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ABSTRACT

Built environment factors such as greenery, walkability, and crowd density are related to physical 
activity and mental health. New emerging wearable sensors provide an opportunity to objectively 
monitor human exposure to street-level urban features. However, very few studies have demonstrated 
how to objectively measure the association between the built environment, human emotions, and 
health. This pilot study proposes a new approach that employs a FrontRow wearable lifestyle camera, 
a GPS tracker, and an Empatica 4 wristband as a sensor package to track individuals during their 
everyday activities. Machine-learning methods are adopted to extract urban features. For this study, 
volunteers were asked to conduct a self-led city tour in Roskilde, Denmark, while using the wearable 
sensors. Study results demonstrate the feasibility of the proposed approach and the potential for using 
integrated, multi-sourced data in the study of urban health.
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INTRODUCTION

The ever-growing development of sensor technology offers new opportunities to understand 
Environmental Stress Theory (Lazarus and Cohen, 1977). Through employing personalised 
environmental monitors, researchers have been able to measure individuals’ exposures to various 
kinds of environmental stressors: noise (Ueberham and Schlink, 2018), temperature (Ojha et al., 
2019), light (Kanjo et al., 2018), air pollutants (Donaire-Gonzalez et al., 2019), wind and solar 
radiation (Shimazaki and Katsuta, 2019). The stressors in the current literature focus more on the 
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physical environment, but little is known about the health effects of the built environment (Benita 
and Tunçer, 2019). However, built environment factors are thought to be closely related to physical 
activity and mental health; examples of such factors are greenery (Gubbels et al., 2016), walkability 
(Van Cauwenberg et al., 2016) and crowd density (Engelniederhammer et al., 2019). However, 
previous studies have not demonstrated how to objectively measure the association between the built 
environment and human emotions and health.

To assess the impact of the built environment on health, a priority is to measure the influence 
of street-level urban features. Previous studies have researched specific urban features. For example, 
urban trees that can provide shade (Nasution and Zahrah, 2014, Wolf et al., 2020) and sitting facilities 
that can encourage people to stay in public space (Gehl, 2013). Aside from that, other studies on 
the built environment have emphasised the quality of the built environment and type of amenities as 
important contributors to health promotion, investigating features such as walking paths, the presence 
or absence of nearby water and trees, lawns, birdlife, lighting, benches, facilities, playgrounds, and 
the type of surrounding roads and traffic (Holman et al.,1996; Giles-Corti et al., 2005).

Urban imagery is a widely used tool to represent the characteristics of the built environment. 
The history of using imagery in this context can be tracked to the last century (Lynch, 1960; Whyte, 
1980), with Ewing and Handy (2009) being the first to utilise quantitative analysis of imagery, 
adopting video clips of streetscapes to measure urban design qualities (e.g., enclosure, human scale, 
and complexity). Furthermore, Thwaites et al. (2005) summarised urban features (e.g., sky exposure, 
façade continuity, visual complexity) from sequential photographs of streets taken at 25-metre intervals, 
laying a foundation for contemporary research on urban characteristics/qualities.

Recently, street imagery from Google Street View (GSV) enabled the consistent objective 
measuring of urban features on a city-scale (Li et al., 2015, Yin and Wang, 2016), and is becoming 
an effective tool to assess the built environment (Anguelov et al., 2010, Goel et al., 2018, Helbich et 
al., 2019). For example, previous studies have employed GSV to investigate pedestrian-level greenery 
(Hua et al., 2022), traffic safety (Cai et al., 2022), and sky and building view factors (Gong et al., 
2018). GSV merits attention in the research on health and the built environment (Rzotkiewicz et 
al., 2018), but—with regard to health studies—some argue it still cannot take the place of in-person 
observations due to inconsistencies and inadequate resolution (Clews et al., 2016). Both researchers 
from the domains of public health and urban planning advocate for the personal level measurement 
of human responses to urban metrics (Bell et al., 2014, Chrisinger and King, 2018). As a solution to 
this issue, novel methods, such as tracking individuals by personalised sensors in urban environments 
needed to be explored.

With the advance in technology, the emergence of the wearable camera has enhanced researchers’ 
ability to capture in-person images from footpaths rather than cars’ views from streets. A wearable 
camera can be worn front-facing and can automatically take front view photos or videos. These images 
do not only represent the urban environment, but also form a digital record of personal exposure to 
urban features, such as greenery (Zhang et al., 2021), food store and dieting habits (McKerchar et al., 
2020), residential neighbourhoods and children’s activities (Chambers et al., 2017), and water space 
and children’s recreation (Pearson et al., 2017). Thus, wearable cameras provide an opportunity for 
high-resolution measurements of urban features at the individual level.

At the same time, body-worn health trackers are utilised increasingly to record the physiological 
signs in human daily life, such as the Zephyr BioHarness1 (Laeremans et al., 2018), Emotiv EPOC2 
(Aspinall et al., 2015), Empatica 43 (Benita and Tunçer, 2019), and the Microsoft Band 24 (Birenboim 
et al., 2019). Taking advantage of these sensors, blood pressure (BP), heart rate (HR), and heart rate 
variability (HRV) are broadly used to indicate physical health conditions in the urban environment, 
while accelerometers are regarded as physical activity (PA) monitors, examining the speed, direction, 
and acceleration of movement (Burgi et al., 2015).

As for monitoring individuals’ emotional responses to the environment, electrodermal activity 
(EDA) is a physiological measure used for emotion recognition (Yu and Sun, 2020). EDA, measured 
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at the skin’s surface, will rise if the skin receives signals from the brain (Yu and Sun, 2020), so 
wristbands with an EDA monitor are widely used to assess human emotional arousal to environmental 
stressors (Kushki et al., 2011), such as noise (Benita and Tunçer, 2019), ultraviolet radiation (Kanjo 
et al., 2018) and the built environment (Chrisinger and King, 2018).

Similarly, electroencephalography (EEG) is another physiological evaluation of emotional activity. 
Researchers have used electroencephalography (EEG) technology to assess urban experience and 
humans’ psychological state (Aspinall et al., 2015, Mavros et al., 2016). However, current studies 
employing wireless EEG headsets often control the duration of wearing to a short period, for example, 
a 25-minute walk in Aspinall et al. (2015) experiment and a complete 16-minute task in Lin et al. 
(2020) study. It is possible that the short duration experiments were because of participants’ limit 
to the acceptability and comfort of wearing the headset in the urban environment. Compared with a 
mobile EEG headset, some wristbands and EDA data are more often employed for long-time tracking 
of humans’ emotional responses in daily life (Bolliger et al., 2020).

The latest research is gradually integrating multiple personalised sensors as a package to measure 
people’s physical and mental health (i.e., stress) in urban environments (Ojha et al., 2019, Runkle et 
al., 2019). Some studies also have explored the possibility of integrating cameras and health trackers 
(Resch et al., 2020, Rybarczyk et al., 2020). However, since the value of in-person imagery has not 
been explored thoroughly, the integration of wearable cameras and health trackers in research is still 
limited—especially on how to extract image features and fuse image data with other source data to 
analyse patterns of human-environment interactions.

To overcome current limitations, this study proposes a new approach to assessing personal 
exposure to urban features and human emotional responses by combining cameras and health trackers, 
then applying this approach in a pilot study to test the feasibility. The authors’ aim to automatically 
detect urban features from imagery by machine learning methods and use EDA data to indicate 
humans’ emotional responses. Specifically, the study seeks to:

•	 Explore the workflow of integrating wearable cameras, GPS, and health trackers as a sensor 
package to track individuals in the urban environment.

•	 Provide a technical route of fusing data from sensors to quantify personal exposure to urban 
features (e.g. greenery, water, overcrowding, traffic) and emotional responses.

•	 Examine the feasibility of a multi-sensor approach and discuss the key factors crucial to the 
application’s success in practice.

METHODOLOGY

This study focuses on physical activities taking place in a public city environment rather than a private 
space. As participants are acting as different “channels” to link up body responses with urban features, 
this research involves no experimental procedures, medical research, or behavioural manipulations, 
only device-based measurements of people’s exposure to the urban environment. The authors utilised 
a naturalistic data collection strategy in an uncontrolled setting, similar to that reported by Rybarczyk 
et al. (2020) to test the possibility and feasibility of integrating GPS, wearable cameras, and health 
trackers in the urban environment. This study will follow the methodology framework shown in Figure 
1 and add new evidence to the growing applications of multiple sensors in urban studies.

INSTRUMENTS

Each participant was provided with three devices: a wearable camera, a GPS, and a health tracker. 
Four brands of wearable cameras were considered during the experiment design phase: Narrative 
Clip5, GoPro6, iON Snapcam7 and FrontRow8. Narrative Clip was chosen as it was found to be a 
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light and simple device for users to wear in daily life over a long period of time (Zhou et al., 2019, 
Zhang et al., 2021). GoPro had been used in a few other studies (Rybarczyk et al., 2020), but the 
authors did not choose GoPro because it could not be worn directly on clothing and was more 
expensive. Furthermore, the authors tested the function of iON Snapcam and FrontRow (FR) and 
found that FR had longer battery life, which made it more reliable than iON during long-time 
standby. Also, FrontRow had been selected in several other studies after comparison with other 
camera brands (Mair and Shackleton, 2021, Gao et al., 2020, Chen et al., 2021) since it could 
capture imagery clearly and easily. The FR camera also featured a touchscreen and a media button 
to start/pause/stop, making it more user-friendly. Additionally, the “story” mode of FR supported 
5, 10, 15, and 30-minutes interval time-lapse shooting, and the images would be compressed and 
stored as a short video. After considering the availability, cost, and function, the authors decided 
to use the FR camera (Table 1).

To track individuals’ physiological responses, the medical-grade device Empatica 4 (E4), 
worn on the wrist of the non-dominant hand, was utilised. E4 is equipped with an electrodermal 
activity (EDA) sensor, a photoplethysmograph (PPG) sensor and a 3-axis accelerometer sensor, 
enabling real-time measurement of sympathetic nervous system activity and other physiological 
responses. Previous studies have successfully used the EDA from E4 to assess human stress 
levels in the urban environment (Benita and Tunçer, 2019, Kyriakou and Resch, 2019). As 
shown in Table 1, the parameters included: 1). accelerometer (ACC); 2). EDA with a sampling 
rate of fs = 4 Hz (i.e. four readings per second); 3). inter beat intervals (IBI): intermittent 
output with fs = 64 Hz; 4). blood volume pulse (BVP) with fs = 64 Hz; 5). skin temperature 
(SKT): data from temperature sensors (°C); 6). heart rate (HR): from IBI and computed in 
spans of 10 seconds.

The data from the FR and E4 devices were coupled with the location data from the GPS 
device (Qstarz BT1000XT9). This device is similar in size and weight to a small cell phone (7.2 
cm x 4.7 cm x 2 cm) and collects the GPS position every five seconds. This GPS tracker had been 
tested in previous studies (El Aarbaoui and Chaix, 2020, Batista Ferrer et al., 2018) to effectively 
track people’s movements in the urban environment. Figure 2 shows the data sample and technical 
indexes from sensors.

Figure 1. Methodology framework
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Table 1. Technical specifications of sensors

Figure 2. Sensor package and data example
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PROCEDURES

The study was approved by Aarhus University’s Research Ethics Committee (IRB) and complies with the 
General Data Protection Regulation (GDPR legislation, October 9, 2020) in order to protect individual’s 
data. The letter of information and consent form used in this study can be found on the project website. 
People had to sign the consent form but were informed that they were free to exit the study at any time. 
The purpose of the study and the process of data collection were explained to all participants. The data 
collection was completely anonymised containing no self-identifying information. The research team 
made an online video tutorial to lead and train participants before implementation.

The importance of protecting the confidentiality of participants and third parties while using 
wearable cameras had been emphasised in the work of Kelly et al. (2013). To help participants 
understand how and when to deactivate the camera, the authors explained the ethical issues to 
participants both verbally and in the written consent form. Participants were also provided with a 
reference card, similar to that used in previous work by Gelonch et al. (2019), containing instructions 
on all the procedures that participants needed to know and explaining the camera to other people 
who may incidentally appear in the low-resolution images (Figure 3). A three-stage procedure was 
completed by participants in the data collection process after consenting to the study and finishing 
the sensor-use training:

1. 	 Pre-survey: Before starting walking, participants had to finish a pre-survey, including providing 
demographic information, self-assessments of mental health, and general baseline satisfaction 
about the quality of the built environment in the city. The authors built this electronic survey 

Figure 3. Reference card of how to use the camera
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based on the survey tool, Survey Monkey10 and provided participants 10 minutes to finish the 
survey on the tablet after meeting on site.

2. 	 Objective measurement during the self-led city tour: This study was conducted in a natural 
setting with two options: 1). One-day participation, where participants were asked to wear sensors 
to conduct a self-led city tour around the study site and were allowed to walk/sit/cycle/take a bus 
while wearing the sensors; b). One-week participation, where participants were free to wear the 
sensors during their real-life activities in the urban environment.

3. 	 Post-survey: After returning the device to the project investigator, participants were invited to 
complete a post-survey. This was a short questionnaire referred to as the Wearable Smart Device 
Questionnaire designed by Puri (2017) on the usability of sensors and problems encountered. The 
objective of the post-survey was to investigate participants’ feelings, experiences, and expectations 
about wearing multiple personalised sensors. The post-survey was also built based on Survey 
Monkey. However, in most situations, it became dark (close to 3 pm) after completing the walk, 
so the authors sent the link for the post-survey to participants by email.

The purpose of the pilot study was to assess the feasibility of the authors’ approach in a fieldwork 
setting. Thus, the main focus was on the objective measurement and feedback from participants. The 
rest of the paper will highlight the results obtained from the pilot study and will also discuss limitations.

PARTICIPANTS

For this pilot study, 12 volunteers were recruited to conduct a self-led city tour around the centre of 
Roskilde, Denmark, while using the wearable sensors in order to objectively measure the association 
between the built environment, human emotions, and health. The city of Roskilde is located in north-
central Zealand and is the 10th largest city in Denmark. This study site was located in the central town 
of Roskilde and included the main public spaces: the biggest commercial street, Roskilde Harbour, 
Roskilde Cathedral, the Viking Museum, and the nearby forest. The data collection was conducted 
in November 2020, and the average temperature during the fieldwork was five degrees Centigrade.

The authors managed to recruit 12 participants (five female and seven male) from the university 
for a one-day participation. Their participation was voluntary and unrewarded. Four of the participants 
were Danish and the others were immigrants from Africa, Asia, and Europe. To test the feasibility, 
the authors selected participants from different age groups: three participants were ages 20-30, four 
participants were ages 30-40, three participants were ages 40-55, and two participants were over 
55 years of age. The average duration wearing a sensor was 2 hours, 30 minutes, and the longest 
duration was 4 hours.

Of the participants, 10 completed the 3-stage procedure, including the pre-survey, camera 
experiment, and post-survey. One participant forgot to turn on the GPS tracker, and three participants 
had problems while using the FR camera. Participant number 3 put the camera inside her jacket and 
used the wrong mode. Participant number 5 wore a scarf that blocked the camera slightly. Participant 
number 8 forgot to start the recording. Therefore, in the data analysis, the authors selected valid data 
from five participants (mainly walking alone) as shown in Table 2.

The initial plan of this study was to test the feasibility in one-day and a one-week period for 
comparative purposes. The authors asked participants whether they would like to participate for one-
day, and then later participate in the one-week study, so the one-day sample was the same sample 
recruited for the one-week study. Finally, considering that the data collection period (close to winter) 
may have deterred some participants from opting for one week, two participants (5 and 7) agreed 
to join the one-week participation and wore the sensor package in their outdoor activities (walking/
cycling/taking a bus/running). However, since Participant 7 did not synchronise the camera time before 
wearing it, the image data could not be matched with other data by timestamp. Therefore, the authors 
only analysed data from Participant 5, who wore the sensors from November 16th to the 23rd, 2020.
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DATA TREATMENT AND ANALYSIS

Image Detection
The images were collected by the participants via the FR camera. Since the authors did not provide 
an Internet connection for the FR, it was necessary to calibrate the time with the phone every time 
before wearing the camera, then starting the time-lapsing mode (“story” mode) to record the view in 
front of participants continually. All images from the “story” mode were automatically compressed 
into a video and saved in the camera at the end of wearing.

To deal with the images, first, the authors used a professional video player (KMP player) 
to extract every image frame from the compressed video; next, they used the Baidu OCR text 
recognition API to read the timestamp from the clock on the top-right corner of the image 
(Figure 4a) to build the time sequence. Although FR cameras can take an image every 5 seconds, 
the timestamp on each image only includes time in hours and minutes. Therefore, the authors 
aggregated all the indices from imagery in the following analysis by calculating the average 
value within one-minute intervals (Figure 5).

Microsoft Cognitive Service (MCS) is a product from Microsoft that provides access to machine 
learning algorithms for detecting pictures. By using the MCS API, the authors could detect the urban 
features by identifying the existence of “tags” (Figure 4b). In the MCS analysis, the authors detected 
the urban settings and labelled five categories of urban features, as shown in Table 3. Every category, 
regardless of the number of tags, was classified according to the binary one (1) (“existing”) or 0 
(“non-existing”), as in the approach reported by Zhang et al. (2021).

The authors adopted another model, SegNet, to outline the sky, greenery, and buildings in an 
image. Although MCS could identify the existence of specific urban features, it could not report the 
number/size of each tag to classify the exposure into “Low,” “Moderate,” and “High” levels, which 
was important for longitudinal measurements. Thus, taking greenery as an example, the authors could 
evaluate the intensity of greenness over the daily exposure.

Table 2. Participants and participation

Date No Gender Age GPS E4 FR Pre-
Survey

Post-
Survey

Main 
Activity Duration

Alone 
or With 
Others

07/11

1 M 30-40 Valid Valid Valid Yes Yes Walk 3h/27min Alone

2 M 40-55 Valid Valid Valid Yes Yes

Walk/Cycle 
(Morning) 3h/35min Alone

Walk 
(Afternoon) 1h/16min Not Alone

08/11
3 F 20-30 Valid Valid No Image Yes Yes Walk 4h/16min Not Alone

4 M 20-30 Valid Valid Valid Yes Yes Walk 2h/33min Alone

09/11
5 F 20-30 Valid Valid Blocked 

Slightly Yes Yes Walk 0h/28min Alone

6 (D) M 40-55 Valid Valid Valid Yes Yes Walk 3h/29min Alone

11/11 7 M 30-40 No 
Data Valid Valid Yes Yes Walk 0h/47min Alone

13/11 8 F 30-40 Valid Valid No Image No No Walk 2h/19min Alone

21/11 9 M 30-40 Valid Valid Valid No No Cycle 0h/33min Alone

26/11
10 (D) M >55 Valid Valid Valid Yes Yes Walk 1h/51min Not Alone

11 (D) F 40-55 Valid Valid Valid Yes Yes Walk 2h/18min Not Alone

27/11 12 (D) F >55 Valid Valid Valid Yes Yes Walk 2h/17min Alone



International Journal of E-Planning Research
Volume 11 • Issue 1

9

SegNet is a segmentation model with a deep, fully convolutional neural network architecture that 
can partition any image into defined categories (Badrinarayanan et al., 2017). Compared with other 
segmentation tools (e.g., DeepLab-LargeFOV, FCN, DeconvNet), SegNet shows a superior ability 
in smooth segmentation (Badrinarayanan et al., 2017); thus, SegNet is widely used to analyse urban 
features in urban images.

This study trained the SegNet model based on the Keras framework (accuracy rate is 0.8122) 
training to detect three categories: sky, green, and building, as shown in the lower half of Figure 5. 
To summarise the characteristics, the authors calculated the rate of greenery to building (G/B) and 
classified the result into two levels. If it was <1, it meant the ratio of greenery on the image was 
lower than that of buildings, indicating “urban greenery”; If the rate was >2, it meant the ratio of 
greenery was greatly higher than that of buildings, indicating “natural greenery.” The authors were 
also able to distinguish between “narrow space” and “expansive space” by calculating the rate of 
building to sky (B/S). Also evaluated was the “shadow from greenery” by calculating the rate of 
greenery to sky (G/S).

In all, there were two outputs based on image analysis: 1). Detecting the urban settings and 
measuring urban features from the one-day participation (Figure 4b); 2). Evaluating the intensity and 
characteristics of daily greenery exposure (Figure 4c) from the one-week participation. The results 
of the image analysis were linked with the GPS and physiological data through data fusion.

Table 3. Tags related to urban features

Urban Features Tags Detected From MSC

Greenery “tree” or “grass” or “forest” or “plant” or “bushes”

Water “lake” or “water” or “sea” or “ocean” or “pond”

Overcrowding “people” or “person” or “human”

Motor Traffic “car” or “vehicles”

Non-Motor Traffic “bike” or “bicycle”

Figure 4. Image example: outputs from MCS and SegNet
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Data Fusion
Data fusion aims to link up the image data and physiological data with GPS data, in order to locate 
the urban features and their effects on mental health (Figure 5). In our study, the GPS tracker recorded 
the location every five seconds. First, based on the previous image detection, the authors assigned the 
average value of urban features (1-minute interval) for the 12 GPS points within the exact one-minute.

Second, the authors used EDA as an indicator of the emotional responses measured by the sensor 
on the E4. EDA features have been regarded as a proxy measure of stress or mental health in previous 
studies (Cecchi et al., 2020, Pakarinen et al., 2019, Setz et al., 2010). Before linking up EDA data 
with the GPS data, the authors used an open-source application E4 TimeStamper11 (© 2020 Imran 
Ture), as shown in the top half of Figure 5, to automatically timestamp each physiological sample 
in the E4 data files, based on the local time zone (Roskilde, Denmark). Additionally, the authors cut 
the first and the last 60 seconds from the database for each user to avoid the irrelevant physiological 
responses caused by people’s preparation and adjustments.

Since the EDA data was recorded every 0.25 seconds (Hz = 4), to link it with GPS data, the 
authors needed to reduce the frequency of the health data to every five seconds. To keep the features 

Figure 5. Timestamp and data fusion
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of the original EDA data, the authors extracted the average value and maximum value of EDA data 
within every five seconds, and merged them with the GPS data by the timestamp.

Finally, all data were linked up to form a new database with the information of location, timestamp, 
the average EDA, the maximum EDA, index of “urban,” index of “greenery,” index of “traffic,” index 
of “overcrowding,” index of “blue space,” the rate of greenery, the rate of sky, and the rate of building. 
Afterwards, a Geographic Information System (GIS) was employed to map data aggregately through 
spatial interpolation and to visualise the results.

RESULTS

Urban Features and Health Effects
The authors aggregated the spatial distribution of urban features and health effects within a 30 x 30 
meter grid and overlaid them with the geographical context to visualise the results (Figure 6). Overall, 
the highest EDA responses were located in the central city, including the station and the main street 
from the centre to the harbour area, where the traffic is busy. The lowest EDA responses appeared 
near the forest, garden, and seaside areas. In this study, the authors did not define a specific level 
of stress. It was known from existing studies that EDA data is associated with emotional arousal; 
however, one needs professional knowledge to define specific levels of emotions. Given the authors’ 
lack of professional knowledge for defining specific levels of emotions or stress, they looked at the 
actual EDA scores. The mapping of EDA data indicated the potential of integrating physiological 
data with geographical data to spatially assess the health effects of urban features.

Figure 6. Measurement of urban features and health effects
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From the authors’ observation of personal exposures to urban features, they found several 
“popular” spots with higher numbers of people, which might be preferable places for walking, such 
as commercial streets and the forest area near the harbour. Similarly, they found the spots with higher 
numbers of bikes, which might be popular cycling routes, such as the road from commercial streets 
to the harbour area, and parking areas with higher numbers of vehicles, such as the parking area near 
the Viking Ship Museum. Besides, the mapping of exposures to greenery and water represents the 
distribution of urban natural elements to some extent. The findings show that this pathfinding study 
points the way to quantify urban features at the individual level.

In the context of spatial planning, the methodology adopted in this paper provides researchers 
with a data-driven measurement of micro-level urban design features, such as trees, water, and birdlife 
in public open spaces, which is significant for urban studies (Giles-Corti et al., 2005, Whitley et al., 
2005, Hoj et al., 2021, Koohsari et al., 2018, Koohsari et al., 2015). For example, incorporating green 
and blue spaces in urban planning may enhance mental health and improve the well-being of urban 
residents given the findings suggest these urban features are associated with lower EDA scores. The 
authors hope more urban policy makers, architects, urban planners, and designers can apply this 
approach to assess the association between urban features and human mental health in practice, further 
improving urban quality and innovating place-making strategies in public open spaces.

One-Week Exposure
Based on data collected from Participant number 5, the authors assessed the personal exposure to 
greenery by comparing the ratio of buildings, sky, and greenery in each image. For example, Figure 
7 shows the spatial distribution and characteristics of health and green exposure during the one-week 
daily routine for Participant number 5. The measurements show the exposure to natural greenery 
during commuting (to office) with the high level of expansiveness and low level of shadow. When 
the exposure to greenery near living areas (home, market, and mall) is high, the overall EDA level 
decreases accordingly, which suggests a positive association between greenery exposure and mental 
health. This shows that the authors’ approach has merits when it comes to long-time tracking and a 
high spatiotemporal coverage in a real-life situation. Although the authors cannot explore conclusive 
evidence from one participant’s data, their method shows the possibility of suggesting “green” benefits 
to EDA responses from the individual perspective.

Post-Survey Feedback
Since it is the first time the FR camera and E4 wristband have been combined in a study, the authors 
employed a post-survey to collect participants’ feedback about the sensor package. Participants 
answered 15 questions regarding the comfort, operation, and concerns of wearing the camera in 
addition to the E4. As shown in Figure 8(a), participants found the devices easy to use. They did not 
get complaints from others. They did not feel embarrassed to wear the sensors and did not find them 
stressful to wear. Over half of the participants were satisfied with the devices, but some initially felt 
confused about how to use them, especially the FR camera, where the recording mode can be changed 
or paused by incorrect use, potentially decreasing the number and quality of images at the end.

Participants also reported that they were concerned about privacy. For example, one participant 
said, “I need to remember to turn off the camera when I use the toilet.” Also, less than half of the 
participants would have liked to wear the sensor package for a longer time (e.g., 24-hrs.) during daily 
life, and this study only recruited two participants who were willing to wear the sensor package (only 
in the urban environment) for one week. For longitudinal personal tracking in daily life, issues related 
to privacy protection, sensor management, data security, and data quality require further consideration.

These aspects aside, participants provided comments on several issues related to the usage of 
the devices. First, it was found that the camera is not convenient to handle during the night. Since 
this study was conducted in the winter and it usually becomes dark after 3:00 pm in Denmark, 
this was a common problem for people who walked in the afternoon. Second, there are two ways 
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to wear the camera: string or clip (Figure 8b). The feedback indicated that the string worked 
better than the clip because the camera’s weight could change its angle (e.g., face the ground), 
and the lens was easily blocked (e.g., by a scarf, hair, etc.) when clipped onto the collar. Thus, 
it is better to use strings to attach the camera stably by adjusting the length. Additionally, as for 
the E4 wristband, some reported that long-time use during daily activities could cause slight 
pain and leave marks on the wrist (Figure 8c).

DISCUSSION

Contribution
This paper has proposed a novel approach to measuring personal exposure to urban features 
and its effect on health by integrating a wearable camera, GPS, and health tracker as a sensor 

Figure 7. One-week exposure
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package. The authors tested the feasibility of this approach in a pilot study and adopted a 
machine learning method for image analysis. Then, they successfully fused multiple-sourced, 
personalised data to test the feasibility of using sensors to assess the association between urban 
features and physiological responses. The novelty of this study is furthering the understanding 
of opportunities and challenges associated with the use of multiple sensors to explore the 
effects of urban features on mental health. To our knowledge, this study is the first to detect 
urban features from personal imagery via machine learning and link up urban features to body 
responses at the individual level.

The results proved the feasibility of integrating imagery, geo-information, and personal 
physiological responses, and they also demonstrated the potential of using integrated, multi-sourced 
data to assess personal exposure to the urban streetscape and the health effects of urban features. The 
participants’ feedback clearly shows that the integrated sensor package was found to be user-friendly 
for participants in the pilot study. Lastly, the authors’ hope that the approach proposed in this paper 
can contribute to the learning process of employing various sensors and designing data collection 
campaigns for urban studies.

Figure 8. Feedback from the post-survey
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Limitations
This paper demonstrates the feasibility of integrating three personalised sensors to achieve objective 
measurements at an individual level. As a pilot study, this investigation included a small number 
of participants, and most of them came from a single organisation. As this study used a naturalistic 
data collection strategy in an uncontrolled setting, and participants were free to decide their route 
and activity duration, this design caused our data to be a mixture of complete and less-than-complete 
records, leading to an unbalanced spatial-temporal distribution of GPS points in cities. For example, 
the authors aggregated more data from different participants in the city centre, but few in areas far 
from the centre. The unequal density of points may limit the value of data for spatial analysis and lead 
to less robust conclusions. Besides this, we only had one participant’s data in the assessment of the 
one-week exposure, so the results could help test the feasibility of integrating sensors for longer-time 
tracking, but cannot be generalised to a broader population, which needs more conclusive evidence 
of daily exposure. Here, the authors summarise the limitations in our study that may have “biased” 
the results, which the authors hope to improve in subsequent studies.

First, this study was conducted in the winter. The weather and outdoor temperature may affect 
the body’s responses. Second, irrelevant, and unexpected factors from environments, especially 
noise, such as party noise, cheers, music, and dog barks may affect the measurements, but were not 
captured or controlled for in the study. The study was conducted in a natural experiment setting; thus, 
participants were free to wear the sensors during their normal activities. The limitation associated with 
this approach is that it is not possible to measure other things affecting the individual, such as coffee, 
food, medicine, music, phone conversations, and meetings with friends. Lastly, incorrect handling of 
sensors (e.g., forgetting to start recording, inaccurate camera angle, etc.) and technical problems (e.g., 
GPS signal loss) may decrease the quantity and quality of data. It is vital to provide clear instructions 
and necessary training to participants, help them with the sensors, and check the sensors regularly 
whilst wearing them. To implement larger-scale studies, urban planners and researchers need to 
control for some of the climactic, contextual (i.e., ambient noise), interactive (i.e., operator error), 
and technical factors, all of which are critical for obtaining high-quality data.

It is worthwhile to make a comment regarding the ethics of the authors’ approach. A reference 
card was used to explain ethical issues for participants prior to data collection. Although there were 
no complaints from members of the public who were spontaneously captured by the cameras, the 
authors’ believe that it is essential to understand how to manage the ethical issues for future studies, 
if future studies are aiming to explore the science behind the association between environment and 
health using this approach. Especially with the widespread development of the Internet of Thing 
(IoT), future studies can investigate the interaction between humans and the environment through the 
deployment of sensors in a given built environment, which may also have the ability to connect with 
people’s wearable sensors. In this way, the authors need more consideration of ethical issues, such as 
consent, privacy, protection, and risk management to regulate the reasonable use of personal data. As 
for the integration of various sensors, the main challenge is data fusion. Although the authors adopted 
machine learning to read urban information from imagery automatically, considerable efforts were 
still needed to link the data. The first challenge associated with this was building the timestamping 
for every single image. We utilised the Baidu OCR recognition API to read the timestamping from 
the “clock” on the right top of the image. However, there were failures in reading the timestamps if 
there were complicated backgrounds or other unnecessary texts in the image (e.g., shop brand names 
in the images).

The second challenge was unifying the frequency of data. Notwithstanding that the FR camera 
supports time-lapse shooting, it directly condenses imagery into a short video for storage, making 
it hard to obtain the image at a fixed frequency. Our images were extracted via a professional video 
player; however, this may not be the optimal way to extract images. Since the FR camera supports 
adjustment of the time-lapsing intervals from one second to 15 seconds, extracting single images at 
the correct frequency makes higher resolution measurements seem achievable.
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Although MSC provides users access to advanced cognitive algorithms for image detection, it is 
essentially a black box and, thus, this paper cannot comment on which deep learning algorithms are 
used in MSC. This may limit the comparability with other studies concerning process images. As for 
the outputs from MSC, the authors suggest that future studies use statistical methods to investigate 
the data potential, such as categorical principal component analysis (CATPCA). As the authors have 
learned from this study, MSC generated various tags from imagery, so future studies can use CATPCA 
to reduce the dimensions of data and further output the principal components (PCs) based on the 
original data. Then, it would be feasible to adopt a statistical methodology to examine the association 
between PCs and human physiological body responses.

Lastly, as this paper does not aim to analyse empirical evidence, the authors did not precisely 
process EDA data and GPS data to conduct spatial analysis. Instead, they focused more on the FR 
camera and image detection because this is the first application of an FR camera in urban studies. 
As for the biological data, this study did not use the temperature data considering the weather, but 
previous studies have shown that stress response is not only associated with EDA increases, but 
also skin temperature decreases (Park et al., 2013, Picard, 2009). The authors suggest future studies 
include other data from the E4 wristband, for example, Kyriakou and Resch (2019) introduced a new 
algorithm to detect moments of stress (MOS) based on EDA data and skin temperature. The authors 
also suggest future studies use open-source algorithms and software, such as cvxEDA12 and Ledalab13 
to extract the EDA features professionally (i.e. the tonic and phasic changes of EDA signal), which 
are useful for future studies.

CONCLUSION

This paper proposes a new approach to personal street-level tracking. In the authors’ approach, they 
employed a wearable camera, a GPS device, and a health tracker as a package and used easily applied 
machine learning methods to process image data. They then fused image data with geo-information 
and health data to assess and visualise the personal exposures to the streetscape. Then, this paper 
explained key aspects of data collection and data fusion processes, which are important in subsequent 
studies for managerial and practical applications. In summary, this investigation tested the integration 
of multiple sensors in a pilot study and proved its feasibility. The authors hope that this paper provides 
knowledge and experience for future applications of personalised sensors for more in-depth analysis.
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ENDNOTES

1 	 https://www.zephyranywhere.com/
2 	 https://www.emotiv.com/epoc/
3 	 https://www.empatica.com/en-int/
4 	 https://support.microsoft.com/en-us/topic/what-can-i-still-do-with-my-microsoft-band-a2a59355-5be0-

3441-9fff-4dc27bcbafb5
5 	 Narrative Clip was first called “Memoto” and developed in 2012: http://getnarrative.com/
6 	 GoPro is a world-leading retailer for live-streaming cameras: https://gopro.com/en/us/
7 	 iON Snapcam, available on Amazon: https://www.amazon.com/iON-Camera-SnapCam-Wearable-

Bluetooth/dp/B012X08L0A?th=1
8 	 FrontRow is a live-streaming wearable camera design from Ubiquiti Labs: https://www.frontrow.com/
9 	 GPS receiver: http://www.qstarz.com/Products/GPS%20Products/BT-Q1000XT-F.htm
10 	 Survey Monkey is a tool to help people build a survey for use over the Internet. https://www.surveymonkey.

com/
11 	 The application can be downloaded from here: https://github.com/imranture/E4-TimeStamper
12 	 https://se.mathworks.com/matlabcentral/fileexchange/53326-cvxeda
13 	 http://www.ledalab.de/
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