
DOI: 10.4018/IJISMD.313431

International Journal of Information System Modeling and Design
Volume 13 • Issue 7 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Altering OWL Ontologies for 
Efficient Knowledge Organization 
on the Semantic Web
Abhisek Sharma, National Institute of Technology Kurukshetra, India*

Sarika Jain, National Institute of Technology Kurukshetra, India

 https://orcid.org/0000-0002-7432-8506

ABSTRACT

The increase in the number of users on the internet and the advancement in information technology 
have spiked the generation of information to an unprecedented level making information retrieval and 
web mining a difficult task. Semantic technologies can help improve the results of web mining by 
providing constructs that can help represent the web documents in a machine-understandable manner. 
To keep providing semantically rich services while keeping this surge in the amount of information 
in mind, we have to work towards ways to make the process of information management efficient 
while retaining its effectiveness. One of the ways to accomplish the above task is to improvise the 
knowledge organization in a manner that every piece of information is in its designated place. This 
paper discusses and addresses the problems with current knowledge organization methodologies 
and presents an algorithm to alter the available OWL ontologies. The authors were able to get a 
noticeable improvement in the amount of storage used by the ontology with fewer axioms without 
losing any information.

Keywords
Knowledge Base, Knowledge Organization, Ontology, OWL, Semantic Web

MOTIVATION AND INTRODUCTION

We have a large variety of concepts in this world (both on the web and in enterprise applications) 
with huge volume of it, which poses problems when it comes to processing of that data because 
we need to keep the processing time as low as possible to provide almost any service efficiently. 
Moreover, most of this data is unstructured in nature. With this exponential growth of data that is 
being generated on a daily basis, the existing data processing tools faces issues in accommodating and 
processing this huge data hampering the capabilities of the tools in providing services effectively and 
efficiently. Though being very rich in information, the current web mining technologies are unable to 
fetch meaningful information that makes sense in right context. This is because the web documents 
are largely unstructured and unorganized. The challenge remains to efficiently and effectively 

https://orcid.org/0000-0002-7432-8506


International Journal of Information System Modeling and Design
Volume 13 • Issue 7

2

determining and digging up the machine understandable information. In order to smooth web mining 
(automatically discovering knowledge from the web documents), we require automated schema and 
knowledge representation formalisms that can formalize the description of domain knowledge at a 
conceptual level (Patel et. al., 2018). We need such a representation that focuses on efficient knowledge 
management while retaining the benefits offered by current semantic technologies.

Traditionally knowledge in represented using Web Ontology Language (OWL) which is a family 
of languages for knowledge representation, for the construction of ontologies. Ontologies are a 
formal representation of taxonomies and their properties. Ontologies allow machines to understand 
and process the information in a semantically rich manner which allows the machines to answer the 
queries while focusing on the semantics of the information and query because simply keyword search 
is not enough considering the ambiguity in the meaning of the words (Jain et. al., 2008) (Shandilya, 
2009). The purpose of insisting on the semantics of the information is to make the systems able to 
provide appropriate information related to the specific context. The knowledge provided by ontology 
is extremely useful in defining the structure and scope for mining Web Content.

Previously there have been many proposals on how representation can be done, some of them 
are semantic network, production rule, logic and frame. All of these representation methods provide 
many functionalities from being semantically rich to capabilities to infer new information from the 
existing one, but still there is scope of improvement as all of these representation don’t focus on 
redundant nature of the data that is present all around us, this causes many problems like inefficiencies 
in the ontology mapping process as we will be iterating over many redundant information, it is also 
making the ontology heavy which will be problematic for knowledge management systems when 
providing the services, etc.

Here in this paper we propose a knowledge representation technique that keeps check on different 
types of properties, helping in retaining all the necessary information without redundancy. When 
a representation format keeps redundancy into check then we can attain many other benefits, such 
as the size of the ontologies will be reduced which will further result in better management of the 
knowledge. We also discuss about ways through which any knowledge base/ontology can be brought 
to this representation format.

THE PROBLEM

Knowledge Organization Systems (KOS) (Zeng, 2008) are being seen as semantic tools used in 
plurality of contexts by diverse communities. The typology and spectra of KOS have been studied 
and reviewed in literature (Zeng et. al., 2019) with the most common briefed here:

•	 Glossaries are the domain specific list of concepts and their definitions, for example Dublin Core.
•	 Folksonomies are the collaborative tagging systems with informal semantic relations, for example 

Del.icio.us and Flickr.
•	 Controlled Vocabularies are glossaries ensuring consistency and ambiguity.
•	 Taxonomies have strict hierarchical categorization, for example the computer file system and a 

catalogue of product categories.
•	 Thesauri are restricted to lexical relation, for example WordNet (Miller et. al., 1990).
•	 Conceptual Data Models also exist for designing information systems and DBMSs, for example 

EER and UML.
•	 Ontologies consist of classes, relationships, data, data properties, axioms, and object properties.

All the KOS listed above differ in their semantic strength, degree of axiomatization, and structural 
richness. The term ontology has been borrowed from philosophy and is a specific form of KOS. In 
Artificial Intelligence, ontology is used as a generic term to designate any type of KOS. In addition 



International Journal of Information System Modeling and Design
Volume 13 • Issue 7

3

to functioning as conceptual vocabularies, formal ontologies also provide properties and instances. 
Ontologies make the data machine-understandable and interpretable, hence enabling the interaction 
between users and systems. They facilitate sharing of information among users and systems by 
handling issues like heterogeneity and data integration in a number of domains.

A large palette of languages and data models exist for representing, sharing and linking these KOS, 
viz. the Simple Knowledge Organization System (SKOS) (Miles et. al., 2005), the Rule Interchange 
Format (RIF) (Kifer et. al., 2008), Resource Description Framework (Schema), and all variants of 
the Web Ontology Language (OWL) (Bechhofer et. al., 2004). All differ in the expressiveness they 
offer and also the complexity. OWL is seen as an emerging ontological approach and semantic data 
model. OWL is a W3C standard and a vocabulary extension of RDF, designed to represent complex 
things and relationships. OWL can be read and interpreted by computers.

Even after the possibility of wide variety of applications through the use of ontologies, there are 
certain problems with Web Ontology Language (OWL) itself which are required to be addressed. 
Though addressing the weaknesses of current efforts in metadata, today’s ontologies still depend on 
intervention by humans for them to be useful.

Dealing With Incomplete Information
When the information present in the ontology is incomplete due to any reason, the facilities provided 
by sematic technologies through the use of ontology (such as inferring new information out of existing 
one) will be inconsistent, can be incorrect, inconsistent, and ineffective as the inferred information 
can be misleading.

Dealing With Imprecise Information
If ontology contains imprecise information, then the ontology itself loses its credibility as the 
information present in the ontology can’t be trusted. As more fake news or misinformation is floating 
on the internet we need to make sure the information that we propagate into the ontology is from 
credible source and is not fake. There are many fellow researchers who have been working on the 
problem of fake information using machine learning techniques as humans can’t handle the huge size 
of information available on the internet. Even if there are companies like Facebook (ant its subsidiary 
WhatsApp) having centres for content filtering but they also face problems catching up with the 
amount of data generated daily.

Dealing With Large Scale Information
Large scale ontologies can pose difficulties at various places when managing ontologies, such as 
accessing information from ontologies, storage and loading of ontologies, and making the whole 
ontology accessible and queryable. All these tasks become inefficient as the size of the ontology 
increases and if not handled properly.

Representation of Multilingual Information
The world we live in is a world with many languages across countries; and even within countries 
like India and South Africa. To make the services provided by the semantic technologies available in 
multiple languages we have to work with different methods of representation that can accommodate 
multilingual information. The problem of information unavailability poses challenges especially for 
languages like Xhosa whose descriptions are hard to find and even harder to map to other languages 
like English.

Problem of Redundancy
The problem of redundancy spans over multiple problems in ontologies or semantic technologies 
as a whole, for example redundancy can accumulate towards making the ontology large scale (as 



International Journal of Information System Modeling and Design
Volume 13 • Issue 7

4

discussed in 2.3.) which would then require special measures to deal with. The problem of large-scale 
ontologies can be catered to if we can somehow eliminate redundancy.

For dealing with such problems, different solutions have been proposed in literature including 
the combination of folksonomy and ontology approaches. The formality and semantic richness of 
ontologies when combined with the ease and adaptability of folksonomies will provide long-lasting 
and far better results.

PROPOSED APPROACH

We base our theory on the possession of two types of features by every concept. The set of 
distinguishable features (DFs) of a concept consist of properties that distinguish all individuals 
of the given concept from objects of the other concepts. All distinguishable features of a concept 
must be true for every individual of that concept. The set of cancellable features (CFs) of a concept 
consist of properties that may or may not hold for an individual of that concept. The distinguishable 
features can also be termed as concept-specific and the cancellable features as individual-specific. 
The theory of distinguishable and cancellable features roots back in literature (see (Michalski, 1983) 
and (Patel et. al., 2018)). Patel et. al., 2018, has conceptualized this as “Unit of knowledge”, where 
ontological concepts are stored as an atomic unit in the ontology. Storing concepts as atomic unit 
will make redundancy more manageable.

There are two major points of consideration. Firstly, as all instances of a concept share same 
value for all the DFs of that concept, it is highly redundant to store these values with each instance. 
By keeping DFs at class/concept level, we can make the storage efficient. Secondly, as we move 
down the hierarchy, new DFs may be added, or old values overridden, but never any DF is dropped. 
By keeping DFs at the highest possible level, we can make the storage efficient. The same protocol 
follows for the cancellable features also. The cancellable features are also mentioned and stored at 
the highest possible level in the hierarchy. While moving down the hierarchy vertically toward the 
specific concepts or horizontally toward the individuals, new features may be added, the values of 
old features may be overridden, or some old feature completely dropped. The value of cancellable 
features is put with a specific class or with an individual only if it overrides the inherited value from 
its general concept or its instantiating concept respectively.

Consider for example the case of concepts Human and Monkey that are different in many ways 
but also same in some ways. They both are Homo sapiens, have same number of limbs, even some of 
the portions in their brains are with similar functionalities; but the usage of limbs differs (as shown 
in fig 1). All these features can be categorized as DF’s of the HomoSapiens concept/class as they are 
getting inherited by all the subclasses (Human and Monkey). For both Human and Monkey, the limbs 
are divided into 2 categories, legs and hands; but usage and description of both is different. Humans 
use their legs to walk and hands to let’s say eat or to pick up things. But for Monkeys usage differs 
on the task at hand, such as for eating they use their fore limbs as hands but at the time of walking 
they use all of their limbs as legs. So, the usage description is a property that distinguishes Human 
and Monkey concept/class. So, usage description with different values become DF for Human and 
Monkey, and rest all common features go up to the HomoSapiens concept. The CF’s of these concepts 
can be the instance specific details such as name, height, weight, etc.

Although, there will be exceptions, but they will not pose much problem. As the ontologies are 
being queried upwards (instance → class → superclass → so on...). This implies that if the value is 
present at instance, it will not be inherited from the class, so the exception instances (like Birds who 
has a broken wing) will have information associated with the instance itself.

The said theory could be incorporated in the ontological structure in two ways, either by altering 
the ontology development methodology and creating all the ontologies from scratch taking care of 
DFs and CFs; or by augmenting the existing ontologies in a manner to incorporate the theory. Both 
the ways have been briefed here in sufficient detail.



International Journal of Information System Modeling and Design
Volume 13 • Issue 7

5

Altering the Ontology Development Methodology
Among the methodologies to design ontologies, some design them from scratch while others reuse 
the existing ones. Some noteworthy methodologies include the Cyc method, Uschold and King’s 
skeletal method, Grüninger and Fox’s methodology (TOVE), Methontology, MYCIN, KACTUS, 
DILIGENT, UPON, SENSUS and On-To-Knowledge (OTK) (Kurilovas et. al., 2015) (Malhotra et. 
al., 2015). To achieve the said benefits, we need to alter the ontology development methodology. The 
refined methodology is as described below:

1. 	 Determining Scope: We determine scope of the ontology in this phase by providing answer of 
the question ‘why are we going to develop it?’ There is no change in this phase.

2. 	 Identifying Concepts: This phase involves identifying the fundamental concepts and 
relationships, their attributes, instances, any constraints, and restrictions. In addition to this, the 
attributes of every concept are divided into the distinguishable and the cancellable features.

3. 	 Concept Analysis and Organization: This step involves analysing the terms and building the 
conceptual model by binding the terms into a hierarchy. There is no change in this phase also.

4. 	 Encoding: This step involves transcribing the structure in OWL. Care is to be taken to store the 
DFs and the CFs as stated.

Augmentation Approach
As semantic technologies are matured by now and many core datasets are already available to use; 
we provide a procedure to augment the existing ontological datasets. The said procedure is semi-
automatic in the sense that final authority lies with the human counterpart.

In the augmentation process the instances of existing ontologies will be traversed based on their 
classes and if a property has same value for each and every instance of a particular class then that 
property will be labelled as DF of that particular class, this above process will be done on every 
class and all the DF’s corresponding to a class will be kept inside a list. After all the DF’s have been 
identified then the process of shifting DF’s up in the ontology’s hierarchy will began, in which all 
the DF’s identified per class will be shifted and stored with the corresponding class. This process of 
identification of DF’s and shifting will be carried till there is no new DF identified.

Figure 1. Depiction of Distinguishable and Cancellable Features



International Journal of Information System Modeling and Design
Volume 13 • Issue 7

6

AUGMENTING THE EXISTING DATASETS

The procedure of augmentation works with the properties only, so it is applicable to all hierarchical 
knowledge organization systems. We concentrate our idea on the OWL ontologies. The process of 
ontology augmentation takes ontology as an input and return augmented ontology in accordance 
with the theory of distinguishable features. The augment algorithm passes through three phases as 
described below with the detailed description of each component in subsequent subsections:

1. 	 Fetching the Leaves
2. 	 Marking Distinguishable Features
3. 	 Moving Distinguishable Features

The input to the algorithm is an OWL ontology and the output is augmented ontology with the 
distinguishable features stored in a non-redundant manner. Here is the consolidated algorithm.

augment(ontology){ 
leavesList ¬ fetchLeaves() 
classDFPairList ¬ fetchClassDFPair(leavesList) 
updateOntology(classDFPairList) 
}

Fetching Leaves
The process starts with fetching the classes that are immediate children of Thing, this gives us the 
major generalized concepts in the ontology, after we will be traversing through the children of classes 
in hand till we find the classes with no child, which are the leaf concepts. The leaves as identified are 
stored in a list. Fig 2 provides the algorithmic overview of this component.

Marking Distinguishable Features
Having fetched all the leaf concepts of the ontology, it is time to mark the distinguishable 
features of concepts. For this, we fetch the individuals of these leaf concepts, one leaf concept 
is selected at a time and the properties of its individuals are checked, if some property is present 

Figure 2. Fetching Leaves



International Journal of Information System Modeling and Design
Volume 13 • Issue 7

7

in all the individuals of a concept, that property is marked as DF of that concept. If the values of 
this property are same for every individual of that concept, then that value becomes the default 
value for this property of the concept, otherwise the value with maximum occurrence is chosen 
as the default.

Only the individuals that override the default value of the property will save the value for the 
property. Figure 3 provides the algorithmic overview of this component.

Moving Distinguishable Features Toward the Root
Having marked the distinguishable features of every leaf concept, it is time to move the features 
up in the hierarchy. For this, we group the leaf classes into groups of immediate siblings. For 
every group, we look for the common DFs in all siblings. These common DFs are moved to their 
parent. If the values of some common DF are same for all the siblings, then that value becomes the 
default value for this DF of the parent, otherwise the value with maximum occurrence is chosen 
as the default. Only the concepts that override the default value of the DF will save the value 
for the DF. The process continues till we reach the root concept. Fig 4 provides the algorithmic 
overview of this component.

In this step we use the output of the previous i.e. the class and DF property pair list and add 
the DF properties and their corresponding values alongside the class while iterating over the list. 
Rest of the properties which are left are CF’s and we are not changing anything in them as they will 
automatically be left after we extract DF’s out. In the above code snippet ‘?’ resembles a variable 
which can be anything (in our case it is individual of the ontology which contains the particular 
property-value pair).

Figure 3. Marking Distinguishable Features



International Journal of Information System Modeling and Design
Volume 13 • Issue 7

8

RESULTS AND DISCUSSION

For the purpose of this evaluation, we are using a set of ontologies1 that we have created. Before we 
go further let’s talk about the reason behind creating ontologies and not using previously available 
ones. The existing ontologies doesn’t contain proper instantiation, at least publicly available ones 
that we came across. Why we need instantiation? We need instantiation because we are focusing on 
the properties and values associated with them. And values are only assigned to a property when 
we have an instance that uses that property. So, in our case we need ontologies which are properly 
instantiated to check whether a property and value associated with it is either DF or CF.

Now let’s discuss about the ontologies and their details. First ontology is named Eats which 
contains classes like omnivorous, carnivorous and herbivorous. Second ontology is named Animal 
which have classes named Warm Blooded, Cold blooded, Bird, Reptile, etc. It contains many details 
about animal (Specifically Birds) like number of legs, number of wings, type of blood (warm or cold), 
etc. We have also created many instances of these classes. In the case of conventional approach, we have 
kept the values of all the properties with instances itself. But in the case of augmented approach, the 
DF properties has been moved to the upper layer (Class) through the use of above defined algorithm. 
There are also cases where the properties are pushed even further up in the classes.

The “Eats” Ontology
Consider the “Eats” ontology. Figures 5 and 6 depicts the classes and instances respectively when 
they are created in conventional way. Figures 7 and 8 depicts the classes and instances respectively 
when they are created in augmented way.

Figure 4. Moving Distinguishable Features Toward the Root

Figure 5. Classes of “Eats” Ontology in conventional way



International Journal of Information System Modeling and Design
Volume 13 • Issue 7

9

The “Animal” Ontology
Consider the “Animal” ontology. Figures 9 and 10 depicts the classes and instances respectively when 
they are created in conventional way. Figures 11 and 12 depicts the classes and instances respectively 
when they are created in augmented way.

Figure 6. Instances of “Eats” Ontology in Conventional way

Figure 7. Classes of “Eats” Ontology after Augmentation

Figure 8. Instances of “Eats” Ontology after Augmentation

Figure 9. Classes of “Animal” Ontology in conventional way



International Journal of Information System Modeling and Design
Volume 13 • Issue 7

10

Figure 10. Instances of “Animal” Ontology in Conventional way

Figure 11. Classes of “Animal” Ontology after Augmentation

Figure 12. Instances of “Animal” Ontology after Augmentation



International Journal of Information System Modeling and Design
Volume 13 • Issue 7

11

We present here three aspects of how the augmentation approach supersedes the conventional 
approach to ontology building. The augmentation approach to enhance ontologies reduces the existing 
redundancy, reduces the total number of axioms in the ontology, and also benefits in ontology mapping. 
Above all, these benefits are attainable without any side effects. In section 5.2, we see that even after 
augmentation we are able to get the similar results for the posed queries.

Evaluation
Table 1 shows different aspects of the developed ontologies using both the approaches. The difference 
in storage space and number of axioms is apparent, while preserving the available information.

When knowledge is organized in ontologies according to the theory of DFs and CFs, we perceive 
obvious benefits in all the use cases that can be thought over an ontology:

1. 	 No redundancy: The usage of DF’s and CF’s reduces redundancy as all the redundant properties that 
are being used by most of the instances of a class will be moved to the class level and will be stored 
only once, these properties are still accessible through each of the instances as they are the properties 
which will be inherited by the instances from the classes in the upper level in the ontological hierarchy.

2. 	 Scalability: As a result, the ontology will have same number of classes and properties (and all other 
information) but becomes considerably lighter as the number of axioms are reduced drastically. 
This reduces the overall size of the ontology. As can be seen in table 3, we notice a 20% reduction 
in the size of the ontology on disk and 30% reduction in the number of axioms required to represent 
the same knowledge. When it comes to big ontologies like DBPedia and OpenCYC with millions 
of entities, the proposed solution proves to be more scalable than any other.

3. 	 Efficient Ontology Mapping: In the typical ontology mapping process, we first find syntactic 
similarity between terms then we try to disambiguate the mappings by finding the similarities 
based on meaning or semantics of the terms, for this we look for similarities in hierarchical 
structure and their properties/features. Syntactic similarity is straightforward and differs just on the 
selection of an efficient algorithm. Similarities based on properties/features where computational 
complexity is directly correlated with the number of properties per individual corresponding to 
a class is more complex. And as the number of properties increase, computational complexity 
increases as well. The concept of DFs state that not all of the properties are significant when 
calculating similarity, the properties that are being used by most or all of the instances (DFs) are 
the one which contributes to the similarity score, the rest of the properties are not contributing 
to the similarity score (CFs) and are an unnecessary computational overhead while calculating 
similarity. We should therefore utilize only the DF’s (the contributing properties for comparison) 
for comparison, hence increasing the efficiency of the complete mapping process.

No Side Effects
One obvious consideration and evaluation of the proposed approached is looking into the side effects 
that may happen because of the reduction in the number of axioms. As look obvious, the reduction 

Table 1. Comparative statistics of ontologies developed using conventional and augmentation techniques.

Name of the 
Ontology Ontology Development method File Size in 

KB No. of Axioms No of 
Classes

Eats
Conventional 22.2 140 5

Augmented 18.5 98 5

Animal
Conventional 38.0 258 14

Augmented 30.2 173 14



International Journal of Information System Modeling and Design
Volume 13 • Issue 7

12

in the number of axioms could result in information loss and also making the querying inefficient. 
To evaluate upon this aspect, queries are devised to show that we are able to fetch same information 
without any loss from the ontologies developed using either of the approach. Table 2 contains three 
queries for the Eats ontology and Table 3 contains the same three queries for the Animal ontology. 
In both the tables, the first column mentions the ontology of the conventional approach, the second 
column mentions the ontology of the augmentation approach, and the third column mentions the output 
received from both the ontologies. We notice that SPARQL queries for the augmented ontologies 
could be written with the same ease and also that the query output obtained in both the cases is the 
same. Although, we have to change the query a bit but we were able to get similar results from both 
versions of the ontologies. There is no information loss.

It has been therefore been verified that:

1. 	 There is no major change in writing the SPARQL queries or other processing involved.
2. 	 There is no information loss as could be seen in section 5.2.

CONCLUSION AND FUTURE PLANS

Existing Knowledge Organization Systems provides various services like ability to keep information 
in a semantically rich way, perform inference on the existing knowledge to depict new information, 
ability to fetch information from point in the ontology as each node acts as an entry point, etc. Still 
there is scope of improvement in order to handle the scale at which the data is increasing. The 
methodology and the algorithms proposed in this work will aid the researchers and academicians in 
augmenting their ontological datasets by giving due weightage to the distinguishing features. Once 
such datasets are prepared, they will serve as an effective and efficient source of information for 
the knowledge management applications and the semantic web. Our experimentations have found 
noticeable difference between conventional ways and our approach, even though our ontologies were 

Table 2. Queries for the Eats Ontology

1. Fetching all the values corresponding to a particular instance/individual

PREFIX eats: <http://www.semanticweb.
org/eats#> 
SELECT distinct ?p ?object 
WHERE {eats:Cow ?p ?object .} 
//Cow can be replaced with any Instance

PREFIX eats: <http://www.semanticweb.
org/eats#> 
SELECT distinct ?pred ?values 
WHERE{ { eats:Cow ?pred ?values} 
UNION 
{eats:Cow rdf:type ?class . 
?class ?pred ?values}}

rdf:type - Herbivore 
rdf:type - 
owl:NamedIndividual 
eats - “Plant based 
material”

2. List of all the Herbivore (or instances of any class)

PREFIX eats: <http://www.semanticweb.
org/eats#> 
SELECT distinct ?subject 
WHERE { ?subject rdf:type eats:Herbivore 
.}

PREFIX eats: <http://www.semanticweb.
org/eats#> 
SELECT distinct ?subject 
WHERE { ?subject rdf:type 
eats:Herbivore .}

Horse 
Deer 
Okapi 
Cow 
Elephant 
Capybara 
…

3. List all the properties associated with a class

PREFIX eats: <http://www.semanticweb.
org/eats#> 
SELECT distinct ?property 
WHERE { ?subject rdf:type eats:Omnivore . 
?subject ?property ?o }

PREFIX eats: <http://www.semanticweb.
org/eats#> 
SELECT distinct ?property 
WHERE {eats:Omnivore ?property 
?values}

rdf:type 
eats



International Journal of Information System Modeling and Design
Volume 13 • Issue 7

13

really elementary and were small in size. We saw 20% improvement in size of the ontology on disk 
and 30% decrease in the number of axioms required to represent the same knowledge.

As this is first work of its kind, further work is required to provide processes to access, visualize 
and search such ontological datasets, to list a few. The proposed methodology and the algorithms 
work well on well-crafted ontologies that have been built using the standardized methodologies. In 
future, we plan to work for those ontologies also that may not be modelled in the standard form and 
bring them in the form representing concepts as unit of knowledge and make them more efficient.

For the current work we have taken leaf concepts as leaf classes primarily as the ones that have 
instances (there may be some exceptions). In future, we plan to expand it to work with instances 
whether they belong to leaf concept or not. We have multimedia information in our sight as well. 
Multimedia files are relatively large in size and removing redundancy there have the potential to 
same huge resources.

Table 3. Queries for the Animal Ontology

1. Fetching all the values corresponding to a particular instance/individual

PREFIX animal: <http://www.
semanticweb.org/animal#> 
SELECT distinct ?p ?object 
WHERE{ { animal:Albatrosses ?p 
?object .} 
UNION 
{animal:Albatrosses rdf:type ?class. 
?class ?p ?object} 
UNION 
{animal:Albatrosses rdf:type ?class. 
?class rdfs:subClassOf ?superclass. 
?superclass ?p ?object } 
}

prefix animal: <http://www.
semanticweb.org/animal#> 
SELECT distinct ?p ?object 
WHERE{ { animal:Albatrosses ?p 
?object .} 
UNION 
{animal:Albatrosses rdf:type ?class. 
?class ?p ?object} 
UNION 
{animal:Albatrosses rdf:type ?class. 
?class rdfs:subClassOf ?superclass. 
?superclass ?p ?object } 
}

Color - “Golden White” 
rdf:type - owl:NamedIndividual 
rdf:type - Bird 
rdf:type - owl:Class 
rdfs:subClassOf - Warm_Blooded 
numberOfLegs - 2 
numberOfWings - 2 
rdfs:subClassOf - Vertibrate 
bloodType - “Warm”

2. List of all the Herbivore (or instances of any class)

PREFIX animal: <http://www.
semanticweb.org/animal#> 
SELECT distinct ?subject 
WHERE { ?subject rdf:type animal:Bird .}

prefix animal: <http://www.
semanticweb.org/animal#> 
SELECT distinct ?subject 
WHERE { ?subject rdf:type 
animal:Bird .}

Finches 
Tit 
Wrens 
Kingfisher 
Crane 
Owl 
Thrush 
…

3. List all the properties associated with a class

PREFIX animal: <http://www.
semanticweb.org/animal#> 
SELECT Distinct ?p 
WHERE { 
{animal:Bird ?p ?object.} 
union 
{animal:Bird rdfs:subClassOf ?o. 
?o ?p ?object} 
union 
{?s rdf:type animal:Bird. 
?s ?p ?object} 
}

prefix animal: <http://www.
semanticweb.org/animal#> 
SELECT Distinct ?p 
WHERE { 
{animal:Bird ?p ?object.} 
union 
{animal:Bird rdfs:subClassOf ?o. 
?o ?p ?object} 
union 
{?s rdf:type animal:Bird. 
?s ?p ?object} 
}

rdf:type 
rdfs:subClassOf 
numberOfLegs 
numberOfWings 
bloodType 
color

Note: We have kept the queries a bit descriptive in our examples for better understanding, they can be written in more concise manner following property 
paths (sequential or iterative).



International Journal of Information System Modeling and Design
Volume 13 • Issue 7

14

One more direction that is planned is to provide ontology design patterns such that new ontologies 
could be built from scratch taking care of the unit of knowledge concept. This when done will bring 
a revolution in terms of storage of ontologies and run-time fetching of concepts.

CONFLICT OF INTEREST

The authors of this publication declare there is no conflict of interest.

FUNDING AGENCY

Authors would like to thank National Institute of Technology Kurukshetra, India for financially 
supporting the research work.



International Journal of Information System Modeling and Design
Volume 13 • Issue 7

15

REFERENCES

Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., & Stein, 
L.A. (2004). OWL web ontology language reference. W3C Recommendation, 10(2).

Jain, S., & Jain, N. K. (2008). A generalized knowledge representation system for context sensitive reasoning: 
Generalized HCPRs System. Artificial Intelligence Review, 30(1-4), 39–52. doi:10.1007/s10462-009-9115-8

Kifer, M. (2008, October). Rule interchange format: The framework. In International Conference on Web 
Reasoning and Rule Systems (pp. 1-11). Springer.

Kurilovas, E., & Juskeviciene, A. (2015). Creation of Web 2.0 tools ontology to improve learning. Computers 
in Human Behavior, 51, 1380–1386. doi:10.1016/j.chb.2014.10.026

Malhotra, M., & Nair, T. G. (2015). Evolution of knowledge representation and retrieval techniques. International 
Journal of Intelligent Systems and Applications, 7(7), 18–28. doi:10.5815/ijisa.2015.07.03

Malik, S., & Jain, S. (2021). Sup_Ont: An upper ontology. International Journal of Web-Based Learning and 
Teaching Technologies, 16(3), 79–99. doi:10.4018/IJWLTT.20210501.oa6

Michalski, R. S. (1983). A theory and methodology of inductive learning. In Machine learning (pp. 83–134). 
Springer.

Miles, A., Matthews, B., Wilson, M., & Brickley, D. (2005, September). SKOS core: simple knowledge 
organisation for the web. In International Conference on Dublin Core and Metadata Applications (pp. 3-10). 
Academic Press.

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., & Miller, K. J. (1990). Intro-duction to WordNet: An on-
line lexical database. International Journal of Lexicography, 3(4), 235–244. doi:10.1093/ijl/3.4.235

Patel, A., Jain, S., & Shandilya, S. K. (2018). Data of SemanticWeb as Unit of Knowledge. Journal of Web 
Engineering, 17(8), 647–674. doi:10.13052/jwe1540-9589.1783

Shandilya, S. K., & Jain, S. (2009, March). Opinion Extraction & Classification of Reviews from Web 
Documents. In 2009 IEEE International Advance Computing Conference (pp. 924-927). IEEE. doi:10.1109/
IADCC.2009.4809138

Upadhyay, S., Manwani, R., Varshney, S., & Jain, S. (2020). Analytics and storage of big data. CEUR Workshop 
Proceedings, 2786, 202-210.

Zeng, M. L. (2008). Knowledge organization systems (KOS). Knowledge Organization, 35(2-3), 160–182. 
doi:10.5771/0943-7444-2008-2-3-160

Zeng, M. L., & Mayr, P. (2019). Knowledge Organization Systems (KOS) in the Semantic Web: A multi-
dimensional review. International Journal on Digital Libraries, 20(3), 209–230. doi:10.1007/s00799-018-0241-2

ENDNOTE

1 	 Available at: https://github.com/abhiseksharma/Ontologies

http://dx.doi.org/10.1007/s10462-009-9115-8
http://dx.doi.org/10.1016/j.chb.2014.10.026
http://dx.doi.org/10.5815/ijisa.2015.07.03
http://dx.doi.org/10.4018/IJWLTT.20210501.oa6
http://dx.doi.org/10.1093/ijl/3.4.235
http://dx.doi.org/10.13052/jwe1540-9589.1783
http://dx.doi.org/10.1109/IADCC.2009.4809138
http://dx.doi.org/10.1109/IADCC.2009.4809138
http://dx.doi.org/10.5771/0943-7444-2008-2-3-160
http://dx.doi.org/10.1007/s00799-018-0241-2


International Journal of Information System Modeling and Design
Volume 13 • Issue 7

16

Abhisek Sharma has been working as a Research Scholar since 2019 in the National Institute of Technology, 
Kurukshetra, under the supervision of Dr. Sarika Jain, Assistant Professor, Department of Computer Applications. 
His Ph.D. is in the field of Knowledge Representation and Engineering. He has completed his Master’s in Computer 
Applications in 2018. He has also worked on project funded by DRDO, India. In general, he is driven towards 
finding solutions for humans’ problems when trying to get Multilingual and Multicultural semantically rich results 
from computers and the issues currently making the processing of semantics by the computers difficult.

Sarika Jain graduated from Jawaharlal Nehru University (India) in 2001. Her doctorate, awarded in 2011, is in the 
field of knowledge representation in Artificial Intelligence. She has served in the field of education for over 19 years 
and is currently in service at the National Institute of Technology Kurukshetra (Institute of National Importance), 
India. Dr. Jain has authored or co-authored over 150 publications including authored and edited books. Her 
current research interests are knowledge management and analytics, the semantic web, ontological engineering, 
and intelligent systems. She has been PI of sponsored research projects and works in collaboration with various 
researchers across the globe, including in Germany, Austria, Australia, Malaysia, Spain, the USA, and Romania. 
She serves as a reviewer for journals published by IEEE, Elsevier, and Springer. She has been involved as a 
program- and steering-committee member at many prestigious conferences in India and abroad. She is a senior 
member of the IEEE, member of ACM, and a Life Member of the CSI.


