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ABSTRACT

As end devices have become ubiquitous in daily life, the use of natural human-machine interfaces 
has become an important topic. Many researchers have proposed the frameworks to improve the 
performance of dynamic hand gesture recognition. Some CNN models are widely used to increase 
the accuracy of dynamic hand gesture recognition. However, most CNN models are not suitable for 
end devices. This is because image frames are captured continuously and result in lower hand gesture 
recognition accuracy. In addition, the trained models need to be efficiently deployed on end devices. 
To solve the problems, the study proposes a dynamic hand gesture recognition framework on end 
devices. The authors provide a method (i.e., ModelOps) to deploy the trained model on end devices, 
by building an edge computing architecture using Kubernetes. The research provides developers 
with a real-time gesture recognition component. The experimental results show that the framework 
is suitable on end devices.
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1. INTRODUCTION

With the rapid development and popularization of computers and information technology, people 
can use their end devices (i.e., modern smartphones and Raspberry Pi) nearly anywhere, resulting in 
considerable research being devoted to the development of new applications for these ubiquitous end 
devices. Although these new applications provide significant benefits to users, their human–machine 
interfaces are still keyboards, mouses, or touch screens (Wang et al., 2017). Hand gesture recognition 
(Kim & Toomajian, 2016) can provide users with a more lively, natural, and convenient human–
machine interface to operate and invoke applications on end devices. Also, hand gesture recognition 
can be used in human-robot interaction to create user interfaces that are natural to use and easy to 
learn. However, locating the hands and segmenting them from the background in an image sequence 
is a problem for hand gesture recognition.

In recent years, many studies (Costante et al., 2014; Dhingra & Kunz, 2019; Kim & Toomajian, 
2016; Nanni et al., 2017; Shin & Sung, 2016; Žemgulys et al., 2018; ZOU et al., 2018) have used 
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hand gesture recognition models for human–machine interface applications. These models are largely 
based on handcrafted features and feature extraction through deep learning. These models can be 
divided into static and dynamic gesture recognition. Static gesture recognition methods consider 
spatial features of hands, whereas dynamic gesture recognition methods extract not only spatial 
features but also temporal features.

In contrast to models based on handcrafted features, models (Costante et al., 2014; Dhingra & 
Kunz, 2019; Shin & Sung, 2016) based on deep learning perform well in automatic feature learning 
from image frames. Feature deep learning provides new insights into gesture recognition, and many 
researchers have attempted to use deep learning methods to extract gesture features from RGB, 
depth, and skeleton data. In (Shin & Sung, 2016), a dynamic hand gesture recognition technique 
was developed using a recurrent neural network (RNN) algorithm. In (Costante et al., 2014), deep 
CNNs and random forest (RF) algorithms were compared, and the results indicated that CNN slightly 
outperformed RF with sufficient data and achieved significantly better accuracy than other methods. 
A deep learning CNN can learn hand gesture features from single-mode data or multimodal fusion 
data. As the appearance and optical flow sequences are relatively easy to obtain, most deep learning 
methods adopt these two as their input, with few depth-based techniques.

The existing deep learning models are not suitable for dynamic hand gesture recognition in real-
time applications on end devices. For methods based on handcrafted features, spatial and temporal 
features are acquired by different methods from RGB data in the image frames. However, in real-time 
applications on end devices, the image frames are captured continuously, and the starting image frame 
is difficult to identify. In contrast, in the deep learning methods, these image frames are captured 
continuously, many irrelevant features are also extracted from the image frames and learned by the 
system. In addition, the trained gesture recognition models need to be deployed automatically in 
real-time applications on user end devices. However, the existing hand gesture recognition methods 
update and deploy their trained models manually and tend to be inconvenient for users.

Conversely, 3D-CNNs are indeed suitable solutions for hand gesture recognition in real-time 
applications on end devices. 3D-CNNs can capture appearance and motion simultaneously from a 
sequence of image frames, from low-level details to high-level semantics. Moreover, because of their 
ability to be processed in parallel, 3D-CNNs are faster during training and inference compared with 
other CNN models and can be executed in real time. However, the traditional 3D-CNN models are 
mainly based on the C3D (Tran et al., 2015) structure, which has only eight convolutional layers. 
It is shallower than most of the successful CNN models (Hitawala, 2018; Li et al., 2018) used in 
the image classification domain, resulting in limited representation capacity. In addition, 3D-CNNs 
are unable to identify the initial image frame in a gesture recognition image sequence, leading to 
misclassification of gesture actions in recognition phases.

Three main factors make our research unique. First, a combined CNN (namely E3D) framework 
is proposed for dynamic hand gesture recognition in real-time applications on end devices. As far as 
our knowledge, E3D is the first combined CNN model with static and dynamic gesture recognition 
model. Our E3D improves real-time feature extraction ability in comparison to the original 3D-CNN 
model. Second, an object detection method is combined with a 3D-CNN to identify the starting image 
frame in real-time applications, as images are captured in a continuous stream. Finally, we provide an 
update and deployment method (namely ModelOps) based on a cloud edge architecture we designed 
to automatically deploy and update the trained gesture recognition model to a real-time application 
on end devices. The remainder of this paper is organized as follows. An overview of related research 
is presented in Section 2. Our proposed E3D method is described in Section 3. An edge computing 
platform using Kubernetes is presented and illustrated in Section 4, and the experimental results and 
analysis are explained in Section 5. Our results and conclusions are presented in the last section.
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2. LITERATURE REVIEW

This section briefly describes extant hand gesture recognition methods based on CNNs, object 
detection methods, and the software architecture DevOps for automatically deploying and updating 
the trained model to the end device application. CNNs have achieved superior performance in visual 
tracking based on their strong feature learning capabilities. They can directly learn features from 
raw data without resorting to manual modifications. (Gao et al., 2014) used a fully CNN for human 
tracking analysis, taking the entire frame as input to predict a foreground heat map by one-pass 
forward propagation. (Wang et al., 2018) proposed a deep tracking framework using a candidate pool 
of multiple CNNs. Moreover, a deep auto encoder was first pertained offline and then fine-tuned for 
binary classification in online tracking in (Wang & Yeung, 2013).

In the training process of a CNN, the feature weights are updated by an optimizer at a learning 
rate η  to obtain a better trained model. Gradient descent (GD) is the most widely used optimizer in 
CNNs. GD provides two types of η , including stochastic gradient descent (SGD) and learning rate 
decay (LRD). SGD extracts small batches from datasets to train the CNN model and is an iterative 
method for minimizing/maximizing an objective function, whereas LRD is a method that decreases 
the value of η  as the iterations are increased in the training process. Furthermore, Adam (Kingma 
& Ba, 2014) is an efficient GD method that computes individual adaptive learning rates for different 
parameters, and the values of η  are calculated for each parameter. In Eq. (2.1) and Eq. (2.2), we use 
Adam to compute the decaying averages of past and past squared gradients mt and vt, respectively. mt 
and vt are estimates of the first moment (the mean) and the second moment (the uncentered variance) 
of the gradients, respectively.
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Adam computes bias-corrected first and second moment estimates, as shown in Eq. (2.3) and 
Eq. (2.4). Its update rule is shown in Eq. (2.5). We propose default values of 0.9 for β
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Two-stream CNNs (Li et al., 2018), ResNets (Shamir, 2018), and ResNeXt (Hitawala, 2018) 
are extensions of CNNs for image classification. A two-stream CNN is an effective approach that 
trains two CNNs using static frames and temporal motion separately. The temporal motion stream 
is converted to successive optical flow images so that the CNN designed for images can be directly 
deployed. Many studies extend the proposed concept of two-stream CNNs from varying perspectives. 
(Li et al., 2018) attempted to improve the results by using deeper networks and proposed an action 
detection method based on a two-stream network. (Shamir, 2018) extended the two-stream network 
by implementing several different fusion methods in different layers instead of using late fusion in 
the score layer as in the two-stream networks of (Li et al., 2018). ResNets provide state-of-the-art 
performance across numerous applications. They identify shortcut connections enabling the flow 
of information across layers without attenuation. ResNeXt is inspired by ResNet and can improve 
performance in image classification. ResNeXt involves stacking a series of multi-branch residual 
blocks. These branches perform sets of convolution networks and then aggregate at the ends of blocks.

3D-CNNs have been widely used in the field of action recognition. They use 3D convolutional 
kernels, which can directly extract spatiotemporal features from low to high levels. Because 3D-CNNs 
have many more parameters than other CNN models, they are more difficult to train, and their 
performance is also limited. The earliest 3D convolutional network is C3D (Tran et al., 2015), which 
is designed based on the VGG ConvNet and has eight convolutional layers. Subsequently, many 
deeper 3D-CNN models have been designed based on 2D-CNNs and successfully used in the image 
classification field. For example, Res3D is designed based on ResNeXt (Hitawala, 2018). In addition, 
S3D proposes replacing some of the 3D convolutional layers with 2D convolutional layers to save 
computational resources while maintaining the same accuracy. In S3D, the 3 × 3 × 3 convolutional 
filters are replaced with one 1 × 3 × 3 convolutional filter for the spatial domain and one 3 × 1 × 1 
convolutional filter for the temporal domain.

These related CNN models (including 3D-CNNs, ResNeXt, and two-stream CNNs) can be used 
to learn the features of hand gestures. The relevant features (i.e., the swing direction) can be learned 
by these models through numerous hand gesture images and videos, and thus the accuracy of gesture 
recognition can be improved. However, in real-time applications on end devices, the initial or start 
image of a gesture recognition sequence is important. This is because the start image is the time point 
to begin the process of running related CNN models for gesture recognition.

Object detection methods can be used to determine start images for gesture recognition in real-time 
applications. The aim of an object detection method is to find the location of all targets and specify 
each target category on a given image or video. Many successful methods (i.e., Faster R-CNN, Mask 
R-CNN, and YOLO) have been proposed for object detection in images or videos. Faster R-CNN (Ren 
et al., 2015) can be regarded as a system consisting of a regional proposal network. In Faster R-CNN, 
the regional proposal network is used instead of the selective search algorithm of Fast R-CNN. Mask 
R-CNN (Huang et al., 2019) detects objects in an image while simultaneously generating a high-quality 
segmentation mask for each instance. It extends Faster R-CNN by adding a branch for predicting an 
object mask in parallel with the existing branch for bounding box recognition. YOLO (Zhong & Deng, 
2019) unifies target classification and localization into a regression problem. It directly performs 
regression to detect targets in the image and provides much faster detection. YOLOv2 improves on 
YOLO prediction accuracy by using a new network structure called Darknet-19, which was designed 
by removing the fully connected layers of the network. However, YOLO and YOLOv2 are not fast 
enough to run on end devices. Tiny-YOLO is a lightweight version of YOLO and has a real-time 
deep neural network for object detection. Tiny-YOLO was designed to create a smaller, faster, and 
more efficient model to increase the accessibility of real-time object detection for end devices (i.e., 
the Raspberry Pi and NVIDIA Jetson Nano).

DevOps (Jabbari et al., 2016) is a novel software engineering paradigm that can provide a new 
way to automatically update and deploy trained CNN models to applications. (Jabbari et al., 2016) 
described the main concepts of DevOps and investigated how DevOps can mitigate various challenges. 
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(Jabbari et al., 2016) aimed to specify the concept of DevOps and what practitioners perceive as 
impediments to adopting it. They defined DevOps by proposing three main attributes: capabilities, 
culture, and technology. Furthermore, Kubernetes (Hightower et al., 2017) is an open-source version 
of a container that can be used to implement the concepts of DevOps to automatically update and 
deploy software into applications. For instance, regardless of which programming language is used to 
write a given app, the app can be directly mapped to a Kubernetes Service, which then communicates 
with the Internet or other Services via standard TCP-based protocols. Kubernetes adds a novel Pod 
layer between server nodes and the containers running on these nodes. Multiple containers can 
run simultaneously in the same Pod, thereby effectively enhancing data communication efficiency 
between these containers.

3. ENHANCED 3D-CNN (E3D) FOR DYNAMIC GESTURE RECOGNITION

Based on the related works (i.e., Fast R-CNN and Mask R-CNN) in Section 2, dynamic hand gestures 
can be identified well through CNN models in deep feature learning. Two issues must be considered 
in the problem of identifying dynamic hand gestures. Firstly, for real-time applications on end devices, 
the hand gesture images or videos are input continuously and the starting image must be identified to 
begin the process of dynamic hand gesture recognition. Secondly, the trained CNN model should be 
automatically deployed and updated in real-time applications on end devices to provide convenience 
for users. Therefore, to solve the issues mentioned above, in this study we design a dynamic hand 
gesture recognition model called Enhanced 3D-CNN (E3D). In our E3D, the lightweight version of 
the object detection method (i.e., Tiny-YOLO) is first used to identify the start image to initialize 
the process of recognition. Then, the concepts of two-stream 3D-CNN and the residual method are 
combined to enhance the accuracy of dynamic hand gesture recognition in real-time applications 
on end devices. Furthermore, to automatically deploy and update the trained E3D model into an 
application, we present our design ModelOps based on the concept of DevOps and implemented 
on the Kubernetes platform. Finally, to reduce the response time required by the CNN processing 
on the end devices, acceleration devices (i.e., Intel NCS2 and Jetson Nano) are used in our model.

3.1 E3D
Our E3D includes two parts (i.e., a training component and a recognition component), as shown in 
Figure 1 In the training component, the Kubernetes Pods are implemented to train the E3D model. 
A Kubernetes Pod is a group of one or more containers with shared resources and a specification 
for how to run the container. Then, a dataset including static gesture images and dynamic gesture 
videos is input to train the E3D-CNN model. The static gesture images are input for Tiny YOLOv2 to 
identify the start image, while the dynamic gesture videos are input for 3D CNN to recognize the hand 
gesture of users. In the training process, Tiny YOLOv2 and 3D CNN can be executed simultaneously. 
After the training process, E3D is tested and translated using OpenVINO (Gorbachev et al., 2019). 
Finally, the translated model is stored in the model repository. In addition, as more images or videos 
are input for Tiny YOLOv2 or 3D CNN respectively, the new training process is started. Therefore, 
after the new training process finished, the testing and translating process are automatically started 
to store the new version model into the model repository.
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In the recognition component, the trained recognition model is deployed on the end device (i.e., 
a Raspberry Pi) from the model repository through DL Models Cloud Hub. In addition, the real-
time application is installed on an end user device to capture dynamic gestures from users through 
the camera. After the recognition process of the E3D model, the corresponding functions are called. 
The real-time application and the trained E3D model are set up on the user’s end devices. It can 
continuous capture the images and videos for user gestures and send these images and videos to the 
trained E3D-CNN model to recognize the user gesture and then call the corresponding applications.

3.2 Datasets
We tested our proposed model using three publicly available datasets: COCO (Patterson & Hays, 
2016), 20BN-JESTER Dataset V1 (Materzynska et al., 2019), and the Cambridge Hand Gesture 
Dataset (Kim et al., 2007). The dataset COCO is used to train Tiny-YOLOv2 to identify the start 
image frame, while the 20BN-JESTER Dataset V1 and Cambridge Hand Gesture Dataset are used 
to train the two-stream 3D-CNNs for recognizing dynamic user gestures. The COCO dataset is a 
large-scale object detection, segmentation, and captioning dataset. COCO contains images of 91 
object types, and objects in COCO are labeled using per-instance segmentations to aid precise object 
localization. The 20BN-JESTER Dataset V1 (as shown in Figure 2) is a recent video dataset for hand 
gesture recognition, which contains 27 types of predefined hand gestures performed in front of a 
camera. It has a total of 148,092 gesture samples extracted from the original videos at 12 frames per 
second. The samples are divided into three sets: 118,562 samples for training, 14,787 samples for 
validation, and 14,743 samples for testing without providing labels. The average video length is 35 
frames. On the other hand, the Cambridge Hand Gesture Dataset consists of 900 image sequences of 
nine gesture classes, which are defined by three primitive hand shapes and three primitive motions 
(see Figure 3.3). Therefore, the target task for this dataset is to classify different shapes as well as 
different motions simultaneously.

Figure 1. E3D
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In this study, to improve the recognition performance of E3D, enough images in training datasets 
are necessary. In dynamic gesture recognition, the most discriminative part in a gesture image is the 
hand. The area of the region it occupies is relatively small compared to the entire image. As a result, 
the classifier is easily misguided by environmental variations and complex backgrounds in real-world 
scenes. Because E3D detects the starting image, it requires not only an image with a category label, 
but also the location of a gesture. However, in the public datasets, most of the gesture images have 
category labels but do not have the location of gestures. Therefore, a dataset with sufficient training 
gesture images was designed in this study. Algorithm 1 shows the pseudocode for generating the 
gesture images in the dataset. In Algorithm 1, the variables backgrounds, gestures, and locations 
represent an array of background images, an array of gesture images, and a category file including 
the widths, heights, and locations of the gesture object frames in the images, respectively. Line 1 
initializes a loop for an array of background images. Line 2 sets the number of gesture images needed 
in the dataset. Lines 3–4 calculate the width and height of the gesture object frame according to the 
maximum and minimum values in the gesture image category file. Lines 5–7 place the gesture image 
on the background image through the values of the width and height of the object frame. Lines 8–12 
use the function iou to determine whether the gesture images overlap or not. Lines 14–16 record the 
coordinates of the gesture object frame to produce many gesture images in the dataset.

Figure 2. 20BN-JESTER (Materzynska et al., 2019)

Figure 3. Cambridge Hand Gesture (Kim et al., 2007)
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For example, in Figure 3.4, a gesture image is captured in front of a pure white wall. Then, the 
location of the gesture in the image is recorded, and the gesture object frame is produced. Furthermore, 
to obtain a better gesture dataset, the image is rotated and zoomed to produce more gesture images. 
In Figure 3.5, the gesture image is rotated, and the size of its object frame is corrected. Then, a new 
gesture image is produced and the value (i.e., xnew) of its x coordinate is set according to Eq (3.1). The 
value (i.e., ynew) of its y coordinate is set according to Eq (3.2). In Eq. (3.1) and Eq. (3.2), the values 
xold and yold are the original values of the x and y coordinates of the gesture in the original image. 
On the other hand, in Figure 3.5, when the image is zoomed, the gesture object frame is zoomed 
based on the original ratio of the image. By rotating and zooming the original image, a number of 
new gesture images are produced for our custom dataset. In addition, the complex backgrounds are 
appended to the images to generate additional new gesture images. The number of 1,200 pictures 
with 230 backgrounds are used to generate the static gesture images. Therefore, 11,353 images that 
contain two to four gestures are produced in the training dataset.

x x cos y sin
new old old
= −* *θ θ 	 (3.1)

y x sin y cos
new old old
= +* *θ θ 	 (3.2)

Algorithm 1 Create Images

backgrounds ¬ the array of the background images
gestures ¬ the array of the gesture images
locations ¬ the category file including the locations of the gesture in the image

1: for i=0, 1, …., backgrounds do
2: for j=0,1,…….10 do
3: width ¬ (locationxmax[j] – locationxmin[j]) * scale
4: height ¬ (locationymax[j] – locationymin[j]) * scale
5: x ¬ random(0, backgroundswidth[i] – width)
6: y ¬ random(0, backgroundsheight[i] – height)
7: draw ¬ true
8: for b=0, 1,…., boxes do
9: u ¬ iou(x, y, width, height, boxes[b])
10: if iou >0 then draw ¬ false
11: end if 
12: end for 
13: if draw == true then
14: boxes ¬ (x, y, width, height)
15: gestureimg ¬ gestures[j]ymin:ymax,xmin:xmax
16: gestureimg ¬ resize(gesturewidth * scale, gestureheight * scale)
17: if gestureRGB < 200 then backgrounds[i] ¬ gestureimg
18: end if 
19: end if 
20: end for 
21: export(backgrounds[i], boxes)
22: shuffle(gestures)
23: end for
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3.3 E3D Training Process
In E3D, to identify the start image frame in the real-time application on the end device, the object 
detection method (i.e., Tiny-YOLO) is trained by inputting static gesture images from the COCO 
dataset (Patterson & Hays, 2016) and our designed dataset including 11,353 images containing two 
to four gestures. In contrast, the two-stream 3D-CNN is trained by inputting dynamic gesture images 
from the 20BN-JESTER dataset (Materzynska et al., 2019) and the Cambridge Hand Gesture Dataset 
(Kim et al., 2007). Prior to the training process of Tiny-YOLO in E3D, the k-means clustering method 
is used to compute the sizes of the anchor box in the training images in the COCO dataset. This is 
because in COCO, the anchor boxes are not labeled on the images and these anchor boxes are need 
to be used in Tiny-YOLO. Also, in Tiny-YOLO, the values of RGB in an image must be normalized 
between 0 to 1. Therefore, according to Eq. (3.3), the static gesture images are normalized to train 
Tiny-YOLO to identify the start image in the real-time application on the end device.

image
image

RGB
RGB=

255
	 (3.3)

Figure 4. Process of producing the new gesture images

Figure 5. Rotation and zoom for the original gesture image
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Our E3D is based on a two-stream 3D-CNN, which is divided into high-resolution and low-
resolution neural networks, as shown in Figure 3.1. In E3D, multi-layer 3 × 3 convolutional layers are 
used instead of the single-layer in 3D-CNN models, and the residual method is used for the convolution 
operation. In the training process of E3D, the sizes of images are adjusted to be input into the neural 
networks, and the image frames are set according to Eq. (3.4). In the high-resolution neural network, 
the original size of the image is input, while in the low-resolution neural network, the size of the 
image is reduced and then input. After the training process, the values from the high-resolution and 
low-resolution neural networks are obtained. Finally, these values are multiplied to obtain the results.

image
frame data

networkframe

frame sum

depth

=�
*

_ 	 (3.4)

3.4 E3D Recognition Process
From the model repository shown in Figure 3.1, the trained recognition model can be deployed into 
the real-time application on an end device (i.e., a Raspberry Pi). The trained model includes the static 
model to identify the start image and the dynamic model to recognize dynamic gestures from users. 
In the recognition process of E3D, the image frames are captured by a camera, in which an event is 
spontaneously detected. This detection stimulates the frame capture module, which is executed for a 
specific short duration. For example, in Figure 3.4, the image frames are captured by the camera and 
input into the static model using a sliding window. In the static model, there are two steps (Steps 1 and 
2). Step 1 detects the starting image by using Tiny-YOLO to produce the gesture object frame, while 
Step 2 moves the gesture object frame to the center position of the image and then stores the image in 
the classification queue for the dynamic model. In the dynamic model, a two-stream 3D-CNN with a 
residual method is applied to all frames containing hand objects. Algorithm 2 classifies the dynamic 
gestures from these frames to call the related function in the real-time application on the end devices.

In Algorithm 2, the variable frame represents the image obtained from the camera, and the variable 
state represents the three states (i.e., passive, detect, and active). In the passive state, there is no 
gesture image frame detected in the system. In the detect state, a gesture image frame is detected by 
the system, and in the active state, the image frames are stacked to input into the neural network. Line 
1 defines each image frame obtained from the camera. Lines 2–3 detect the gesture image frame and 
change the passive state into the detect state. Lines 4–13 move the gesture object frame to the center 
position of the image. Lines 14–17 detect that the gesture object frame disappears in the image and 
place the image obtained from the camera into the image queue (namely frame_window). Lines 18–20 
input the images of frame_window to the 3D-CNN model, while Lines 22–24 output the prediction 
results and then restart to recognize a new gesture image.

Figure 6. E3D recognition process
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For example, in Figure 3.5(a), because there is no gesture detected, the system captures the next 
image frame using the sliding window. Then, in Figure 3.5(b), a gesture is detected, and the object 
frame is produced. In addition, the object frame is moved to the center of the image frame, as shown 
in Figure 3.5(c). Consequently, in Figure 3.5(d), the sequence image frames are captured until the 
gesture is found in the position opposite to the start image frame. Finally, because there is no gesture 
detected in the image frame, as shown in Figure 3.5(e), the start image and the sequence image frames 
are stored in the classification queue.

3.5 ModelOps of E3D
In this study, ModelOps was designed and derived from DevOps (Jabbari et al., 2016). Although 
DevOps focuses on software integration testing and deployment, it does not consider automatic 
deployment of model training and verification. ModelOps can automatically deploy the trained and 
tested E3D into applications by extending the continuous integration (CI) and continuous delivery 
(CD) processes developed in DevOps. To implement the process of ModelOps, the Kubernetes 
platform was built using the Pod and Deployment components.

Algorithm 2 real-time gesture recognition

input: gesture image frames from camera 
output: call the corresponding function

1: for each framei do
2: if a gesture frame is detected and state == “passive” then
3: state ¬ “detect”
4: if framecenter_x > boxescenter_x then
5: x ¬ framecenter_x - boxesxmax;
6: else 
7: x ¬ framecenter_x - boxesxmin
8: end if 
9: if framecenter_y > boxescenter_y then
10: y ¬ framecenter_y - boxesymax
11: else 
12: y ¬ framecenter_y - boxesymin
13: end if 
14: else if a gesture frame is not detected and state == “detect” then
15: image ¬ wrapAffine(frame, (x, y))
16: frame_window ¬ image
17: end if 
18: if frame_window == 3DCNN_input.shape then
19: state ¬ “active”
20: end if 
21: end for 
22: if state == “active” then
23: output = 3DCNN.predict(frame_window)
24: state ¬ “passive”
25: end if
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As shown in Figure 3.6, there are three types of nodes (i.e., Master, Training-Node, and Device-
Node) in our Kubernetes platform. Master and Training-Node are set as a cloud system, Device-
Node is set on end devices, and these nodes are connected and communicate through a VPN. In our 
Kubernetes platform, a user can send a request to the API Server through DL Model Cloud Hub. A 
Pod with the training model is deployed to the Training-Node with access to a GPU and trained on 
the datasets in the network file system. Then, the trained model is stored in the Model Repository 
and deployed on the Device-Node.

Figure 8. System components in the Kubernetes platform

Figure 7. Example of detection and recognition process of E3D
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The model deployment process of ModelOps is shown in Figure 3.7. The user sends a deployment 
model training request to DL Models Cloud Hub, and this request is deployed to the Image Training 
Pod via the Kubernetes API Server. After training, the trained model is verified and stored in the 
Model Repository. Finally, the Kubernetes API Server deploys the model into Image Recognition 
Deployment. In addition, ModelOps provides users the ability to query the deployment process of E3D.

Algorithm 3 shows the pseudocode for model verification in ModelOps. In Algorithm 3, the 
variable trainimage represents the image in the training dataset. Variable testimage represents the image in 
the testing dataset. Variable label represents the label of the image, variable threshold represents the 
definition standard during the testing process, and variable send represents whether the verification 
is successful. Line 1 acquires the corresponding gesture model, Line 2 preprocesses the image in the 
training dataset, Line 3 defines the loss function used in the study, and Line 4 chooses the gradient 
descent method to reduce the values of the loss function. Lines 5–7 train the model by setting the 
number of iterations. Lines 8–10 predict the results of the testing images. Lines 11–15 use the optimizer 
in the OpenVINO tool to transform and save the verified model into an intermediate representation 
(IR) file.

Figure 9. Development process of ModelOps

Algorithm 3 model evaluation(trainimage, testimage, label, threshold, send)

input: the trained model 
output: the verified model

1: model ¬ gestureModel()
2: img ¬ preprocess(trainimage)
3: loss ¬ modelloss(modeloutput, label)
4: optimizer ¬ ADAM(minimize(modelloss))
5: for i=0, 1, ……, iterations do
6: model.run(optimizer, image)
7: end for 
8: output ¬ model.predict(testimage)
9: if output > threshold then send ¬ True
10: end if 
11: if send==True then
12: IR ¬ OpenVINOoptimizer(model)
13: save(IR)
14: sendRestFulAPI()
15: end if
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4. IMPLEMENTATION AND EXPERIMENTS

This section describes the implementation of the components of the Kubernetes platform to 
automatically deploy the trained E3D model to end devices. In addition, the experiments are designed 
to analyze the gesture recognition performance of E3D. Section 4.1 presents the implementation 
details of E3D, Section 4.2 evaluates the performance of E3D, and Section 4.3 discusses and analyzes 
the experimental results.

4.1 Implementation
There are three units (i.e., the cloud platform, end devices, and external acceleration device) in our 
implementation environment. The cloud platform includes master and training nodes. The end devices 
tested included a Raspberry Pi 4 and a Jetson Nano, and the external acceleration device was an Intel 
NCS2. The specifications of each unit are listed in Table 4.1.

4.2 Experimental Results and Analyses
In the training process, the learning rate is an important parameter for ensuring the higher accuracy 
of E3D. If the initial learning rate is too big, the diverge will be happen in the training process of 
E3D; otherwise, the time cost will increase. Through the method of learning rate decay, the model 
can quickly reach the local or global maximum in the early stage of training. Using a smaller learning 
rate may achieve convergence in the later stage of training

In this section, we evaluate the performance of our proposed E3D model. Six experiments were 
conducted to evaluate the performance of E3D. The first experiment compared the performance of 
dynamic hand recognition using different datasets (i.e., 20BN-JESTER Dataset V1 and Cambridge 
Hand Gesture Dataset), optimizers (i.e., SGD and Adam), and learning rates (i.e., fixed, decay, and 
cycle). Here, fixed means that the value of the learning rate is fixed in each iteration. decay implies 
that the value of the learning rate is reduced after several iterations. With smaller value of learning 
rate, the model can reach the local or global maximum in the early stage of training. And cycle sets 
the value of learning rate between the maximum and minimum values. In our experiments, the value 
for fixed was set at 0.0001, the value for decay was set from 0.001 to 0.0001, and the value for cycle 
was set between 0.001 and 0.0001. Tables 4.2 and 4.3 present the results of the first experiment for the 
datasets 20BN-JESTER Dataset V1 and Cambridge Hand Gesture Dataset, respectively. In Table 
4.2, cycle exhibits higher accuracy with the SGD and Adam optimizers. In addition, the accuracy of 
Adam exceeds that of SGD. However, Adam cannot converge under the learning rate decay.

Table 1. Specifications of experiment unit devices

devices CPU RAM OS GPU

Master node 8 Core Intel® Xeon® CPU E3-
1230 v3 @ 3.30GHz 8GB Ubuntu 

16.04 none

Training node 32 Core Intel® Xeon® Silver 4110 
CPU @ 2.10GHz 16GB Ubuntu 

16.04
NVIDIA 
RTX 2080-ti

Raspberry pi 4 4 Core quad-core ARM 
Cortex-A53 @1.5GHz 4GB Raspbian 10 none

Jetson Nano 4 Core quad-core ARM 
A57@1.43GHz 4GB Ubuntu 

18.04
128-core NVIDIA 
Maxwell GPU

Intel NCS2 16 Core 4 Gbit 
LPDDR4 VPU: Movidius Myriad X 4GB



International Journal of Information System Modeling and Design
Volume 13 • Issue 10

15

Figures 4.1 and 4.2 depict the values of the loss function (y-axis) for different numbers of 
iterations (x-axis) in SGD and Adam, respectively. In Figure 4.1, the convergence speeds of cycle 
and decay are similar. Moreover, the accuracy of cycle is higher than that of decay. In Figure 4.2, 
the convergence speeds of cycle and fixed are similar. In addition, the accuracy of cycle is higher 
than those of fixed and decay.

In Table 4.3, cycle has higher accuracy in SGD, whereas decay has higher accuracy in Adam. 
In Figure 4.4, the convergence speed of cycle is better than those of decay and fixed. Moreover, the 
accuracy of decay is higher than that of fixed. In Figure 4.3, the convergence speeds of cycle, fixed, 
and decay are similar. Thus, with the learning rate cycle, the results of the first experiment indicate 
that a higher accuracy is obtained from Adam. Also, the loss function of Adam declines faster than 
that of SGD.

From the results of the first experiment, in dataset 20BN-jester Dataset V1, the combination of 
Adam and cycle has the higher accuracy and that of Adam and decay cannot be converge. However, 

Table 2. Accuracy of E3D with different optimizers and learning rates

Learning rates SGD Adam

fixed 39.30% 91.59%

decay 73.17% 9.93%

cycle 75.59% 92.08%

Figure 10. Loss function for SGD using 20BN-JESTER Dataset V1

Figure 11. Loss function of Adam using 20BN-JESTER Dataset V1
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in dataset Cambridge Hand Gesture, the combination of Adam and decay has the higher accuracy. 
Therefore, the combination of Adam and cycle is chosen for the second experiment.

In the second experiment, the neural networks (i.e., ResNeXt and two-stream CNNs) used in E3D 
were compared in terms of their accuracy of dynamic hand recognition in the dataset 20BN-JESTER 
Dataset V1. From Table 4.4, compared with the accuracy of two-stream CNNs, the accuracy of E3D 
is increased by 8.42% (8.42% = 92.08% - 83.66%). In addition, compared with ResNeXt including 

Figure 12. Loss function for SGD using Cambridge Hand Gesture Dataset

Figure 13. Loss function of Adam using Cambridge Hand Gesture Dataset

Table 3. Accuracy of E3D with different optimizers and learning rates

Learning rates SGD Adam

fixed 39.30% 96.67%

decay 73.17% 98.33%

cycle 75.59% 97.22%
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a high-resolution neural network, the accuracy of E3D is increased by 1.62% (1.62% = 92.08% - 
90.46%), and compared with ResNeXt including a low-resolution neural network, the accuracy of 
E3D is increased by 2.11% (2.11% = 92.08% - 89.97). According to the results of second experiment, 
the two-stream CNNs and ResNeXt can be used in E3D to improve the accuracy.

In the third experiment, the accuracy was compared between different numbers of input image 
frames in E3D for the dataset 20BN-JESTER Dataset V1 and the optimizer Adam with cycle. Figure 
4.5 shows the accuracy of E3D by inputting 8, 16, 24, and 32 frames. As the number of image frames 
increases, the accuracy of E3D increases. The accuracy of E3D obtained by inputting 16 frames is 
better than that of inputting eight frames. The accuracy of E3D inputting 24 frames is better than 
that of inputting 16 frames. Similarly, the accuracy of E3D inputting 32 frames is better than that 
of inputting 24 frames. Therefore, the number of 32 frames has the better accuracy of E3D. On the 
other hand, Table 4.5 indicates that the training time increases as the number of frames increases. 
The training time for 16 frames is 143% longer than that of 8 frames, whereas that of 24 frames is 
31% longer than that of 16 frames. In addition, the training time of 32 frames is 46% longer than that 
of 24 frames. According to the results of the third experiment, the number of 32 frames is chosen as 
input in the fourth experiment.

In the fourth experiment, the recognition times of E3D with Tiny-YOLOv2 and Tiny-YOLOv3 
for different end devices (i.e., Raspberry Pi 4 and Jetson Nano) were compared.

Table 4. Accuracy of various models

Neural networks Accuracy

Two-stream CNNs 83.66%

ResNeXt within high-resolution neural network 90.46%

ResNeXt within low-resolution neural network 89.97%

E3D (Two-stream CNN + ResNeXt) 92.08%

Figure 14. Accuracy of E3D by inputting different numbers of image frames
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Figures 4.6 and 4.7 show the inference time and the frames per second for different end devices. 
The inference time indicates the time used for hand gesture recognition in E3D, and the frames per 
second is the number of image frames that are processed in E3D per second. Using an Intel NCS2 
in a Raspberry Pi 4 in E3D can greatly reduce the inference time and increase the number of frames 
per second. By using Tiny-YOLOv2 in E3D, the inference time is reduced by 87.22%, while using 
Tiny-YOLOv3 in E3D, it is reduced by 84.14%. Consequently, the inference time using the Jetson 
Nano with an Intel NCS2 for Tiny-YOLOv2 and Tiny-YOLOv3 in E3D can be reduced by 73.57% 
and 63.33%, respectively. In general, the inference time using Tiny-YOLOv2 is shorter than that using 
Tiny-YOLOv3. Furthermore, the inference time using the GPU in E3D is shorter than that using 
Intel NCS2 in E3D. Detailed information is presented in Table 4.6. According to the experimental 
results, Tiny-YOLOv3 is more effective for detecting small objects than Tiny-YOLOv2. However, 
the inference time of Tiny-YOLOv3 was greater than that of Tiny-YOLOv2. Therefore, according to 
the results in the experiment, Tiny-YOLOv2 with Intel NCS2 was used to detect the static gestures 
and Jetson Nano was used in end devices to recognize the dynamic gestures.

Figure 15. Frames per second on different end devices

Table 6. Recognition time of E3D for different end devices

End devices Tiny-YOLOv2 Tiny-YOLOv3 E3D

Raspberry pi 4(Host) + CPU 1.37fps, 0.72s 1.21fps, 0.82s 13.76fps, 2.3s

Raspberry pi 4(Host) + Intel NCS2 11.24fps, 0.09s 7.73fps, 0.13s 59.52fps, 0.54s

Jetson nano(Host) + GPU 3.67fps, 0.28s 3.33fps, 0.3s 70.72fps, 0.45s

Jetson nano(Host) + Intel NCS2 13.51fps, 0.07s 9.09fps, 0.11s 64.96fps, 0.49s

Table 5. Accuracy and training time of E3D by inputting different numbers of frames

input frames accuracy training time

8-Frame 85.51% 22 hours 53 minutes

16-Frame 88.13% 2 days 7 hours 45 minutes

24-Frame 90.36% 3 days 1hours 24 minutes

32-Frame 92.08% 4 days 11hours 35 minutes
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In the fifth experiment, the inference time, accuracy, loading time, and number of inference frames 
of LRCN, C3D, 3D-ResNeXt, and E3D were compared for the dataset 20BN-JESTER Dataset V1 
on Raspberry Pi 4 and Jetson Nano with the GPU and NCS. As shown in Table 4.7, the accuracy of 
E3D is higher than that of LRCN and lower than those of C3D and ResNeXt 101. In addition, the 
loading time and the number of inference frames of E3D with the GPU are less than those of ResNeXt 
101 and C3D. Furthermore, C3D cannot be loaded on the end device with Intel NCS2 because C3D 
requires too many parameters and thus results in insufficient memory. According to the results of 
the fifth experiment, although the accuracy of some models is higher than that in E3D, these models 
take a lot of time in their inference processes.

In the sixth experiment, five types of gestures (i.e., swiping left, swiping right, swiping down, 
swiping up, and other gestures) from users (as shown in Figures 4.8 and 4.9) were used to test the 
accuracy and inference time of E3D.

Figure 16. Frames per second on different end devices

Table 7. Accuracy and inference time of different models on different end devices

Model accuracy On-board Process 
Delay Time (GPU)

Inference time 
with GPU

On-board Process 
Delay Time (NCS)

Inference time 
with NCS2

LRCN 76.66% 365.62s 54.4fps,0.59s 19.06s 6.4fps, 4.8s

C3D 92.78% 385.44s 21.44fps,1.51s N/A N/A

3D-ResNeXt 101 94.89% 227.78s 26.24fps,1.22s 2028.67s 17.28fps,1.84s

E3D 92.08% 24.15s 70.72fps,0.45s 97.57s 64.96fps,0.49s
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In this experiment, each user performed a gesture and repeated it five times to generate testing 
data to compare the recognition accuracy of E3D, E3D with Tiny-YOLOv2, and E3D with Tiny-
YOLOv2 and the shift technique (i.e., the gesture object frame in an image can be shifted to the 
center position of the image). As shown in Figure 4.10, the recognition accuracy of E3D is 65.6%, 
that of E3D with Tiny-YOLOv2 is 82%, and that of E3D with Tiny-YOLOv2 and the shift technique 
is 88%. Without Tiny-YOLOv2, the gesture image frames are continuously recognized by E3D, and 
the complete gesture action cannot be detected. Therefore, the recognition accuracy of E3D cannot 
be accepted by users. In contrast, using Tiny-YOLOv2 to detect the start image frame can enhance 
the recognition accuracy of E3D because E3D can focus on identifying a complete gesture action 
produced by a series of continuous gesture images. In addition, in the object detection process of 
Tiny-YOLOv2, the shift technology can be used to improve the recognition accuracy of dynamic 
gestures. This is because most users do not perform their gestures in the center of the images (as shown 
in Figure 4.11). According to the results in this experiment, E3D with Tiny-YOLOv2 is suitable for 
user to identify the gestures of users.

Figure 19. Recognition accuracy between different types of gestures

Figure 18. Swiping right gesture including swiping down and up

Figure 17. Swiping left gesture including swiping down and up
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5. CONCLUSION

In this work, a deep learning model, E3D, is proposed for dynamic gesture recognition in real-time 
applications on end devices. In E3D, an object detection method (i.e., Tiny-YOLOv3) was used in 
the static model to focus on the parts of the image frame sequence relevant to gesture discrimination 
in both spatial and temporal dimensions. Then, a 3D-CNN with a two-stream CNN and a residual 
method were designed in the dynamic model for recognizing dynamic gestures from users. Finally, 
based on a Kubernetes container, the model of E3D was implemented, and the ModelOps model was 
designed for automatically deploying and updating the trained E3D model on end devices. We also 
conducted six experiments to confirm the effectiveness of E3D. From these experiments, Adam with 
the learning rate cyclic is suitable used in E3D. Also, the residual and dual-stream methods can improve 
the accuracy of dynamic gesture recognition in real-time applications on end devices. Furthermore, in 
the static gesture recognition, the speed of Tiny-Yolov2 is faster than that of Tiny-Yolov3. Our E3D 
provides a solution for recognizing the user gestures in the real-time systems. In E3D, the training 
process should be completed in a cloud server and the inference process can be automatic installation 
and updated for end devices. However, E3D still has the problems of insufficient training datasets and 
need to have the end devices with high computing capabilities. Future research can focus on modeling 
the temporal relations between frames more effectively and reducing the parameters in the 3D-CNN 
without a decline in performance. Adding version control to ModelOps is also worth investigating.

Figure 20. Steps of swiping left gesture
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