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ABSTRACT

Outlier ensembles can enhance the performance of outlier detection algorithms. However, identification 
of an appropriate outlier ensemble algorithm for the given application is a difficult task. In order 
to achieve this function, the performance features of outlier ensembles with gathered data types 
containing a certain set of outliers have been characterised and their ensemble performance analysed 
in this paper. The proposed methodology suggests comparing data and anomalous features of a given 
real time application to the data set available in the proposed workbench. Users can use the results of 
experiments conducted using the workbench to identify highly efficient algorithms for their application 
without undertaking further analysis once matching data is located in the workbench. Therefore, this 
research paper act as a recommendation system that enables data scientists from various fields to 
pick an effective outlier ensemble for their application.
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INTRODUCTION

Outlier detection is a field of data mining with a wide range of applications in several domains varying 
from intrusion detection (Angelo et al., 2018), process monitoring (Wang and Mao, 2019), detection 
of fake iris images (2018), security threats (Sharma and Gupta, 2021) and identification of credit 
card frauds (Carcillo et al, 2019). Outlier points might be of several types that may occur in different 
magnitude, intensity and frequency. Here, the magnitude refers to the extent of variation from the 
normal behavior and frequency of anomalies can be measured by the percentage of outliers present 
in the data. Identifying these outlier points is a tough task, data scientists utilise both supervised and 
unsupervised machine learning models for this purpose. Supervised learning algorithms work based 
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on the assumption that the test data has similar characteristics as the training data. However, their 
performance is poor if they encounter a set of data points which is outside the range of training dataset. 
In unsupervised algorithms, identification of outliers is based on the characteristic difference of the 
abnormal data points from the rest of the data. Yet, unavailability of ground truth makes it difficult to 
evaluate these unsupervised algorithms (Dong et al, 2020; Omer and Lior, 2018). Thus, choosing an 
algorithm that accurately identifies the outlier objects is an essential need for all kinds of applications. 
Appropriate selection of the evaluation parameters that pick out a good outlier detection algorithm 
considering all the features of anomalies present in the data is another mandatory requirement.

A number of evaluation parameters are available for analysing the accuracy of outlier detection 
algorithms, varying from precision and recall (Domingues et al., 2018), Receiver Operator 
Characteristic (ROC) curve (Goldstein and Uchida, 2016), outlier detection rate and false alarm rate 
(Shahid et al., 2013). Even so, most of the algorithms that exhibit high detection rate usually express 
high false alarm rate also. Nevertheless, good outlier detection algorithms ought to have high detection 
rate as well as low false alarm rate. Hence, the greatest challenge is to design an outlier detection system 
with high detection rate and low false alarm rate. Several single stage outlier detection algorithms 
are available in the literature (Domingues et al., 2018; Shahid et al., 2013). These algorithms show 
lower average performance in the presence of different types of outliers. This leads to the finding 
of outlier ensembles that exhibit higher performance than individual detection methods. Other than 
this, deep learning techniques (Vinayakumar et al, 2017) and reinforcement learning (Ghosh et al., 
2017) can also be used to improve the detection rate.

Aggarwal and Sathe (2015) put forward the concept of outlier ensemble with suggestions to design 
an ensemble-based system for outlier detection. Designing an ensemble-based outlier detection system 
with high detection rate and low false alarm rate is difficult (Aggarwal and Sathe, 2015), because 
an ensemble design demand understanding the structure of the data, form and frequency of outliers 
present in the dataset. The accurate evaluation of algorithms in the absence of labelled datasets is 
another challenge in such algorithm design.The taxonomy of outlier detection is given in Figure 1.

This research proposes a novel sequential outlier ensemble algorithm design procedure 
(workbench as we call it) that combines supervised and unsupervised algorithms in order to achieve 
a high detection rate and low false alarm rate. The proposed workbench is capable of testing all the 
supervised and unsupervised algorithm combinations. Here, supervised algorithms such as K nearest 
neighbour algorithms (Knn), Random Forest (RF), Adaptive Boosting (AdaBoost), eXtreme Gradient 
Boosting (XGBoost), and unsupervised algorithms such as Minimum Covariance Determinant 
Estimator (MCD), Local Outlier Factor (LOF), Isolation Forest (IF), and One Class SVM (OCSVM) 
are used to create ensembles pairs. For testing the ensemble performance, the proposed workbench’s 
regular dataset is limited to Gaussian and random walk distributions. Analysing the effect of local 
and global anomalies at various outlier percentages is also included in this study. The workbench 
design recommended in this study has been successfully demonstrated for choosing an appropriate 
ensemble-based outlier detection algorithm using Yahoo anomaly benchmark dataset.

Rest of the paper is organised as follows, Section 2 details the related work in this area, Section 
3 describes the workbench design used in this research, Section 4 presents the case study and Section 
5 is discussion and Section 6 is devoted to conclusion.

RELATED WORK

The challenging problem in outlier detection is to find the decision boundaries between normal data 
objects and outlier points and giving a proper definition for outliers across various application domains 
(Kiani et al., 2020). Dong et al., (2020) categorised outlier points into rare events, anomalies or 
novelty and reviewed different supervised outlier detection techniques in this area. Zhang et al (2020) 
proposed an outlier adapted training dataset, which is a new technique to enhance the system’s ability 
to model the outlier embedded in the dataset while avoiding possibility of over fitting. Due to scarcity 
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of anomalous instances in the data an anomaly detection problem can be viewed as an unbalanced 
case of classification (Emmott et al., 2013). If you consider anomaly detection as an unsupervised 
learning scenario, then difficulty arises in the evaluation of algorithms due to the unavailability 
of ground truth. Hence, scientists used synthetic dataset for evaluation of different unsupervised 
algorithms (Steinbuss and Bohm, 2021). Researchers proposed a set of rules for data generation. 
These rules ensure that the generated dataset follows the characteristics of a real time dataset. Emmott 
et al. (2013) generated and used multivariate Gaussian distribution for regular instances. Li et al. 
(2016) created normal data objects using Gaussian distribution. All these researchers have utilised 
a separate uniform distribution for generation of anomalous points (Emmott et al., 2013; Steinbuss 
and Bohm, 2021; Li et al. 2016).

After setting up the evaluation data sets, next challenge is identifying the right algorithm with 
a high detection rate for the application. Since independent anomaly detection techniques exhibits 

Figure 1. Taxonomy of outlier
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lower detection rate, Aggarwal and Sathe (2015) put forward the concept of outlier ensembles, which 
brings the idea of ensemble-based outlier detection that combines multiple outlier detectors to increase 
the outlier detection rate and decrease false alarm rate of the overall system. Main challenge in the 
creation of an ensemble is the selection of different algorithms as ensemble members and the method 
used to combine various detector outputs (Campos et al, 2018). As outlier ensembles are expected to 
outperform the independent counter parts, we must take care to ensure that combining one algorithm 
with another will not bring down the overall detection rate (Rayana and Akoglu, 2016). Therefore, 
care must be taken during component selection and aggregation of outlier ensembles.

In an independent ensemble, various executions of the same algorithm with different parameters 
or different algorithms are executed on the whole dataset or portions of the data (Aggarwal and Sathe, 
2017). One of the earliest works in an independent outlier ensemble is a feature bagging, where every 
independent algorithm selects a random set of features at each execution (Lazarevic and Kumar, 2005). 
Other methods under this category combines multiple algorithms with random sub samples of the 
data and random subset of features (Pasillas-Díaz and Sylvie, 2016; Zimek et al., 2013). Setting up 
an appropriate threshold for distinguishing outliers can also be handled by independent ensembles, 
where the first stage of the algorithm determines the threshold for outlier detection and second stage 
deals only with evaluation procedure (Smolyakov et al., 2019).

In sequential ensembles, algorithms are applied sequentially, and output of the previous 
algorithms impact the output of the future algorithms, since second stage algorithms are applied on 
a refined dataset (Aggarwal and Sathe, 2017). The result will be obtained from the output of final 
algorithms. Liu et al. (2014) designed a sequential outlier detection algorithm in which local outliers 
are identified in the first stage and global outliers are detected in the second stage. In these methods 
separate identification of local and global outliers can enhance the overall outlier detection rate of the 
algorithm. Zhao et al. (2015) proposed a sequential ensemble algorithm in which the initial algorithm 
is applied on the whole dataset to get outlier ranks of all the data points and the subsequent stage 
select a data set that has highest anomaly scores in the first stage. Similarly, this same definition is 
used by Nguyen et al. (2017) with a difference in the selection of second stage input, where the most 
likelihood normal samples are given as the second stage input. Some other researchers combine 
supervised and unsupervised methods to enhance the overall detection rate of the algorithm (Carcillo 
et al., 2019; Veeramachaneni, 2016). Thus, using sequential outlier detection, several researchers used 
intermediate results and increased the overall algorithm detection rate (Zhang et al., 2019).

Both independent ensembles and sequential ensembles require a combination function, which 
combines outlier scores from different independent detectors (Aggarwal and Sathe, 2017; Gao 
and Tan, 2006). Important factor in this case is the selection of method for combining the outlier 
scores. Techniques such as maximum function (Lazarevic and Kumar, 2005), averaging (Muller et 
al, 2011), damped averaging, pruned averaging (Aggarwal and Sathe, 2017) are commonly used for 
combining outlier scores. Some researchers accept the final output of the last phase as the result of 
the combination function (Ryana et al., 2016). Normalisation of different forms of output is also a 
major concern in outlier ensembles since the data analyst needs a unified outlier score to combine 
the multi-stage outputs (Aggarwal and Sathe, 2017; Gao and Tan, 2006).

Another important factor in the creation of outlier ensembles is evaluating the suitability of 
the algorithm for the given dataset. Methods like Dynamic Combination of Detector Scores for 
Outlier Ensembles (DSCO) (Zhao and Hryniewicki, 2018) used ROC curves as evaluation parameter 
(Zimek and Filzmoser, 2018). Outlier ranking coefficients (Muller et al., 2011), advanced correlation 
coefficients (Blest et al. 2000; Kumar and Vassilvitski, 2010), visual analytic system (Xu et al., 2019) 
are some advanced techniques used for evaluation of outlier ensembles. All these techniques try to 
reduce the bias and variance of the outlier detection system (Ryana et al., 2016).

Zhang et al. (2021) used a weighted voting mechanism to create an outlier adapted training dataset 
for credit scoring system. Also, researchers used local outlier factor algorithm enhanced with bagging 
strategy for effectively identifying the outliers (Zhang et al., 2021; Reunanen et al., 2020). Yahaya et 
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al. (2019) introduced Consensus Novelty Detection Ensemble for human activity recognition, which 
is a data driven and environment invariant method for outlier detection. Carcillo et al. (2019) used a 
hybrid approach that combines supervised and unsupervised outlier detection techniques. Wang et 
al. (2020) proposed a dynamic selection mechanism, which selects most dynamic independent base 
detectors for each test pattern. In order to handle class imbalance problems in the anomaly samples 
ensemble approach that combines One Class Classifiers (OCC) is used for outlier detection (Fujita 
et al., 2020).

However, identifying which outlier ensemble is suitable for the given application data is a daunting 
task, since it depends on the characteristics of regular instances and the statistics of the anomalies 
present in the data. As a result, a workbench must be developed to test outlier ensemble algorithms 
in various regular and anomalous data combinations. This workbench must be structured in such a 
way that it can test all conceivable outlier ensemble combinations, and a user must be able to select 
an outlier ensemble algorithm from this workbench without having to do any more processing for 
ensemble algorithm selection. Main contributions of the proposed system compared to the existing 
systems are explained in Table 1.

WORKBENCH DESIGN

There is a need for creating a workbench for the evaluation of outlier detection algorithms due to the 
unavailability of ground truth (Steinbuss and Bohm, 2021). Hence, we developed a workbench structure 
and process, which has been demonstrated here for the analysis of two types of regular instances, 
Gaussian distribution and random walk model. The reason for selecting Gaussian distribution is that 
most of the real time applications follow Gaussian distribution (Domingues et al, 2017) and random 
walk model is selected to simulate a data that has highest variance.

After generating normal data objects, outlier points are inserted from a separate uniform 
distribution (Steinbuss and Bohm, 2021). In the current analysis, experiments are conducted using 
two types of anomalies with different frequencies. Local and global anomalies are the anomaly types 
utilised in this paper. Current workbench design uses three to eight percent of outliers in the data. 
Here, the percentage of outliers represents the frequency of outliers in data. After generating relevant 
dataset, a set of anomaly detection algorithms are selected for creating the evaluation methodology 
part of the workbench.

Table 1. Main contributions of the proposed system

Limitation of existing systems Contribution of the proposed system

Both independent and sequential ensembles require a 
combination function, which combines the outlier scores 
from different detection techniques (Aggarwal and Sathe, 
2017; Gao and Tan, 2006). Important factor in this case is 
the selection of method for combining the outlier scores

The proposed system uses a confusion matrix as a scoring 
mechanism. In the proposed workbench, unsupervised 
algorithm has a simulated ground truth for comparison. 
This rectifies the difficulty in combining the outlier scores.

Main challenge in the creation of an ensemble is the selection 
of different algorithms as ensemble members and the method 
used to combine various detector outputs (Campos et al, 2018)

This paper proposes a workbench that works with different 
datasets and select best outlier ensemble algorithm by combing 
the selected supervised and unsupervised algorithms. Hence, 
for a given application user need not select an ensemble 
member for their application. Best combination for the given 
application is available in the proposed workbench report.

All the existing algorithms are designed to work on a 
single real time application. No generalised approaches are 
available in the area of ensemble-based outlier detection 
algorithms (Zhang et al., 2021; Carcillo et al., 2019).

Proposed system designed to work on two different 
types of data, Gaussian distribution and random walk 
model. This workbench acts as a generalised design for 
all applications that follows the given data distribution.
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Aggarwal and Sathe (2017) classified outlier ensembles into sequential ensembles and 
independent ensembles. In a sequential outlier ensemble, the same algorithm or a different algorithm 
is applied sequentially. Succeeding algorithms are applied on the results of the preceding ones. This 
workbench operates on the basic concepts of sequential ensembles by utilising the data obtained from 
the generator in the workbench.

Figure 2 shows connection between the theoretical motivations for this research and how 
the problems are solved using the proposed workbench design. First motivation for this research 
states that, different applications contain regular data that follow various data distributions having 
various types and frequency of anomalies embedded into it. In order to simulate this situation in the 
proposed study make use of the data generator that produces two types of regular data sets, Gaussian 
distribution and random walk distribution. Dataset is generated by following certain rules adopted 
from the previous studies in this area (Steinbuss and Bohm, 2021; Li et al. 2016; Emmott et al., 2013). 
Anomalies are inserted into this generated dataset. There can be two types of outliers, local outliers 
that have less deviation from normal data objects and global outliers that have higher deviation from 
the normal dataset. Outlier points are labelled as ‘1’ and normal objects are labelled as ‘0’ during 
the generation process to get a set of labelled data which will be helpful for accurate evaluation of 
algorithms. After combining normal data objects and anomaly points, the final dataset is given as 
an input to the ensemble-based outlier detection module. This forms a dataset which is similar to the 
real time application database.

Second theoretical motivation for this research is how to identify which sequential combination of 
anomaly detection algorithm works better for the given application. In an effort to solve this problem 
an experimental design with an algorithm module that has the following four supervised and four 
unsupervised algorithms has been developed. In this study Local Outlier Factor (LOF), Minimum 
Covariance Determinant (MCD) Estimator, One Class SVM (OCSVM) and Isolation Forest (IF) 
algorithms are the unsupervised base detectors. Random Forest (RF), XGBoost. AdaBoost and K 
nearest neighbour (Knn) algorithms are the supervised counterparts.

Figure 2. Proposed workbench design
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Unsupervised techniques can be proximity-based approaches, statistical techniques or clustering 
based methods (Han et al, 2012). In this study, base detector LOF is a proximity-based outlier detection 
that marks a data object as an outlier based on its distance from its closest neighbours (Domingues 
et al., 2018). MCD estimator estimates the Mahalanobis distance of an object from the centre of a 
data cloud to estimate the outliers (Hubert et al, 2018). OCSVM calculates the distance between data 
objects indirectly using kernel functions. Isolation forest is an unsupervised algorithm that classifies 
the dataset by isolating the outlier points (Liu et al, 2008). These four techniques are the unsupervised 
base detectors used here.

Supervised outlier detection techniques model both normal and abnormal data. K nearest 
neighbour classifier calculates the similarity between a data object and each training data instance. 
A test data object is classified under the same category of the training data instance to which it is 
most similar (Liao and Rao, 2002). Random Forest is an ensemble method that generates a number 
of random decision trees in parallel, final prediction on the outlier point is based on the majority 
votes obtained from individual decision trees (Angelo et al, 2018). In eXtreme gradient boosting 
(XGBoost), is a sequential ensemble technique. At the initial stage, each data object has an equal 
probability of being selected by a decision tree for further analysis. At the sequential stages new trees 
are added into the results of the previous decision trees which help to reduce the loss function and 
overall prediction error (Callens et al, 2020). AdaBoost is also a sequential classifier, in which the 
weights of the training instances are initialised with the same value while modifying these weights 
at subsequent iterations based on the training error rate. This will help the succeeding learners to 
deal accurately with those instances that were misclassified previously. Since these hard patterns will 
have higher probability of being an outlier, Adaboost is a good choice for outlier detection (Xing and 
Liu, 2019; Ferreira and Figueiredo, 2012). These four algorithms are selected to form base detectors 
from the category of supervised outlier detection algorithms.

Consensus approaches in the ensemble algorithm tells us how to combine various base detectors. 
Here also, after selecting the base algorithms, algorithms must be combined to get the final ensemble. 
Although some of the related works suggest that poor performing detectors need to be removed from 
the analysis (Rayana et al., 2016), distinguishing the efficient combination is a toughest job for a 
data scientist. Hence, all algorithm combinations are taken in the current analysis in order to find 
the highest performing combination by checking all the 64 combinations obtained by combining the 
same set of algorithms in the first and second stage of the ensemble.

Variance of outlier detection algorithms can be reduced by different instantiations of data or 
by randomized instantiations of detection algorithms (Aggarwal and Sathe, 2017). To achieve this 
characteristic in the proposed approach, dataset having varying percentages of local and global outliers 
are used in this analysis. Experiments are conducted on two different data distributions. First one 
is a Gaussian distribution and the second one is a random walk model. The Algorithm used in the 
workbench is explained in the next section.

Overall error of an algorithm is measured as the sum of squared bias value and variance value 
(Aggarwal and Sathe, 2017). In order to reduce bias of our algorithm design we eliminate outliers 
generated from the first stage of an outlier detection algorithm and select this refined data for the 
second stage. In the succeeding stage, the detector works on this refined data, this helps to build an 
ensemble model which is more robust to outliers.

After designing the ensemble maker in order to solve the second theoretical problem, output 
of the ensemble module will generate a report. This report module presents the type of normal and 
anomalous data and the best algorithm for each input combination. By comparing the application 
dataset with the workbench input, this methodology assists the data scientist in selecting an acceptable 
ensemble algorithm for their application, depending on the features of the data and anomalies of 
the given application. The researchers can use the final result to choose the appropriate algorithm 
combination for their application data. Thus, the proposed workbench design will be helpful to find 
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the best sequential ensemble outlier detection algorithm for a given application without performing 
all the experiments again and again.
Workbench Design Algorithm 
Begin 
Input: type of distribution: dist
Variables: data_size, outlier_percentage, outlier_type D: Initial 
dataset 
Output: evaluation metrics for different outlier combinations
For ‘i’ in number of classifiers 
Call Gen (dist):  
     Generate Gaussian (data_size, outlier_percentage, 
outlier_type) 
     Call Stage1 (D) 
Generate_Randomwalk (data_size, outlier_percentage, outlier_type) 
     Call Stage1 (D) 
Call Stage1 (D): 
clf_name: Call:RF, Knn, XGBoost,AdaBoost,IF,LOF,MCD,OCSVM 
O1: S1 outliers 
For ‘j’ in in number of classifiers 
Input: D1= D– O1  
Call S2 (D1): 
S2: Call: RF,Knn,XGBoost, AdaBoost,IF,LOF,MCD,OCSVM  
O2: Stage 2 outliers 
S2 Inliers = D1-O2 
Set   pred_outliers =D- S2 Inliers as ‘1’ 
pred_output=S2 Inliers+ pred_outliers 
target_output=getlabels_inputfile () 
Call Eval: confusion_mat (target Output, pred_output)
outlier_detect_rate, false_alarm_rate  
Output: S1 clf_name, S2 clf_name outlier_detect_rate
S1 clf_name, S2 clf_name false_alarm_rate 
End

Workbench Characterisation Results
Experiments were conducted with the following percentages of outliers, 3%, 5%, 7% and 8%. Selection 
of these outlier percentages is based on the fact that most of the real time applications contain less 
than 5% of outliers (Steinbuss and Bohm, 2021; Li et al. 2016; Emmott et al., 2013). Both local 
outlier points and global outlier points are included in the study. Since most of the applications have 
a high number of samples, sample size is taken as 10000. Most commonly used outlier detection 
algorithms and their combinations are taken for analysis. A brute force approach is used selecting the 
final combination (Zhao et al, 2015). Table 2-6 contains results of all the algorithms combinations 
as well as the performance of independent algorithms.

Table 2 and Table 3 give the outlier detection rate and false alarm rate of the independent base 
detectors in Gaussian distribution and Random walk model in the presence of local and global 
anomalies with varying anomaly frequencies. Table 4 and Table 5 give outlier detection rate and 
false alarm rate of different detector combinations in Gaussian distribution in the presence of global 
and local anomalies. Table 6 and Table 7 presents results obtained for random walk models in the 
presence of global and local outliers. Here, outlier detection rate is the number of outliers that are 
correctly classified by the detector combination under specified conditions of data and anomalies. 
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False alarm rate is the number of normal data objects that are misclassified as outliers. An algorithm 
with highest detection rate and low false alarm rate is the best detector under specific input conditions.

Summary of the experimental data used in the analysis is given in Table 8.
Although results given in Tables give detailed information about experiments, end users are 

interested only in the best combinations for a particular dataset. Hence, graphical representation of 
top results aids the user for picking out a best ensemble for a particular data and anomaly statistics.

First two graphs in Figure 3 present the comparative analysis of best performing independent 
detectors with the best performing two stage detectors in terms of outlier detection rate and false 
alarm rate in case of Gaussian distribution in the presence of global outliers. In the case of Gaussian 
distribution, two stage algorithms, MCD-MCD, IF-IF combination or IF-MCD combinations have 
shown higher efficiency when compared with highest performing independent detectors and other 

Table 2. Performance of independent outlier detection algorithms: Gaussian distribution

Algorithm Outlier detection rate False alarm rate

3% 5% 7% 8% 3% 5% 7% 8% 3% 5% 7% 8% 3% 5% 7% 8%

Global outlier Local outlier Global outlier Local outlier

Isolation 
Forest

0.555 0.566 0.643 0.640 0.02 0.08 0.168 0.18 0.0147 0.0242 0.032 0.0313 0.03 0.05 0.069 0.08

One Class 
SVM

1.0 1.0 1.0 1.0 0.88 0.89 0.87 0.85 0.484 0.474 0.462 0.463 0.48 0.47 0.47 0.46

Local 
Outlier 
Factor

0.334 0.383 0.273 0.258 0.017 0.09 0.11 0.16 0.0215 0.033 0.0596 0.058 0.03 0.05 0.07 0.09

Minimum 
Covariance 
Estimator

0.581 0.614 0.736 0.701 0.013 0.09 0.177 0.25 0.0139 0.021 0.0251 0.0269 0.03 0.05 0.06 0.08

Random 
Forest

.434 0.586 0.690 0.67 0.013 0.10 0.18 0.20 0.012 0.0245 0.024 0.021 0.002 0.008 0.02 0.03

XG Boost 0.492 0.540 0.717 0.664 0 0.06 0.11 0.17 0.011 0.0256 0.024 0.0203 0.003 0.007 0.01 0.02

Ada Boost 0.449 0.620 0.855 0.694 0 0.01 0.02 0.09 0.0077 0.0287 0.028 0.0225 0.001 0.001 0.002 0.005

K nearest 
neighbor 
classifier

0.405 0.551 0.611 0.634 0.041 0.212 0.31 0.31 0.014 0.0271 0.023 0.0235 0.02 0.04 0.05 0.06

Table 3. Performance of independent outlier detection algorithms: Random walk model

Algorithm Outlier detection rate False alarm rate

3% 5% 7% 8% 3% 5% 7% 8% 3% 5% 7% 8% 3% 5% 7% 8%

Global outlier Local outlier Global outlier Local outlier

Isolation 
Forest

0.032 0.044 0.076 0.104 0.05 0.05 0.06 0.08 0.031 0.044 0.082 0.088 0.03 0.04 0.06 0.08

One Class 
SVM

0.464 0.504 0.504 0.501 0.51 0.45 0.47 0.53 0.501 0.499 0.499 0.499 0.49 0.5 0.50 0.49

Local 
Outlier 
Factor

0.561 0.547 0.624 0.620 0.09 0.11 0.17 0.17 0.015 0.022 0.037 0.0421 0.029 0.04 0.06 0.07

Minimum 
Covariance 
Estimator

0.038 0.084 0.099 0.129 0.02 0.04 0.08 0.08 0.031 0.042 0.080 0.086 0.03 0.04 0.067 0.08

Random 
Forest

0.035 0.097 0.168 0.2 0.03 0.01 0.05 0.02 0.002 0.002 0.002 0.009 0.008 0.012 0.01 0.02

XG Boost 0.0175 0.083 0.054 0.127 0 0.01 0 0 0 0 0 0.0027 0.001 0.001 0.001 0.002

Ada Boost 0 0.013 0.006 0.024 0 0 0 0 0 0 0.0016 0.00108 0 0.0005 0.0005 0.002

K nearest 
neighbor 
classifier

0.140 0.222 0.265 0.333 0.05 0 0.11 0.07 0.008 0.0129 0.0141 0.021 0.025 0.04 0.05 0.06
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sequential ensembles. Although One Class SVM (OCSVM) shows higher detection rate, their false 
alarm rate is higher which makes it unsuitable for sensitive applications (Raman et al., 2017), hence 
we have not included OCSVM in the graphical presentation. Thus, MCD-MCD ensembles, IF-IF 
ensembles and IF - MCD combinations are the best performing algorithms in Gaussian distribution 
with global outliers.

Graph 3 and 4 of Figure 3 shows the performance of independent and sequential ensembles in 
random walk model with global anomalies embedded into it. Graph 3 presents outlier detection rate 

Table 4. Performance of Outlier Ensembles: Outlier detection rate: Gaussian distribution

First Stage Second Stage

Global outliers Local outliers

MCD LOF IF OC 
SVM

RF XG 
Boost

Ada 
Boost

Knn MCD LOF IF OC 
SVM

RF XG 
Boost

Ada 
Boost

Knn

Outlier Percentage: 3%

MCD 0.90 0.77 0.85 1.0 0.37 0.34 0.17 0.34 0.21 0.21 0.24 0.92 0.04 0.02 0 0.18

LOF 0.83 0.55 0.81 1.0 0.4 0.36 0.36 0.48 0.21 0.19 0.20 0.92 0.05 0.04 0 0.20

IF 0.9 0.70 0.87 1.0 0.34 0.39 0.23 0.42 0.22 0.21 0.20 0.92 0.10 0.10 0 0.21

OCSVM 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.95 0.93 0.94 1.0 0 0 0 0

RF 0.69 0.49 0.64 1.0 0.53 0.55 0.64 0.516 0.07 0.07 0.07 0.91 0.02 0.02 0.012 0.14

XGBoost 0.69 0.49 0.66 1.0 0.36 0.46 0.43 0.48 0.07 0.07 0.06 0.91 0.02 0.05 0 0.10

AdaBoost 0.68 0.49 0.65 1.0 0.39 0.42 0.42 0.40 0.05 0.05 0.05 0.91 0.04 0.04 0 0.21

Knn 0.7 0.49 0.62 1.0 0.47 0.53 0.50 0.43 0.08 0.09 0.09 0.91 0.01 0.02 0.01 0.18

Outlier Percentage: 5%

MCD 0.97 0.83 0.94 1.0 0.48 0.4 0.45 0.37 0.29 0.25 0.28 0.90 0.06 0.09 0.009 0.18

LOF 0.85 0.50 0.80 1.0 0.58 0.56 0.58 0.57 0.27 0.24 0.25 0.93 0.03 0.05 0 0.20

IF 0.97 0.79 0.97 1.0 0.36 0.34 0.26 0.42 0.29 0.24 0.26 0.92 0.11 0.04 0.02 0.28

OCSVM 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.95 0.94 0.94 1.0 0 0 0 0.1

RF 0.73 0.44 0.67 1.0 0.57 0.55 0.56 0.47 0.09 0.07 0.07 0.91 0.06 0.05 0.03 0.21

XGBoost 0.72 0.42 0.68 1.0 0.58 0.6 0.63 0.5 0.10 0.09 0.09 0.91 0.10 0.07 0.002 0.18

AdaBoost 0.73 0.44 0.70 1.0 0.62 0.61 0.57 0.61 0.08 0.06 0.06 0.90 0.05 0.07 0.06 0.21

Knn 0.73 0.44 0.64 1.0 0.58 0.60 0.62 0.55 0.12 0.11 0.10 0.91 0.11 0.07 0.03 0.21

Outlier Percentage: 7%

MCD 1.0 0.88 0.99 1.0 0.61 0.52 0.61 0.44 0.38 0.33 0.36 0.90 0.10 0.08 0.009 0.23

LOF 0.87 0.40 0.80 1.0 0.73 0.74 0.86 0.62 0.34 0.26 0.33 0.92 0.08 0.06 0 0.24

IF 1.0 0.78 0.97 1.0 0.60 0.50 0.43 0.64 0.37 0.30 0.36 0.87 0.11 0.08 0.008 0.18

OCSVM 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.94 0.90 0.95 1.0 0 0 0 0.11

RF 0.84 0.47 0.77 1.0 0.78 0.73 0.84 0.67 0.16 0.15 0.13 0.86 0.09 0.07 0.01 0.20

XGBoost 0.84 0.45 0.77 1.0 0.7 0.76 0.77 0.61 0.15 0.13 0.14 0.86 0.07 0.07 0.007 0.16

AdaBoost 0.85 0.48 0.78 1.0 0.8 0.8 0.93 0.61 0.14 0.10 0.115 0.85 0.17 0.12 0.007 0.27

Knn 0.82 0.76 0.73 1.0 0.70 0.72 0.76 0.57 0.18 0.16 0.14 0.87 0.04 0.08 0.02 0.23

Outlier Percentage: 8%

MCD 1.0 0.87 0.99 1.0 0.47 0.52 0.45 0.52 0.49 0.40 0.41 0.92 0.17 0.14 0.01 0.25

LOF 0.88 0.39 0.81 1.0 0.77 0.76 0.91 0.71 0.43 0.30 0.44 0.91 0.12 0.13 0.02 0.24

IF 1.0 0.75 0.99 1.0 0.81 0.75 0.77 0.62 0.47 0.36 0.45 0.92 0.21 0.18 0.008 0.25

OCSVM 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.96 0.90 0.95 1.0 0 0.11 0 0.17

RF 0.88 0.43 0.78 1.0 0.75 0.79 0.85 0.70 0.22 0.18 0.19 0.88 0.12 0.13 0.04 0.25

XGBoost 0.88 0.42 0.81 1.0 0.79 0.78 0.88 0.73 0.21 0.18 0.16 0.88 0.13 0.12 0.03 0.30

AdaBoost 0.88 0.44 0.82 1.0 0.74 0.76 0.81 0.63 0.19 0.14 0.18 0.88 0.16 0.14 0.03 0.28

Knn 0.87 0.39 0.76 1.0 0.83 0.81 0.89 0.67 0.24 0.19 0.23 0.89 0.16 0.13 0.02 0.21
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and Graph 4 depicts the false alarm rate in different combinations. In a random walk model, combining 
LOF algorithm with other algorithms will give maximum performance.

Figure 4 gives a performance comparison of the best single stage algorithm with ensemble 
algorithms in the presence of local outliers. Graph 1 and Graph 2 of Figure 4 aids the user to identify the 
best performing algorithm in Gaussian distribution. Graph 3 and Graph 4 presents the best algorithms 
in the random walk model. In Gaussian distribution, MCD-MCD, IF-MCD and IF-IF combinations 
have higher detection rate. Although, single stage OCSVM gives higher detection in a random walk 

Table 5. Performance of Outlier Ensembles: False alarm rate: Gaussian distribution

First Stage Second Stage Second Stage

Global Outlier Local Outlier

MCD LOF IF OCSVM RF XG 
Boost

Ada 
Boost

Knn MCD LOF IF OCSVM RF XG 
Boost

Ada 
Boost

Knn

Outlier Percentage: 3%

MCD 0.04 0.05 0.04 0.50 0.007 0.007 0.004 0.01 0.07 0.07 0.07 0.50 0.008 0.008 0.0005 0.02

LOF 0.05 0.06 0.05 0.50 0.01 0.01 0.007 0.01 0.07 0.07 0.07 0.50 0.007 0.007 0.007 0.03

IF 0.04 0.05 0.04 0.50 0.009 0.01 0.007 0.01 0.07 0.07 0.07 0.50 0.004 0.002 0.006 0.03

OCSVM 0.50 0.50 0.50 0.74 0.486 0.486 0.486 0.486 0.50 0.50 0.50 0.74 0 0.001 0.002 0.004

RF 0.02 0.03 0.02 0.48 0.013 0.01 0.02 0.015 0.04 0.04 0.04 0.48 0.007 0.007 0.0005 0.02

XGBoost 0.02 0.03 0.02 0.48 0.01 0.01 0.003 0.01 0.04 0.04 0.04 0.48 0.009 0.007 0.001 0.03

AdaBoost 0.02 0.03 0.02 0.48 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.48 0.007 0.007 0.0005 0.03

Knn 0.02 0.03 0.02 0.48 0.01 0.01 0.01 0.01 0.04 0.04 0.04 0.48 0.009 0.004 0.0015 0.02

Outlier Percentage: 5%

MCD 0.06 0.06 0.06 0.50 0.008 0.006 0.009 0.009 0.08 0.09 0.08 0.50 0.007 0.01 0.003 0.04

LOF 0.06 0.08 0.06 0.50 0.01 0.01 0.01 0.01 0.08 0.09 0.09 0.50 0.01 0.01 0.002 0.04

IF 0.06 0.06 0.06 0.50 0.009 0.008 0.007 0.007 0.08 0.09 0.08 0.50 0.01 0.005 0.002 0.03

OCSVM 0.50 0.50 0.50 0.74 0.486 0.486 0.486 0.486 0.50 0.50 0.50 0.73 0.001 0.001 0.03 0.005

RF 0.02 0.04 0.03 0.47 0.01 0.01 0.01 0.01 0.05 0.05 0.05 0.48 0.01 0.009 0.003 0.04

XGBoost 0.02 0.04 0.02 0.47 0.01 0.01 0.02 0.01 0.05 0.05 0.05 0.48 0.01 0.01 0 0.04

AdaBoost 0.02 0.04 0.02 0.47 0.02 0.02 0.01 0.02 0.04 0.05 0.05 0.47 0.006 0.01 0.01 0.04

Knn 0.02 0.04 0.03 0.47 0.01 0.01 0.01 0.01 0.05 0.05 0.05 0.48 0.03 0.007 0.004 0.03

Outlier Percentage: 7%

MCD 0.08 0.09 0.08 0.50 0.008 0.009 0.009 0.008 0.12 0.12 0.12 0.50 0.02 0.02 0.002 0.05

LOF 0.09 0.13 0.09 0.50 0.02 0.02 0.02 0.02 0.12 0.13 0.12 0.50 0.02 0.01 0.001 0.05

IF 0.08 0.10 0.08 0.50 0.01 0.01 0.01 0.03 0.12 0.13 0.12 0.47 0.02 0.008 0.0005 0.05

OCSVM 0.50 0.48 0.50 0.48 0.48 0.48 0.48 0.48 0.50 0.50 0.50 0.73 0.002 0.005 0.005 0.01

RF 0.03 0.06 0.04 0.46 0.02 0.02 0.03 0.02 0.07 0.07 0.07 0.47 0.01 0.01 0.002 0.04

XGBoost 0.03 0.06 0.04 0.46 0.01 0.01 0.02 0.01 0.07 0.07 0.07 0.47 0.02 0.02 0.005 0.06

AdaBoost 0.03 0.06 0.04 0.47 0.02 0.02 0.03 0.03 0.06 0.07 0.07 0.47 0.02 0.003 0.007 0.06

Knn 0.03 0.06 0.04 0.46 0.02 0.02 0.02 0.01 0.08 0.08 0.08 0.48 0.02 0.01 0.004 0.05

Outlier Percentage: 8%

MCD 0.10 0.11 0.10 0.50 0.004 0.005 0.003 0.005 0.14 0.14 0.14 0.51 0.02 0.01 0 0.05

LOF 0.11 0.16 0.12 0.50 0.03 0.03 0.03 0.02 0.14 0.15 0.14 0.51 0.02 0.02 0.002 0.05

IF 0.10 0.12 0.10 0.50 0.01 0.01 0.01 0.01 0.14 0.15 0.14 0.51 0.02 0.02 0.002 0.06

OCSVM 0.50 0.48 0.50 0.48 0.48 0.48 0.48 0.48 0.50 0.51 0.50 0.72 0.002 0.002 0.002 0.008

RF 0.04 0.08 0.05 0.46 0.02 0.02 0.02 0.02 0.08 0.08 0.08 0.47 0.02 0.02 0.005 0.06

XGBoost 0.04 0.08 0.04 0.46 0.02 0.02 0.02 0.02 0.08 0.08 0.08 0.46 0.02 0.01 0.003 0.05

AdaBoost 0.04 0.08 0.02 0.46 0.02 0.02 0.02 0.02 0.07 0.08 0.08 0.46 0.02 0.02 0.002 0.06

Knn 0.04 0.08 0.05 0.46 0.02 0.02 0.03 0.02 0.09 0.09 0.09 0.47 0.03 0.02 0.003 0.04
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model it has a high false alarm rate. Hence, a data scientist can select LOF combinations for their 
risky applications in Gaussian distribution in the presence of local anomalies.

In the random walk model, single stage OCSVM outperforms other detector combinations with the 
penalty of high false alarm rate. However, combinations of LOF also give reasonable performance in 
this case. Users can select either OCSVM or LOF combinations based on sensitivity of applications.

Table 6. Performance of Outlier Ensembles: Outlier detection rate: Random walk model

First 
Stage

Second Stage Second Stage

Global outliers Local Outliers

MCD LOF IF OCSVM RF XG 
Boost

Ada 
Boost

Knn MCD LOF IF OCSVM RF XG 
Boost

Ada 
Boost

Knn

Outlier Percentage: 3%

MCD 0.06 0.53 0.08 0.44 0.03 0.05 0.01 0.11 0.05 0.27 0.07 0.52 0.01 0.01 0.01 0.01

LOF 0.53 0.55 0.53 0.74 0 0 0 0.06 0.25 0.26 0.28 0.64 0 0 0 0.02

IF 0.08 0.53 0.08 0.43 0.03 0.01 0 0.24 0.07 0.27 0.06 0.52 0 0 0 0.02

OCSVM 0.42 0.72 0.43 0.69 0.02 0.05 0 0.21 0.51 0.63 0.50 0.72 0 0 0 0

RF 0.04 0.52 0.05 0.42 0.08 0.05 0 0.15 0.03 0.24 0.05 0.50 0 0 0 0.02

XGBoost 0.04 0.50 0.05 0.42 0.07 0.01 0 0.20 0.03 0.24 0.05 0.50 0 0 0 0.01

AdaBoost 0.03 0.51 0.04 0.42 0.08 0 0 0.1 0.03 0.25 0.04 0.50 0 0 0 0

Knn 0.07 0.52 0.08 0.44 0.06 0.03 0 0.07 0.03 0.25 0.05 0.50 0 0 0.019 0

Outlier Percentage: 5%

MCD 0.12 0.56 0.15 0.53 0.17 0.12 0.04 0.13 0.09 0.33 0.13 0.54 0.06 0.03 0.02 0.11

LOF 0.57 0.60 0.58 0.76 0 0 0 0.04 0.34 0.33 0.35 0.67 0 0 0 0.05

IF 0.13 0.57 0.19 0.54 0.23 0.14 0.03 0.22 0.13 0.36 0.15 0.55 0.01 0 0 0.08

OCSVM 0.53 0.75 0.57 0.72 0.1 0.08 0.02 0.16 0.53 0.66 0.55 0.74 0 0 0 0.08

RF 0.07 0.55 0.10 0.54 0.10 0.06 0.04 0.18 0.05 0.32 0.08 0.52 0.05 0.03 0.02 0.07

XGBoost 0.06 0.55 0.10 0.53 0.17 0.10 0.05 0.16 0.05 0.31 0.09 0.52 0.03 0.01 0.01 0.10

AdaBoost 0.05 0.55 0.07 0.53 0.14 0.07 0.02 0.19 0.05 0.31 0.07 0.52 0.02 0.01 0.009 0.09

Knn 0.09 0.55 0.10 0.55 0.17 0.09 0.03 0.22 0.06 0.32 0.09 0.52 0.07 0.03 0.02 0.07

Outlier Percentage: 7%

MCD 0.27 0.64 0.38 0.60 0.28 0.28 0.13 0.23 0.22 0.41 0.25 0.53 0.08 0.04 0.02 0.20

LOF 0.63 0.67 0.63 0.82 0.01 0 0 0.03 0.42 0.43 0.42 0.68 0.02 0 0 0.05

IF 0.29 0.64 0.38 0.62 0.18 0.15 0.04 0.18 0.22 0.42 0.24 0.55 0.07 0.03 0.01 0.11

OCSVM 0.65 0.82 0.70 0.76 0.29 0.35 0.21 0.29 0.58 0.67 0.60 0.74 0.04 0.04 0.03 0.18

RF 0.15 0.61 0.23 0.57 0.23 0.26 0.12 0.26 0.12 0.37 0.15 0.51 0.04 0.03 0.01 0.15

XGBoost 0.15 0.61 0.23 0.57 0.22 0.23 0.11 0.23 0.11 0.37 0.16 0.51 0.09 0.04 0.03 0.12

AdaBoost 0.13 0.61 0.22 0.56 0.27 0.26 0.14 0.26 0.10 0.37 0.15 0.50 0.12 0.10 0.05 0.16

Knn 0.17 0.62 0.25 0.58 0.27 0.26 0.09 0.22 0.13 0.38 0.16 0.52 0.05 0.02 0.01 0.11

Outlier Percentage: 8%

MCD 0.18 0.66 0.25 0.57 0.24 0.21 0.11 0.35 0.15 0.48 0.15 0.54 0.07 0.02 0 0.16

LOF 0.66 0.68 0.66 0.81 0 0 0 0.07 0.48 0.46 0.47 0.73 0 0 0.01 0.06

IF 0.21 0.66 0.30 0.57 0.26 0.21 0.08 0.25 0.19 0.46 0.18 0.54 0.07 0.06 0 0.16

OCSVM 0.56 0.81 0.63 0.75 0.23 0.26 0 0.41 0.57 0.72 0.55 0.75 0.11 0.04 0 0.21

RF 0.14 0.64 0.18 0.53 0.21 0.15 0.05 0.30 0.11 0.43 0.11 0.52 0.07 0.006 0 0.13

XGBoost 0.13 0.63 0.18 0.52 0.24 0.17 0.08 0.34 0.09 0.43 0.09 0.51 0.06 0.02 0 0.16

AdaBoost 0.115 0.63 0.16 0.51 0.24 0.19 0.06 0.29 0.09 0.43 0.09 0.51 0.08 0.03 0.006 0.18

Knn 0.15 0.64 0.23 0.54 0.22 0.17 0.09 0.25 0.13 0.44 0.12 0.54 0.10 0.02 0.01 0.15
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Table 7. Performance of Outlier Ensembles: False alarm rate: Random walk model

First 
Stage

Second Stage

Global Outliers Local Outliers

MCD LOF IF OCSVM RF XG 
Boost

Ada 
Boost

Knn MCD LOF IF OCSVM RF XG 
Boost

Ada 
Boost

Knn

Outlier Percentage: 3%

MCD 0.06 0.04 0.06 0.51 0.001 0 0.005 0.006 0.05 0.04 0.05 0.51 0.003 0.0005 0 0.01

LOF 0.04 0.04 0.04 0.50 0.0005 0 0.0005 0.005 0.04 0.04 0.04 0.64 0.003 0 0.005 0.01

IF 0.06 0.04 0.06 0.51 0.0005 0 0 0.003 0.05 0.04 0.05 0.51 0.001 0 0 0.012

OCSVM 0.51 0.50 0.51 0.75 0.003 0.002 0 0.007 0.51 0.50 0.51 0.75 0.001 0 0 0.01

RF 0.03 0.01 0.03 0.50 0.003 0 0 0.01 0.02 0.02 0.02 0.50 0.002 0 0 0.01

XGBoost 0.03 0.01 0.03 0.50 0.002 0.001 0 0.008 0.02 0.02 0.02 0.49 0.002 0 0 0.01

AdaBoost 0.03 0.01 0.03 0.50 0.001 0.001 0.0005 0.01 0.02 0.02 0.02 0.49 0.001 0 0 0.01

Knn 0.03 0.01 0.03 0.50 0.001 0 0 0.003 0.02 0.02 0.02 0.50 0.003 0 0 0.01

Outlier Percentage: 5%

MCD 0.10 0.07 0.09 0.52 0.002 0.001 0.001 0.009 0.10 0.08 0.09 0.52 0.007 0.001 0 0.02

LOF 0.07 0.07 0.07 0.51 0.003 0 0.0005 0.008 0.08 0.08 0.08 0.51 0.006 0 0 0.02

IF 0.10 0.07 0.09 0.52 0.001 0 0 0.01 0.09 0.08 0.09 0.52 0.007 0.002 0 0.02

OCSVM 0.52 0.51 0.52 0.75 0.004 0.004 0.001 0.008 0.52 0.51 0.52 0.75 0.01 0.005 0 0.01

RF 0.05 0.02 0.05 0.49 0.0005 0 0 0.01 0.05 0.03 0.05 0.49 0.004 0.001 0.005 0.01

XGBoost 0.05 0.02 0.05 0.49 0.004 0.0005 0.0005 0.013 0.05 0.03 0.04 0.49 0.006 0.001 0 0.02

AdaBoost 0.05 0.02 0.05 0.49 0.002 0.0005 0.0005 0.01 0.05 0.03 0.05 0.49 0.005 0.001 0.0005 0.02

Knn 0.05 0.03 0.05 0.49 0.002 0 0.001 0.009 0.05 0.04 0.05 0.50 0.006 0.001 0.0005 0.01

Outlier Percentage: 7%

MCD 0.14 0.11 0.13 0.53 0.01 0.001 0.0005 0.01 0.14 0.13 0.14 0.53 0.01 0.002 0.0005 0.02

LOF 0.11 0.11 0.11 0.51 0.004 0.0005 0.0005 0.01 0.13 0.13 0.13 0.52 0.01 0.001 0.002 0.03

IF 0.14 0.11 0.13 0.53 0.01 0.001 0.0005 0.01 0.14 0.13 0.14 0.53 0.02 0.002 0 0.03

OCSVM 0.53 0.51 0.52 0.74 0.01 0.003 0.003 0.008 0.53 0.52 0.53 0.74 0.01 0.005 0.002 0.02

RF 0.08 0.04 0.07 0.49 0.01 0.002 0 0.01 0.08 0.06 0.08 0.50 0.02 0.004 0 0.03

XGBoost 0.07 0.04 0.07 0.49 0.009 0.001 0.0005 0.01 0.08 0.05 0.07 0.50 0.02 0.003 0 0.03

AdaBoost 0.07 0.03 0.07 0.49 0.004 0.0005 0.0005 0.01 0.07 0.05 0.07 0.49 0.02 0.002 0 0.02

Knn 0.08 0.04 0.07 0.49 0.007 0.003 0.0005 0.01 0.08 0.06 0.08 0.50 0.01 0.001 0 0.02

Outlier Percentage: 8%

MCD 0.16 0.12 0.16 0.54 0.007 0.002 0.0005 0.01 0.17 0.14 0.17 0.54 0.01 0.001 0.001 0.03

LOF 0.12 0.12 0.12 0.52 0.006 0 0 0.01 0.14 0.14 0.14 0.52 0.01 0.005 0.001 0.02

IF 0.16 0.12 0.15 0.54 0.01 0.005 0 0.02 0.16 0.14 0.16 0.54 0.01 0.002 0.001 0.03

OCSVM 0.54 0.52 0.53 0.74 0.008 0.003 0.05 0.02 0.54 0.52 0.54 0.74 0.007 0.003 0 0.03

RF 0.08 0.04 0.08 0.49 0.009 0.001 0 0.09 0.08 0.06 0.08 0.49 0.01 0.002 0 0.03

XGBoost 0.08 0.04 0.08 0.49 0.007 0.002 0.001 0.01 0.08 0.05 0.08 0.49 0.009 0.002 0 0.03

AdaBoost 0.08 0.04 0.08 0.49 0.003 0 0.0005 0.015 0.08 0.05 0.08 0.49 0.01 0.001 0 0.03

Knn 0.09 0.04 0.08 0.50 0.004 0 0 0.019 0.09 0.06 0.09 0.50 0.01 0.002 0 0.02

Table 8. Summary of Experimental data used in the analysis

Type of Regular Dataset Type of outlier Frequency of outliers

Gaussian Distribution Local outlier 3%,5%,7%,8%

Gaussian Distribution Global outlier 3%,5%,7%,8%

Random walk model Local outlier 3%,5%,7%,8%

Random walk model Global outlier 3%,5%,7%,8%
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CASE STUDy

In this section two case studies are conducted. First part discusses study on a realistic dataset and the 
second part explains real time case study.

Case Study Based on Realistic Data
The proposed workbench is used to identify the best algorithm combination for a dataset that follows 
Gaussian distribution or random walk model with specific anomaly statistics. To demonstrate this 
methodology on a realistic dataset, a case study is conducted using yahoo anomaly benchmark data.

Flow chart for getting recommendation on which sequential outlier ensemble is better for the 
given application is given in Figure 5 This flowchart aids the user to select the best sequential outlier 
ensemble for their specific application. Because the workbench is set up to operate with two different 
sorts of regular instances, two case studies with the same data distribution are used in this paper.

Figure 3. Comparison of independent and sequential outlier ensembles for different datasets in the presence of global outliers
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Gaussian Distribution
A data scientist must identify the data and anomaly statistics once it has been retrieved from the 
application database. The type of data distribution is determined using a Chi square test. In this 
case, the data follows a Gaussian distribution. It is found that the current dataset has 0.55% of global 
outliers which lies away from 3*Std. Dev. Performance of the sequential outlier ensembles along 
with its characteristics is given in Table 9.

The proposed work bench also recommends two stage algorithms MCD-MCD, IF-IF combination 
or IF-MCD combination for a dataset that follows Gaussian distribution. Case analysis assures that a 
data scientist can use the output from the workbench’s report module if the user’s individual application 
follows a Gaussian distribution.

Random Walk Model
In order to validate the accuracy of workbench design for a dataset which follows a random walk 
model, another set of data is taken from Yahoo anomaly benchmarks. Augmented Dickey-Fuller test 
is used to confirm that the dataset follows a random walk model. The selected data contains 0.7% of 
global outliers which lies at a distance higher than 3*Std.dev. Table 10 presents the best algorithms 
for the current case study using random walk model.

Figure 4. Comparison of independent and sequential outlier ensembles for different datasets in the presence of local outliers
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Workbench experiments claim that LOF combinations give better detection rate than independent 
algorithms or other outlier ensembles. In the case analysis, along with LOF combinations IF 
combinations and XGBoost-MCD combinations also give better results. This minor discrepancy 
could be related to the fact that these global anomalies are more easily detectable due to their greater 
distance from the 3 * Std.dev.

Thus, the workbench definitely helps a data scientist to select the best performing algorithm for 
a particular distribution. These two case studies act as a guideline to select a particular sequential 
outlier ensemble algorithm for a given application.

Case Study Based on Real-Time Data
To evaluate the proposed methodology, an experimental study was conducted by using the real time 
dataset obtained from Advanced Centre for Atmospheric Radar Research (ACARR) located at Cochin 

Figure 5. Flow chart for getting recommendation on sequential ensemble algorithm for the given application

Table 9. Top performing algorithms in yahoo dataset: Gaussian distribution

Rank Name of the algorithm Evaluation metrics

1 IF-MCD, IF-IF,MCD-MCD,MCD-IF Outlier detection rate:1.0 
False alarm rate:0.0006

Table 10. Top performing algorithms in yahoo dataset: Random walk model

Rank Name of the algorithm Evaluation metrics

1 MCD-LOF, LOF-MCD, LOF-IF, IF-LOF,RF-
IF, Knn-IF, XGBoost-IF, XGBoost-MCD

Outlier detection rate:1.0 
False alarm rate:0.0001



International Journal of Information System Modeling and Design
Volume 13 • Issue 1

17

University of Science and Technology, Kerala, India. ACARR dedicated for studies in measurements 
pertaining to atmospheric variations. The data obtained from the centre contains time series data for 
different periods of the year. Here, event rain is considered as outlier. Pre-processing of the dataset is 
done by selecting only those variables that affect the occurrence of the event rain. In order to construct 
an outlier detection model, the study used the variables temperature, humidity, wind speed, pressure, and 
radiation. Rainfall is measured in mili meter in the ACARR centre and if rainfall value is greater than 
0 then those observations are categorised under outlier class and the rest of the data points are labelled 
as inliers. Current study tries to find out occurrence of rain in the month of February in the year 2021 
and in winter season. Winter season contains data analysis for three months December 2020, January 
2021 and February 2021. In the month of February 2021, the event rain happened at a rate of 2.3% and 
during the winter season, rain events took place at a rate of 3.08%. Hence, analysis is conducted by 
considering percentage of anomalies as 2.3% and 3.08%. Inter seasonal analysis is not considered in the 
current analysis as those data may contain seasonality factor which may affect the accuracy of the model.

Analysis is conducted by using both independent and sequential algorithms and performance of 
both types of algorithms is presented visually using Figure 6 and Figure 7. Current analysis shows 
the performance of both independent and sequential ensemble-based outlier detection algorithms in 
the rain event detection for a single month and during the winter season.

Based on the proposed workbench design, if the type of the application data is known, report 
obtained from the work bench will suggest the best algorithm for the given application. The given 
dataset follows a random walk model. From figures 6 and 7 it is clear that sequential outlier ensembles 
have a greater detection rate and a reduced false alarm rate in the given real time data. Based on the 
workbench design and if the dataset follows random walk model, combinations of LOF and IF gives 

Figure 6. Performance of single stage and sequential ensemble algorithms in detecting event rain: Single month
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best performance. While performing analysis on a single month data, sequential combinations of 
LOF algorithms expressed higher detection rate with lower false alarm rates. Analysis on the winter 
season also reveals that LOF or IF algorithms combined with supervised algorithms perform better 
than their independent counterparts. This proves the validity of the proposed algorithm.

DISCUSSION

Carcillo et al. (2019) proposed an outlier ensemble approach that combines supervised and unsupervised 
learning techniques to perform credit card fraud detection. Inspired from this approach and using 
the theoretical framework of sequential outlier ensemble proposed by Agarwal and Sathe (2017), we 
created a workbench that combines supervised and unsupervised outlier detection techniques whose 
efficiency is based on the underlying data and anomaly statistics.

Rules established by pioneers (Steinbuss and Böhm, 2020; Emmott et al., 2015) have been 
successfully used by us for the generation of dataset. Two datasets that follow Gaussian distribution 
and random walk model with various types and percentages of anomalies are used in this study. Using 
this workbench, the performance characteristics of the ensemble with collected data type with collected 
outliers have been tested and ensemble performance is characterised. Our methodology helps users 
to select an appropriate ensemble based on the data and anomaly statistics involved in the application 
dataset. This can be done by comparing the input of the workbench experiments with selected 
application data. In the current analysis, certain sequential combinations have better performance in 
a particular distribution than the rest. For example, MCD-MCD, IF-MCD,IF-IF combinations show 
better performance when the underlying distribution is Gaussian and LOF combinations produce 

Figure 7. Performance of single stage and sequential ensemble algorithms in detecting event rain: Winter Season
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better results if the data follows a random walk model. Thus, output of the workbench helps the data 
scientist to select a sequential outlier ensemble algorithm for their specific application. Users of the 
workbench does not need to perform any further analysis for the selection of a specific outlier ensemble 
algorithm for their application, instead they can directly use the results of workbench.

In order to demonstrate the recommended approach for a given application, a case analysis is 
conducted which gives a correct guideline for users on how to use the workbench results for their 
specific application. A flow chart describing the various steps to be followed is given in figure 5. By 
using this flowchart two studies are conducted in realistic data and two studies are conducted in a real 
time dataset. First example illustrates working on data that follows Gaussian distribution. In this case, 
the same outlier ensemble algorithms as the workbench recommendations show higher efficiencies. 
Second study ensures that case analysis for random walk models also gives similar results as obtained 
from workbench. These two, case analysis aids the user to utilize the proposed system for a specific 
application. These studies successfully demonstrated the use of recommended workbench design with 
Yahoo dataset which is a realistic dataset. Second case study is conducted on a real time dataset. In 
this case, data follows a random walk model. Similar to realistic data, in real time dataset also, case 
study analysis gives the same results as those obtained from the workbench recommendation report.

This research work agrees with Carcillo et al. (2019) yet, application of this research more 
general. Hence, this study acts as a recommendation system which helps a user to select a suitable 
outlier ensemble algorithm for their application irrespective of the application domain.

CONCLUSION

Outlier ensembles are developed by researchers for specific applications such as fraud detection which 
intend to improve the efficiency of the anomaly detection process. However, a general framework 
which is applicable over multiple domains is not available. Hence, this research work presents a 
workbench design for identifying better ensemble-based anomaly detection algorithms for a given 
application. Sequential outlier ensemble algorithm is utilised in this research work for achieving this 
objective. Results obtained from this study can be used in multiple applications by using the knowledge 
of underlying data and anomalies. The recommendation has been successfully demonstrated using 
one realistic dataset and one real time dataset. The proposed system makes a significant contribution 
in the area of ensemble-based outlier detection by creating a generalised workbench design which 
can be used in multiple application domains. Results obtained from the report in the workbench act 
as guideline for the data scientist to select the best ensemble algorithm for their application without 
conducting any further analysis. Contributions explained in Table 1 makes the proposed system 
outstanding from the set of existing anomaly detection algorithms.

Workbench designed in this analysis employs two data types for regular instances, Gaussian 
distribution and random walk model. This can be extended to more data types which help the user 
to apply this framework for more applications. Behaviour of anomaly detection algorithms in the 
presence of 2-7% of outliers is analysed in this paper. However, more analysis can be conducted using 
different anomaly percentages to get a better understanding of algorithms at various anomaly statistics.
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