters

E/E̅⃗ Energy/Power Consumption Awan et al., 2016

ρ Voltage and frequency scaling factor Taherin et al., 2018

Fault Tolerance Parameters

f Failure probability, Guo et al., 2015

B WCET of Backups Pathan, 2014

m Replication requirement Thekkilakattil et al., 2014

QoS Parameters

I Importance Fleming and Burns, 2014

TL Tolerance Limit Gu et al., 2015

V / V̅⃗ QoS Values Pathan, 2017

Parallel Task Parameters

M Number of cores Gill et al., 2018

w̅o̅r̅k⃗ Work for parallel tasks Gill et al., 2018

s̅p̅an⃗ Span for parallel tasks Gill et al., 2018

Probabilistic Task Parameters

f̅e⃗ Execution time probability mass function B. Alahmad et al., 2011

Ψ Execution demand random variable B. N. Alahmad and 
Gopalakrishnan, 2018

P Probability measure B. N. Alahmad and Gopalakrishnan, 2018

Graph Based Parameters
ϵcf Directed edge that defines task control flow Ekberg et al., 2013
ϵms Directed edge that defines mode switch Ekberg et al., 2013

ς Function of allowed interference between tasks Huang et al., 2013



International Journal of e-Collaboration
Volume 19 • Issue 1

10

and statistics generated by this scheduler are sent to the user. ARMS provides an option to keep this 
scheduler in DB with visibility only to that user.

Figure 7 and Figure 8 show the usability of the ARMS and analyze the feasibility of priority ceiling 
protocol with Earliest-Deadline-First-with-Virtual-Deadlines (EDF-VD) (Zhao et al., 2014) scheduling 
algorithm for the MCS domain. A user can view task models based on processor configuration and usage 
scenarios as shown in Figure 7(a) and Figure 8. In the current version, the processor configurations 
supported are uni-core processor and multi-core processor. The usage scenarios supported are basic, 

Figure 4. Task model generator and analyzer swimlane

Figure 5. Task model & task set generator sequence



International Journal of e-Collaboration
Volume 19 • Issue 1

11

resource, QoS, OS overheads, energy and fault tolerance for uni-core and multi-core processor models. 
Multi-core processor model has parallel processing as an additional usage scenario. There are usage 
scenarios which require selection of functional attributes to generate task models. For instance, resource 
usage scenario has resource synchronization, message passing and shared memory as functional 
attributes. Multiple usage scenarios can also be selected to display task models based on user requirement. 
The generate option displays the available task models with respect to the chosen attributes with its 
description and related works in the MCS domain. Figure 7(b) displays the resource-based task models 
on selection of uni-core processor configuration, resource usage scenario and resource synchronization 
functional attribute. Based on research requirements, it is possible to choose and customize tasks models 
to suit the needs of research/usage scenarios. For each of the displayed/customized task models, sample 
task sets can be generated. As an example, Figure 7(c) displays sample task sets for the chosen resource-
based task model with parameters period, deadline, criticality, (WCET) vector, active criticality, active 
priority, nominal priority and semaphores. Further, the framework assists to choose algorithms for 
scheduling and profiling. The task sets generated in Figure 7(c) are scheduled using the standard EDF-
VD scheduling algorithm as shown in Figure 7(d) The displayed schedule using chosen task sets for a 
hyper-period is depicted in Figure 7(e)and the Gantt chart of the resultant schedule is shown in Figure 
9. The detailed analysis with statistics such as number of preemptions, number of decision points, min/
max/average response time of each task are shown in Figure 7(f).

These results explore the usability of ARMS framework for the MCS domain and assist in 
viewing existing literature, state-of-art research results and choosing the right resource parameters 
for priority ceiling protocol with resource constraints. It also confirms the usability of priority ceiling 
with EDF-VD as the protocol for schedulability analysis of resource based MCS.

Figure 6. Schedule & statistics generation sequence



International Journal of e-Collaboration
Volume 19 • Issue 1

12

Collaboration Phase
The aggregator tool is a freeware web/mobile app that will be made available to users who need to 
view and decide on appropriate task models for their work. The users will also be able to perform 
schedulability and comparative analysis. A sustenance team of the working group will play the role of 
aggregator tool admin. The aggregator platform aims to provide up-to-date information on task models 
in mixed criticality literature. To facilitate this, the admin performs periodic updates and updates based 

Figure 7. ARMS - (a) Attributes Selection (b) Attributes Output (c) Task Set (d) Algorithm (e) Schedule (f) Statistics for Resource 
Task model



International Journal of e-Collaboration
Volume 19 • Issue 1

13

on request from the user. The swimlane for this process is shown in Figure 10. A user can request for 
addition of a task model whenever a new task model or new literature is published. The admin reviews 
the request to confirm its authenticity, parameters and literature. If the model is authentic, an availability 
check is performed. If the literature corresponding to the model is not present in the DB, new relevant 
literature is added. If it is a new model, it is added to the DB. The admin performs experimentation and 
the schedulability analysis results and statistics for the new model is updated in the DB. The admin 
performs experimentation with the help of author’s code base or implements a new code base and gets 
it validated for correctness from the authors. The schedulability analysis results and statistics for the 
new model(s) are updated in the DB. The admin also performs task model update periodically based 

Figure 8. ARMS Attributes Selection on web browser

Figure 9. ARMS Schedule on web browser



International Journal of e-Collaboration
Volume 19 • Issue 1

14

on literature review conducted by the sustenance consortium. Figure 11 shows the sequence of events 
when the user sends a request to update/enhance the task model. The user sends a request to admin for 
updating/ enhancing the task model. The admin process reviews the request and checks its authenticity. 
It responds with a reject message when the request is not authentic. The admin performs further 
processing and acknowledges the user accordingly. Figure 12 shows the sequence of events when the 
admin performs either a period update or an update based on user request. The admin checks if the task 
model is already available in the DB. If the literature corresponding to the task model is not part of the 
DB, then the record in the DB is updated with new literature. If task model is not present in the DB, the 
DB is updated with the new task model along with newly generated statistics and results. If the request 
originated from a regular user, the Admin process sends an acknowledgement (as shown in Figure 11).

RESULTS AND DISCUSSION

SACRED – Challenges and Best Practices
This section summarizes the challenges faced while developing this software centric collaborative 
framework. It also proposes the best practices followed to overcome these challenges. The challenges 
and best practices are listed in Table 2.

Comparative Analysis
The SACRED methodology is compared with few collaborative platforms like HUBZero (Gesing et al., 
2019; McLennan & Kennell, 2010), Problem-Based-Programming-Collaborative-Learning-Groupware 
(PBPCLG) (Chorfi et al., 2022), Open-Innovation-In-Science (OIS) (Beck et al., 2022) and Mentored-
Training-for-Dissemination-and-Implementation-Research- in-Cancer (MT-DIRC) (Brownson et al., 
2021). HUBZero, PBPCLG, OIS and MT-DIRC focus on collaboration and dissemination of research 
in the field of engineering, programming, open science and cancer respectively.

HUBZero is a web-based platform that develops simulation and modeling tools through 
collaboration. Tools hosted on HUBZero use the standard X11 windowing system. Each user is 
provided their own personal home directory with ownership and required access rights and tools are 
executed based on specific user’s rights. This enables HUBZero to carefully control and track the 
resource consumption for each tool. HUBZero is deployed using Rappture.

Figure 10. Task model updater and enhancer swimlane



International Journal of e-Collaboration
Volume 19 • Issue 1

15

Figure 11. User update sequence

Figure 12. Admin periodic update sequence



International Journal of e-Collaboration
Volume 19 • Issue 1

16

PBPCLG provides a collaborative platform for problem solving, learning programming and 
mentoring thus behaving like an educator tech app. It mainly focuses on java programming and 
problem solving. PBPCLG identifies four types of interactions. The first - individual responsibility, 
accurately depicts the writer’s individual duty towards coding. The second - alternative works is when 
various developers create distinct variants of the same code snippet and later put them together as 
one fragment. The third, exchange of dynamic tasks allows developers to share code and ideas. And 
lastly, collective responsibility allows numerous participants to come to a consensus and create a 
single code. PBPCLG is deployed using java script.

OIS provides accessibility, clarity, dimension and encourages collaboration and dissemination in 
the field of science. It aims to transform multidisciplinary knowledge gained through collaboration 
into innovations through an iterative approach. Experts from several disciplines collaborated to design 
and develop this framework, emphasizing on the differences and similarities across systems. OIS 
methodology aspires to influence policy debates and offers direction to researchers and practitioners 
thereby creating a foundation for ongoing research.

MT-DIRC provides mentored coaching and dissemination of cancer research. Associates 
were mentored by the MT-DIRC programme, for a period of two-years. They developed distinct 
innovation and dissemination skills in multiple domains. Annual summer courses were conducted 
where participants received didactic, small-group, and one-on-one training. Additionally, participants 
engaged in national conferences and were funded for their research work. Each participant was also 
allocated a mentor for specialized guidance to achieve the required skill sets. Online and in-person 
training sessions were also conducted to train mentors.

This work SACRED presents the software framework used in the development of a collaborative 
platform specifically for the real-time MCS research community. The collaborative platform ARMS, 
deployed as a cloud-based app/web client provides a research repository and a holistic view to 
encourage collaboration between industry and academia. It is designed for archiving, updating and 
reporting existing tasks models in MCS along with their analysis and statistics. ARMS is deployed 
using ReactJS. Table 3. compares these collaborative frameworks based on the domain of study, 
purpose, associated tools and deployment.

Table 2. SACRED - Challenges and Best Practices (S- Setup, R-Rollout, C- Collaboration)

Sr. No. Phase Challenges Best Practices

1 S, C Availability of domain expertise Stakeholder formation, collaborative testing, review by original authors

2 S, R Proper division of labor among 
the contributors

Preparation of work instructions by each team mem- ber, detailed work breakdown 
structure, regular presentations and demos among team members, establishment 
of the frequency and mode of communication

3 R, C Proper utilization of available 
skills

Preparation of work instructions by each team mem- ber, testing by original 
authors, collaborative testing by peers & like-minded researchers

4 S, R, C Having common goals Weekly report submission on progress, template preparation, regular presentations 
and demos, collaborative testing by peers & like-minded researchers

5 C Common understanding among 
stakeholders

Swift and speedy responses among collaborators and their active participation, 
Up-to-date, relevant and 
purposeful framework

6 R, C Uniformity in work product Preparation of template and guidelines for capturing information

7 S, R, C Focused plan Detailed work breakdown structure, Preparation of work instructions by each team 
member, Weekly report sub- mission on progress and risk assessment

8 C Regular updates to community 
without loosing zeal

Up-to-date, relevant and purposeful framework



International Journal of e-Collaboration
Volume 19 • Issue 1

17

CONCLUSION AND FUTURE DIRECTIONS

In today’s world, it is imperative to have holistic frameworks so that information can be disseminated 
in order to aid in quick decision making. This work - SACRED proposes a novel approach based 
on software-centric processes, procedures and practices that can be used to build such collaborative 
platforms in any domain. The applicability of this approach is demonstrated in a real-life implementation 
of the collaborative mixed criticality platform ARMS, which serves as a ready-made analyzer for 
researchers to validate their designs and acts as a quintessential reference aid for academicians and 
engineers. As future work, it is planned to deploy ARMS in the public domain and deploy it as open 
source for the research community.

The applicability of SACRED engineering processes, practices and procedures are relevant in a 
wide range of application domains such as embedded fly-by-wire avionics, robotics, cyber-physical 
systems, railways, quality education, smart farming and the internet of things. These domains have 
similar challenges as MCS like lack of tool inter-operability, common interface definitions, uniform 
parameter nomenclature and adequate parameter syntax/semantics.

COMPETING INTERESTS

The authors of this publication declare there are no competing interests.

FUNDING AGENCY

This research received no specific grant from any funding agency in the public, commercial, or not-
for-profit sectors. Funding for this research was covered by the author(s) of the article.

Table 3. Comparison - Collaborative Frameworks

Features Collab. Frameworks Domain Purpose Associated Tool Deployment

HUBZero Engineering Simulation /Modelling Web Based Rappture

OIS Open Science Science Research Repository Not Known Not Known

MT-DIRC Medical Science Cancer Research Not Known Not Known

PBPCLG Programming Java Language Learning and Mentoring. Web Based Java

SACRED Real Time Systems MCS Repository, Simulation and Analysis Cloud Based - ARMS ReactJs



International Journal of e-Collaboration
Volume 19 • Issue 1

18

REFERENCES

Alahmad, B., Gopalakrishnan, S., Santinelli, L., & Cucu-Grosjean, L. (2011). Probabilities for mixed-criticality 
problems: Bridging the uncertainty gap. WiP, RTSS, 1–4.

Alahmad, B. N., & Gopalakrishnan, S. (2018). Risk-aware scheduling of dual criticality job systems using 
demand distributions. Leibniz Transactions on Embedded Systems, 5(1), 1–1.

Awan, M. A., Bletsas, K., Souto, P. F., Akesson, B., & Tovar, E. (2018). Mixed-criticality scheduling with 
dynamic memory bandwidth regulation. 2018 IEEE 24th International Conference on Embedded and Real-Time 
Computing Systems and Applications (RTCSA).

Awan, M. A., Masson, D., & Tovar, E. (2016). Energy efficient mapping of mixed criticality applications on 
unrelated heterogeneous multicore platforms. 2016 11th IEEE Symposium on Industrial Embedded Systems 
(SIES), 1–10.

Beck, S., Bergenholtz, C., Bogers, M., Brasseur, T.-M., Conradsen, M. L., Di Marco, D., Distel, A. P., Dobusch, 
L., Dörler, D., Effert, A., Fecher, B., Filiou, D., Frederiksen, L., Gillier, T., Grimpe, C., Gruber, M., Haeussler, 
C., Heigl, F., Hoisl, K., & Xu, S. M. et al. (2022). The open innovation in science research field: A collaborative 
conceptualisation approach. Industry and Innovation, 29(2), 136–185. doi:10.1080/13662716.2020.1792274

Borgho, U. M., & Teege, G. (1993). Application of collaborative editing to software-engineering projects. 
Software Engineering Notes, 18(3).

Brownson, R. C., Jacob, R. R., Carothers, B. J., Chambers, D. A., Colditz, G. A., Emmons, K. M., Haire-
Joshu, D., Kerner, J. F., Padek, M., Pfund, C., & Sales, A. (2021). Building the next generation of researchers: 
Mentored training in dissemination and implementation science. Academic Medicine, 96(1), 86–92. doi:10.1097/
ACM.0000000000003750 PMID:32941251

Burns, A. (2013). The application of the original priority ceiling protocol to mixed criticality systems. Proc. 
ReTiMiCS, RTCSA, 7–11.

Burns, A., & Davis, R. I. (2013). Mixed criticality on controller area network. 25th Euromicro Conference on 
Real-Time Systems.

Choi, J., Yang, H., & Ha, S. (2018). Optimization of fault-tolerant mixed-criticality multi-core systems 
with enhanced wcrt analysis. ACM Transactions on Design Automation of Electronic Systems, 24(1), 1–26. 
doi:10.1145/3275154

Chorfi, A., Hedjazi, D., Aouag, S., & Boubiche, D. (2022). Problem-based collaborative learning groupware 
to improve computer programming skills. Behaviour & Information Technology, 41(1), 139–158. doi:10.1080
/0144929X.2020.1795263

Davis, R. I., Altmeyer, S., & Burns, A. (2018). Mixed criticality systems with varying context switch costs. Real-
Time and Embedded Technology and Applications Symposium (RTAS), 140–151. doi:10.1109/RTAS.2018.00024

Dridi, M., Rubini, S., Lallali, M., Flórez, M. J. S., Singhoff, F., & Diguet, J.-P. (2019). Design and multi-
abstraction-level evaluation of a noc router for mixed-criticality real-time systems. ACM Journal on Emerging 
Technologies in Computing Systems, 15(1), 1–37. doi:10.1145/3264818

Ekberg, P., Stigge, M., Guan, N., & Yi, W. (2013). State-based mode switching with applications to mixed 
criticality systems. Proc. WMC, RTSS, 61–66.

Evripidou, C. (2016). Scheduling for mixed-criticality hypervisor systems in the automotive domain [Doctoral 
dissertation]. University of York.

Fleming, T., & Burns, A. (2014). Incorporating the notion of importance into mixed criticality systems. Proc. 
2nd Workshop on Mixed Criticality Systems (WMC), RTSS, 33–38.

Gesing, S., Zentner, M., Clark, S., Stirm, C., & Haley, B. (2019). Hubzero®: Novel concepts applied to established 
computing infrastructures to address communities’ needs. Proceedings of the practice and experience in advanced 
research computing on rise of the machines. doi:10.1145/3332186.3332238

http://dx.doi.org/10.1080/13662716.2020.1792274
http://dx.doi.org/10.1097/ACM.0000000000003750
http://dx.doi.org/10.1097/ACM.0000000000003750
http://www.ncbi.nlm.nih.gov/pubmed/32941251
http://dx.doi.org/10.1145/3275154
http://dx.doi.org/10.1080/0144929X.2020.1795263
http://dx.doi.org/10.1080/0144929X.2020.1795263
http://dx.doi.org/10.1109/RTAS.2018.00024
http://dx.doi.org/10.1145/3264818
http://dx.doi.org/10.1145/3332186.3332238


International Journal of e-Collaboration
Volume 19 • Issue 1

19

Giannopoulou, G., Stoimenov, N., Huang, P., & Thiele, L. (2013). Scheduling of mixed- criticality applications 
on resource-sharing multicore systems. Proceedings of the Eleventh ACM International Conference on Embedded 
Software, 17. doi:10.1109/EMSOFT.2013.6658595

Gill, C., Orr, J., & Harris, S. (2018). Supporting graceful degradation through elasticity in mixed-criticality 
federated scheduling. Proc. 6th Workshop on Mixed Criticality Systems (WMC), RTSS, 19–24.

Gu, X., Easwaran, A., Phan, K.-M., & Shin, I. (2015). Resource efficient isolation mechanisms in mixed-criticality 
scheduling. 2015 27th Euromicro Conference on Real-Time Systems, 13–24.

Guo, Z., Santinelli, L., & Yang, K. (2015). Edf schedulability analysis on mixed-criticality systems with permitted 
failure probability. 2015 IEEE 21st International Conference on Embedded and Real-Time Computing Systems 
and Applications, 187–196.

Huang, P., Kumar, P., Giannopoulou, G., & Thiele, L. (2014). Energy efficient dvfs scheduling for 
mixed-criticality systems. Proceedings of the 14th International Conference on Embedded Software, 11. 
doi:10.1145/2656045.2656057

Huang, P., Kumar, P., Stoimenov, N., & Thiele, L. (2013). Interference constraint graph—a new specification 
for mixed-criticality systems. IEEE Conference on Emerging Technologies & Factory Automation (ETFA). 
doi:10.1109/ETFA.2013.6647967

Khan, M. N., Ashraf, M. A., Seinen, D., Khan, K. U., & Laar, R. A. (2021). Social media for knowledge acquisition 
and dissemination: The impact of the covid-19 pandemic on collaborative learning driven social media adoption. 
Frontiers in Psychology, 12, 648253. doi:10.3389/fpsyg.2021.648253 PMID:34135814

Lautamäki, J., Nieminen, A., Koskinen, J., Aho, T., Mikkonen, T., & Englund, M. (2012). Cored: Browser-based 
collaborative real-time editor for java web applications. Proceedings of the ACM 2012 conference on Computer 
Supported Cooperative Work, 1307–1316. doi:10.1145/2145204.2145399

Li, Z., & Wang, L. (2016). Memory-aware scheduling for mixed-criticality systems. International Conference 
on Computational Science and Its Applications, 140–156.

Liu, G., Lu, Y., Wang, S., & Gu, Z. (2014). Partitioned multiprocessor scheduling of mixed-criticality parallel jobs. 
2014 IEEE 20th International Conference on Embedded and Real-Time Computing Systems and Applications, 
1–10.

McLennan, M., & Kennell, R. (2010). Hubzero: A platform for dissemination and collaboration in computational 
science and engineering. Computing in Science & Engineering, 12(2), 48–53. doi:10.1109/MCSE.2010.41

Monnard, K., Benjamins, M. R., Hirschtick, J. L., Castro, M., & Roesch, P. T. (2021). Co-creation of knowledge: 
A community-based approach to multilevel dissemination of health information. Health Promotion Practice, 
22(2), 215–223. doi:10.1177/1524839919865228 PMID:31470741

Nair, A. S., Colaco, L. M., Patil, G., Raveendran, B. K., & Punnekkatt, S. (2019). Mediator-a mixed criticality 
deadline honored arbiter for multi-core real-time systems. IEEE/ACM 2 International Symposium on Distributed 
Simulation and Real Time Applications (DS-RT).

Pathan, R. M. (2014). Fault-tolerant and real-time scheduling for mixed-criticality systems. Real-Time Systems, 
50(4), 509–547. doi:10.1007/s11241-014-9202-z

Pathan, R. M. (2017). Improving the quality-of-service for scheduling mixed-criticality systems on multiprocessors. 
Euromicro Conference on Real-Time Systems.

Pellizzoni, R., Schranzhofer, A., Chen, J.-J., Caccamo, M., & Thiele, L. (2010). Worst case delay analysis for 
memory interference in multicore systems. 2010 Design, Automation & Test in Europe Conference & Exhibition 
(DATE 2010), 741–746.

Peng, X., Babar, M. A., & Ebert, C. (2014). Collaborative software development platforms for crowdsourcing. 
IEEE Software, 31(2), 30–36. doi:10.1109/MS.2014.31

Stodden, V., Hurlin, C., & Pérignon, C. (2012). Runmycode. org: A novel dissemination and collaboration platform 
for executing published computational results. 2012 IEEE 8th International Conference on E-Science, 1–8.

http://dx.doi.org/10.1109/EMSOFT.2013.6658595
http://dx.doi.org/10.1145/2656045.2656057
http://dx.doi.org/10.1109/ETFA.2013.6647967
http://dx.doi.org/10.3389/fpsyg.2021.648253
http://www.ncbi.nlm.nih.gov/pubmed/34135814
http://dx.doi.org/10.1145/2145204.2145399
http://dx.doi.org/10.1109/MCSE.2010.41
http://dx.doi.org/10.1177/1524839919865228
http://www.ncbi.nlm.nih.gov/pubmed/31470741
http://dx.doi.org/10.1007/s11241-014-9202-z
http://dx.doi.org/10.1109/MS.2014.31


International Journal of e-Collaboration
Volume 19 • Issue 1

20

Louella Colaco is currently pursuing her PhD at BITS Pilani K. K. Birla Goa Campus. She is also Assistant Professor 
in the department of Computer Engineering at Padre Conceicao College of Engineering, Verna, Goa. She has 17 
years of teaching experience at UG and PG level and has guided several graduate and post graduate dissertations. 
Her research interest include operating systems, real time systems and mixed criticality systems. Her main areas 
of research are resource synchronization and energy efficiency in mixed criticality systems.

Arun S. Nair is working as Divisional Manager (Architect at Nexteer Automotive India Software Center and is 
pursuing Ph.D (Computer Science) at BITS Pilani – Goa campus. He is a postgraduate in Electronics and has 24 
years of industry experience in space and automotive electronics. He is the author of research studies published in 
national/international journals and conference proceedings. His research interest includes mixed-criticality systems, 
Multicore controller, Automotive functional safety ISO26262, and Automotive applications.

Anurag Madnawat obtained his graduate degree in Computer Science from BITS Pilani K.K. Birla Goa Campus. He 
works on improving the performance and reliability of virtual machine live migrations. He is interested in the field 
of operating systems, real-time systems, mixed criticality systems and virtualization. His main area of research is 
resource synchronization in mixed criticality systems.

Biju K. Raveendran is currently serving as an Associate Professor in the Department of Computer Science and 
Information Systems, BITS PILANI K. K. BIRLA Goa Campus, Goa, India. He received his PhD from the BITS 
PILANI, PILANI Campus, Rajasthan in 2009. His research area includes energy efficient multi-core/many-core 
real-time scheduling, energy efficient memory architecture for multi-core/many-core embedded systems, predictable 
and dependable real-time/embedded system design, big data systems, etc. He was one of the five recipients of 
Microsoft Research India Fellowship in 2005 for his PhD work. He is a recipient of Microsoft Young Faculty Award 
in 2009. He is actively involved in collaborative projects with industries like Microsoft and Aditya Birla Group, etc.

Taherin, A., Salehi, M., & Ejlali, A. (2018). Reliability-aware energy management in mixed-criticality systems. 
IEEE Transactions on Sustainable Computing, 3(3), 195–208. doi:10.1109/TSUSC.2018.2801123

Tamas–Selicean, D., & Pop, P. (2011). Design optimization of mixed-criticality real-time applications on cost-
constrained partitioned architectures. 2011 IEEE 32nd Real-Time Systems Symposium, 24–33.

Thekkilakattil, A., Dobrin, R., & Punnekkat, S. (2014). Mixed criticality scheduling in fault-tolerant 
distributed real-time systems. International Conference on Embedded Systems (ICES), 92–97. doi:10.1109/
EmbeddedSys.2014.6953097

Vestal, S. (2007). Preemptive scheduling of multi-criticality systems with varying degrees of execution time 
assurance. 28th IEEE International Real-Time Systems Symposium (RTSS 2007), 239–243. doi:10.1109/
RTSS.2007.47

Yun, H., Yao, G., Pellizzoni, R., Caccamo, M., & Sha, L. (2012). Memory access control in multiprocessor for 
real-time systems with mixed criticality. 2012 24th Euromicro Conference on Real-Time Systems, 299–308.

Zhao, Q., Gu, Z., & Zeng, H. (2014). Hlc-pcp: A resource synchronization protocol for certifiable mixed criticality 
scheduling. IEEE Embedded Systems Letters, 6(1), 8–11. doi:10.1109/LES.2013.2273352

Zhao, Q., Gu, Z., & Zeng, H. (2015). Resource synchronization and preemption thresholds within mixed-
criticality scheduling. ACM Transactions on Embedded Computing Systems, 14(4), 1–25. doi:10.1145/2783440

http://dx.doi.org/10.1109/TSUSC.2018.2801123
http://dx.doi.org/10.1109/EmbeddedSys.2014.6953097
http://dx.doi.org/10.1109/EmbeddedSys.2014.6953097
http://dx.doi.org/10.1109/RTSS.2007.47
http://dx.doi.org/10.1109/RTSS.2007.47
http://dx.doi.org/10.1109/LES.2013.2273352
http://dx.doi.org/10.1145/2783440

