
DOI: 10.4018/IJISMD.306635

International Journal of Information System Modeling and Design
Volume 13 • Issue 10 

This article published as an Open Access Article distributed under the terms of the Creative Commons Attribution License (http://cre-
ativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of the 

original work and original publication source are properly credited.

*Corresponding Author

1

Knowledge-Infused Text Classification 
for the Biomedical Domain
Sonika Malik, Maharaja Surajmal Institute of Technology, India*

Sarika Jain, National Institute of Technology, Kurukshetra, India

 https://orcid.org/0000-0002-7432-8506

ABSTRACT

Extracting knowledge from unstructured text and then classifying it is gaining importance after the 
data explosion on the web. The traditional text classification approaches are becoming ubiquitous, but 
the hybrid of semantic knowledge representation with statistical techniques can be more promising. 
The developed method attempts to fabricate neural networks to expedite and improve the simulation of 
ontology-based classification. This paper weighs upon the accurate results between the ontology-based 
text classification and traditional classification based on the artificial neural network (ANN) using 
distinguished parameters such as accuracy, precision, etc. The experimental analysis shows that the 
proposed findings are substantially better than the conventional text classification, taking the course of 
action into account. The authors also ran tests to compare the results of the proposed research model 
with one of the latest researches, resulting in a cut above accuracy and F1 score of the proposed model 
for various experiments performed at the different number of hidden layers and neurons.
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1. INTRoDUCTIoN

The classification of disease based on the symptoms provided as input proves to be a challenging 
task, which can be simplified using the machine learning algorithm. Text classification is a field 
that holds the enormous capability to classify text, but it remains a difficult task if done manually 
(Korde & Mahender, 2012). Text mining has various applications like classification (Supervised, 
Semi-supervised, Unsupervised), sentiment analysis, and document filtering. Machine Learning and 
Natural Language Processing approach collaborate to find the patterns in various documents and 
automatically classify them.

Artificial intelligence (AI) is expected to generate hundreds of billions of dollars in economic 
value. Although technology has become a part of our daily life, many individuals are still suspicious. 
It’s a major problem for them as AI approaches work like black boxes and create ideas mysteriously. 
Furthermore, several sectors have accepted knowledge graphs (KGs) as a useful tool for data 
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administration, processing, and enrichment (Jain, 2021). In spite of this, KGs are increasingly being 
recognized as the foundations of an AI system that provides explainable AI through the design concept 
known as “Human in the Loop” (HITL). The AI’s promise is to automatically derive patterns and rules 
from large datasets using machine learning algorithms like deep learning. In many circumstances, 
this makes categorization activities much easier to perform. While machine learning algorithms can 
collect knowledge from historical data, they are unable to produce new results using that knowledge. 
There is no trust if nothing is explained. Explain ability ensures that trustworthy agents in the system 
can understand and defend the AI agent’s decisions. Symbolic AI and statistical AI are combined in 
semantic AI. It incorporates methods such as machine learning, information analysis, semantic web 
mining, and text mining. It blends neural networks and semantic reasoning with AI techniques. By using 
this new framework, AI-based systems can be built more quickly and efficiently (Malik & Jain, n.d.).

There’s a traditional way of presenting documents called Bag of Words (BOW). Using this 
strategy, you get information about the terms and their respective frequencies within the sentence or 
document. Due to each document being represented as a vector of term frequencies in the lexicon, 
it is also known as the Vector Space Model (or VSM). The semantic relationships between words 
are also ignored in this representation (Salton & Yang, 1973). The words are also completely out of 
sequence when they are represented by BOW. That’s because this strategy stresses that phrases have 
some frequency information attached to them.

On the other hand, the task of a text classifier is to classify textual documents according to 
predetermined categories, with the apparent assumption of each class consisting of records with 
similar content, usually discussing a particular topic that is different from other classes. When texts 
are displayed in a vector space, they tend to be sparse due to high dimensionality (Altınel & Ganiz, 
2018). This is a significant challenge, especially when there are a large number of class labels but 
insufficient training data for each of them. If you’re working with real-world applications, obtaining 
labelled data of high quality for training is frequently prohibitively expensive. It is, therefore, necessary 
to have an accurate text classifier that can make use of semantic information.

There are a variety of techniques for classifying documents based on their semantics. It is based 
on the meaning of words and hidden semantic relationships between words and documents. Semantic 
text classification has some advantages over standard text categorization:

• Relationships between words might be implied or explicit.
• Word-to-document correlations are extracted and used.
• Possibility of generating keyword representations for existing classes.
• Classification accuracy is improved.
• Traditional text classification algorithms cannot manage synonymy and polysemy because they 

do not take into account semantic links between words.

In this paper, we have shown that machine learning with ontology gives better accuracy than 
traditional text classification with the same dataset. We also compared our results with one of the 
latest researches and got better accuracy and F1-score (Althubaiti et al., 2020). The authors used 
ANN for ontology-based text classification with the same ontology and dataset. They have used 
Machine learning and word embeddings to identify words and phrases that refer to an ontology class. 
They used word embeddings to collect the context information and relied on the automatic feature 
selection technique and ANN as a classifier. One of the drawbacks in automatic feature ranking is that 
they are univariate: each feature is considered separately, ignoring dependencies between features. 
In this biological domain, free text is matched with the ontology concepts that encode the semantic 
relationships. According to our hypothesis, the dependency between concepts stored in biological 
ontologies could be used to improve the feature ranking (Garla & Brandt, 2012).

This paper aims to extend the classification theory using neural networks to get better accuracy 
with ontology. We have used Keras for the Neural Network model and trained it on a dataset extracted 
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from UMLS, an official website for Medicinal researched. Using Keras, we have designed the different 
hidden layers, which help to improve the accuracy of text classification. A Feedforward Neural network 
is used for the code, which has the characteristic that the output of one layer is feed to the next layer.

The main contributions of this work are as follows:

• To compare traditional text classification with ontology-based text classification.
• To propose an algorithm for ontology-based text classification using an artificial neural network 

for better accuracy.

The rest of the paper is organized as follows.
Section 2 describes the Literature review on text classification. In Section 3, we discuss the 

existing techniques for text classification. Section 4 describes the detailed description of our proposed 
work. In Section 5, we evaluate the proposed approach against the existing one. Section 6 represents 
the threats of validity. Finally, Section 7 concludes the paper.

2. LITeRATURe ReVIew

The main intention of this paper is to explore and present chronologically, a comprehensive survey 
of the major applications of deep learning covering a variety of areas, the study of the techniques 
and architectures used, and further the contribution of that respective application in the real world. 
Finally, the paper ends with the conclusion and future aspects.

The traditional text classification approaches use Machine Learning or Statistical methods to 
perform any task. Such methods include Naïve Bayes (Lewis, 1998), Support Vector Machines 
(Vapnik, 2013), Latent Semantic Analysis(Deerwester et al., 1990), and many others. The Classical 
text classification methods are provided clearly and concisely in (Sebastiani, 2002). In (Dargan et 
al., 2020), the authors focus on the concepts of deep learning and its applications covering various 
areas, study the techniques and architectures used, and further the contribution of that application 
in the real world. The authors in (Dagan et al., 1997; Kaur & Sapra, 2013; Ruiz & Srinivasan, 
1997; Wu & Tsai, 2009) presented different Neural Networks for text classification on different 
applications like spam filtering, document classification, etc. The authors in (Ng et al., 1997) 
developed a new feature selection method to reduce dimensionality and ease classification. In a 
lot of these researches, textual and numeric data have been used to improve the classification and 
prediction of these expert systems (Arbelaez et al., 2012; Fageeri et al., 2017; Waudby et al., 2011; 
WHO, 2010). Automatic text classification is the process of allocating a text to one or more pre-
defined classifications based on its content. Many applications use text classification techniques, 
including monitoring of news and its classification, e-mail filtering, sorting through digitized 
paper archives, automated indexing of scientific articles, and finding interesting information on the 
Web, as well as biomedical applications (De Paz et al., 2013). A comprehensive survey of hybrid 
classifier systems can be found in (Woźniak et al., 2014).

However, there is still much work to be done on incorporating semantic background knowledge 
into text categorization. Early several authors have worked on it and some are: (Bodner & Song, 
1996; Dave et al., 2003; Green, 1999). To improve the text clustering task, they apply WordNet 
(Fellbaum, 1999). WordNet is a collection of related words grouped into synonym sets, with each 
set representing a lexical concept. WordNet has been used for text categorization and clustering 
with great success. In (Ma et al., 2012), the authors developed an ontology for classifying research 
proposals. There are four stages: (a) Constructing research ontology, (b) Classifying new research 
proposals into disciplines, (c) building research proposal clusters using text mining, (d) balancing 
research proposals and regrouping them by considering applicants’ characteristics. The authors in 
(Kaur & Sapra, 2013) researched in a similar domain; they proposed Ontology-Based text mining 
methods to classify research proposals and external research reviewers. The authors in (Sanchez-Pi et 
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al., 2014) proposed a classification strategy for classifying oil and gas sector incidents that relied on 
prior knowledge provided by an ontology. It is worth noting that the basic knowledge provided by the 
domain ontology for health, safety and environmental contexts for oil and gas applications has been 
extended to include a thesaurus to find implicit relationships to make the approach more flexible and 
resistant to the classification of real documents that can be written in the heterogeneous form. The 
authors in (Sanchez-Pi et al., 2016) resented an extension of this classification approach which, in 
addition to the basic knowledge gained from ontology, uses a list of technical terms generated semi-
automatically using n-gram extraction method. In (Althubaiti et al., 2020), authors have developed 
a framework for identifying terms and phrases used in biomedical Europe PMC full-text papers for 
a class in ontology. To this end, the authors define variants of the lexical representation, use word 
embedding to collect information from meaning, and use online reasoning to generate features and 
an artificial neural network to classify them.

3. BACKGRoUND KNowLeDGe

This section contains and handles the theoretical background needed to solve and understand the 
problem area. We will also discuss the techniques of text classification.

3.1 Machine Learning Techniques for Text Classification
The ability of a computer to learn from data or previous experience is referred to as Machine Learning 
(ML). The traditional text classification is shown in Figure 1.

There are three primary forms of machine learning:

• Supervised ML: The learning process is guided by human assistance in the form of labelled 
training data.

• Unsupervised ML: There is no human involvement. The classifier uses unlabelled training data 
to find some unknown categories into which the data can be clustered.

• Semi-supervised ML: Labelling only a small portion of the training data provides only partial 
human assistance.

However, supervised ML techniques need more manual effort to prepare the training data 
than unsupervised and semi-supervised methods. Still, they often produce better results due to the 
extra-human assistance (Sebastiani, 2002). Some commonly used supervised and semi-supervised 
ML algorithms include SVM, Naïve Bayes (NB), k-nearest neighbor’s (k-NN), and decision trees 
(DT), etc. (Agarwal et al., 2011). When it comes to machine learning, SVM is the most often used 
algorithm. A feature space maps the labelled data and tries to discover the optimal separators between 
the data. After that, the test results are then mapped to feature space and classified by the founding 
separators. The k-Means and hierarchical algorithms are two unsupervised ML techniques that are 
frequently employed.

Deep learning and shallow learning are the two main types of machine learning. Shallow 
learning is limited to a linear combination of parameters and a single function from the training 
data. Text Classification has had success with shallow learning algorithms (e.g., SVM). Still, their 

Figure 1. Traditional Text classification
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poor modelling and representational power prevent them from learning complex functions such 
as those involved in text semantics. On the other hand, from training data based on deep learning, 
complicated functions can be learned with nonlinear combinations of parameters (Bengio & LeCun, 
2007). The neural network algorithm is the most often used deep learning algorithm. An algorithm 
can simulate the iterative learning process of the human brain using neural networks, which learn 
from known information and infers new unknown information based on the learned knowledge. The 
feedforward neural network algorithm and the recurrent neural network algorithm are two examples 
of neural network algorithms that can be used. The hierarchical SoftMax skip-gram algorithm is the 
most up-to-date and best-performing algorithm.

In the traditional text classification basically, there are three main steps:

• Dataset Generation
• Model Training and Testing
• Analyzing/classifying results

3.2 ontology-Based Techniques for Semantic Text Classification
To facilitate Text Classification, Semantic Text Classification makes use of the semantics of the text. 
When we talk about ontologies, we’re talking about knowledge conceptualization. As a result, an 
ontology can help capture the text’s meaning.

Document classification may benefit by using ontologies in the following two ways:

1.  Use an ontology to represent a document’s features and then use a machine learning method to 
categorize documents based on their features. For example, Term features from documents are 
extracted and mapped to the ontology concepts (Lee et al., 2008). Term features are replaced 
with ontology concept features in documents that used to be represented by term features. After 
that, ML-based TC is applied to these concept features.

2.  Use the concept features of each category to classify documents based on semantic similarity 
scores between concepts or phrases. For example, in (Yu et al., 2006), the authors use a linguistic 
ontology with statistical data (such as word frequency) for text classification.

Concepts that describe syntactic and semantic features of words are included in the ontology’s 
scope. These syntactic and semantic features are learned using a collection of labelled training 
data. Documents’ keywords are extracted and classified using TC’s linguistic ontology knowledge. 
The authors use concept vectors for text classification in (Yang et al., 2008). An ontology-derived 
concept is represented as a vector of concept-value pairs, where the value is defined based on the term 
frequency-inverse document frequency (TF-IDF). One way to express a testing document is by using 
a vector of keyword-TFIDF pairs. Based on the similarity between document vectors and category 
vectors, the documents are subsequently classified. Instead of requiring labelled training data like in 
the first example, the second example can be classified as an unsupervised ontology-based attempt. 
Unsupervised ontology-based TC, as opposed to supervised ML-based TC, eliminates the need to 
classify training data manually.

4. KNowLeDGe-INFUSeD TeXT CLASSIFICATIoN

The classification by neural network is supposed to improve with the use of ontology in the 
classification process. We aim to verify this fact by studying and comparing values of accuracy, 
precision, recall, and F1 score for ontology-based classification and traditional text classification.

In Ontology-based text classification, the second phase is being added between Dataset generation 
and Model training and testing, which is ontology matching, as shown in Figure 4 (a). The phases are: 
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(a) Dataset Generation, (b) Ontology Matching, (c) Model training and testing, and (d) Analysing/
classifying results:

1.  Dataset Generation: Although a disease-symptom association database was already accessed 
by some authors with three columns for disease name, number of occurrences, and symptoms 
(Columbia, n.d.); however, it needed to be modified in order to be used for our research. Some 
other information was also included in order for a more precise matching process. It was therefore 
decided to use the final dataset that was developed for the intended research. The disease name is 
a classification/output feature in the modified dataset, while the disease description is a matching 
feature in the ontology. the ontology used is Human Disease Ontology, which was hosted at the 
website of the Institute of Genome Sciences, Maryland School of Medicine. It uses prefixes as 
identifiers for identifying diseases. Each prefix begins with ‘DOID’, followed by some number, 
which is used as disease identifiers. After the ontology and a workable dataset were obtained, 
the dataset was cleaned and pre-processed before being processed with Natural Language Toolkit 
(NLTK). The basic steps of Pre-processing are tokenization, stemming, lemmatization, and 
POS tagging. Frequency Distribution is applied to our filtered dataset in the end to obtain the 
frequency of the words in the diseases and symptoms our model will process. A list of tuples 
describing the keyword, frequency, and also whether the word is being lemmatized or not in the 
cleaning process is used. The lemmatizing factor (0 or 1) helps to sort the list according to their 
possibility of lemmatization keeping the non- lemmatized word in the start and later at the end, 
thereby helping in better class detection of possible disease. In addition, a synthetic dataset is 
created by employing computer techniques to create fresh data.

2.  Ontology Matching: In this phase, the keywords generated from the disease definition match the 
keywords of ontology nodes. To construct the subset of data, all the matching nodes are possible 
classes for efficient model training. The use of priorities helps us restrict classes further. Every 
keyword is allocated two numbers in our ontology research to give priority to each keyword. The 
first number defines the keyword frequency, and the second number indicates whether or not 
the keyword can be lemmatized. It is assigned as 1 otherwise if it cannot be lemmatized. Each 
keyword, therefore, has a syntax (name, priority number, second priority number). Figure 4 (b) 
shows the steps for ontology matching.

3.  Model Training and Testing: In this phase, we need a dataset and train a classifier on it using 
ANN. Because the dataset initially contains text keywords, the count vectorizer module must 
transform it to numbers. A classifier can then be trained using the training data. The neural 
network used is Keras Sequential Model (Abrori, 2016) as shown in Figure 2. Now to run the 
neural network, and observe the classification parameters for both the cases considered in the 
research. Before feeding the train and test data to the model, it is first pre-processed using Count 
Vectorizer, Label Encoder, and OneHotEncoder:
a.  Count Vectorizer: Applied on the train and test data to obtain a sparse matrix of the 

vocabulary along with the respective frequency of tokens. The sparse matrix is created using 
the csr_matrix of the sklearn library. The maximum features taken in this research are 300.

b.  Label Encoder: Used for the train and test labels to assign a number to the resultant labels 
which are diseases in our case.

c.  One Hot Encoder: After performing Label Encoding, the labels are passed to OneHotEncoder 
to create a matrix that is passed to the neural network.

The model summary of the neural network is given in Figure 3.
In the neural network, we have one input layer containing 300 input neurons for each of the input 

features. Three hidden layers are consisting of 32 neurons each result of which is fed to the output 
layer which gives the predicted labels. Categorical Cross entropy is the loss function used in our study 
as given in Eq. 1. It is also called SoftMax loss which is a combination of SoftMax activation and 
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a cross-entropy loss which after training the neural network outputs the probability over the classes 
for each test instance:

L y y, ˆ( ) = -
j

M

i

N

ij ij
y y

= =∑ ∑ ( )( )
0 0

* log ˆ  (1)

The result thus obtained is compared with the test labels to determine the accuracy, precision, 
recall, and F-measure and compare the results with the non-ontology-based approach. After training, 
the model can be used to make predictions based on the testing data. The ratio between training and 
testing data is 80/20.

4.  Analysing/Classifying Results: For the result analysis, the disease predictions for the testing data 
are compared to the actual disease class. We calculated classification metrics such as accuracy, 
precision, recall, and F1-score after comparing the results. We have compared the performance 

Figure 2. Keras Sequential Model (Abrori, 2016)

Figure 3. Model Summary
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of an Artificial Neural Network using metrics after this computation. On the basis of individual 
class-wise precision and recall values, we can also verify which classes appear to perform well.

5. ReSULTS AND DISCUSSIoN

The following Parameters are used for evaluation and comparison of the model are accuracy, precision, 
recall, and F1 score:

• Accuracy: Accuracy defines the intuitive essence of a training model. The correctly predicted 
findings in the list of all predictions are taken into consideration:

Accuracy
TP TN

TP FP FN TN
=

+
+ + +

 

• Precision: Precision is defined as the pertinent fraction of all instances found. It is also called 
the positive predicted value:

Precision
TP

TP FP
=

+
 

• Recall: Recall is the proportion of the instances found in all relevant instances. It is also called 
sensitivity:

Recall
TP

TP FN
=

+
 

Figure 4. (a) Ontology-Based Text Classification 4; (b) Ontology Matching
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• F1 Score: Score is the weighted average of Precision and Recall. Therefore, it factors in false 
positives as well as false negatives. In case of an uneven class distribution, F1-score becomes 
more important than accuracy. Other times, when false negatives and positives have the same 
cost, accuracy may be treated as the superior evaluation parameter:

F Score
Recall Precision

Recall Precision
1

2
 =

( )
+( )

* *
 

Here:

TP True Positive=   
TN True Negative=   
FP False Positive=   
FN False Negative=   

5.1 Comparison of Traditional and ontology-Based Text Classification
We have done the comparison of with and without ontology-based text classification using Machine 
Learning. The following are the results in Table 1. It’s worth noting that the decision tree classifier has 
the largest boost in accuracy, precision, recall, and F1 score, with 0.75 for simple classification, and 
0.85 for ontology-based classification, as well. The decision tree classifier has a 10% improvement 
in metrics for 500 test cases and a 6% percent improvement for 100 test cases. KNN Classifier, which 
exhibits a 5% improvement for both 100 and 500 test instances, is the next step in the process of 
learning. There has been a slight improvement in metrics for the rest of the classifiers as seen in Table 1.

In basic text classification and ontology-based classification, the parameter values for the bagging 
classifier are 0.87 and 0.89, respectively. For each classification, the parameters of the Random 
Forest Classifier were found to be 0.96 and 0.97. It’s worth noting that for simple text classification, 
Nave-Bayes Classifier and SVM Classifier have the same values of all parameters as 0.98 and 1.0 for 
the ontology-based classifier, respectively. We’ll now look into Logistic Regression, with metrics of 
0.99 for simple text classification and 1.0 for ontology-based text classification. On the other hand, 
the order in which various classifiers improve their accuracy (with or without employing ontology). 
The graphical representation for 100 test cases is shown in Figure 5.

The following is the order of the classifier in relation to its magnitude:

Decision Tree Classifier < KNN Classifier < Bagging Classifier < Random Forest   
Classifier < Naïve Bayes Classifier < SVM classifier < Logistic Regression 

5.1.1 Discussion
The findings reveal that the ontology-based classification is better than the classification that does not 
use ontologies. The general pattern points to an ontology-based classification that is more accurate 
and precise. When classification was done with the help of ontology, all of the measures employed 
(accuracy, precision, recall, and F1 Score) showed an increase of up to 10%. It may be concluded 
that the use of an ontology improved classification efficiency. In reference to Table 1, the values of 
the metrics Accuracy, Precision, recall, and F1-score have the same magnitude. This is due to the 
fact that the FP & FN values are the same in magnitude as there is a smaller number of records per 
disease. This benefit can be linked to the fact that the number of possible categorization classes has 
decreased, which has resulted in a reduction in the amount of time required for training.
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5.2 ontology-Based Text Classification Using ANN
We have taken 4 experiments on different hidden layers 10, 50, 100 with 4 different classifications of 
diseases as shown in Table 2. In disease classification, there are 2 classes and the authors have given 
the highest accuracy as 96.06% and F1 score as 95.32%, while in our experiment we have got the 
accuracy and F1 score as 100%. Similarly, in the infectious disease classification, there are 5 classes, 
the highest accuracy, and F1 score is 95.74 % and 96.01% respectively, while we have got highest one 
is 100%. Next in the case of Anatomical disease, there are 13 classes and the highest accuracy and 
F1-score are 76.98 % and 70.20% respectively. In the last case, there is the combination of Infectious 

Table 1. Comparison of with and without ontology-based text classification

Classifier Parameter
100 Test Cases 500 Test Cases

Without Ontology With Ontology Without Ontology With Ontology

Naïve-Bayes

Accuracy 0.98 1.0 0.97 0.978

Precision 0.98 1.0 0.97 0.978

Recall 0.98 1.0 0.97 0.978

F1 Score 0.98 1.0 0.97 0.978

Decision 
Tree

Accuracy 0.74 0.80 0.758 0.852

Precision 0.74 0.80 0.758 0.852

Recall 0.74 0.80 0.758 0.852

F1 Score 0.74 0.80 0.758 0.852

KNN

Accuracy 0.81 0.86 0.818 0.854

Precision 0.81 0.86 0.818 0.854

Recall 0.81 0.86 0.818 0.854

F1 Score 0.81 0.86 0.818 0.854

Random 
Forest

Accuracy 0.96 0.97 0.932 0.952

Precision 0.96 0.97 0.932 0.952

Recall 0.96 0.97 0.932 0.952

F1 Score 0.96 0.97 0.932 0.952

SVM

Accuracy 0.98 1.0 0.986 0.992

Precision 0.98 1.0 0.986 0.992

Recall 0.98 1.0 0.986 0.992

F1 Score 0.98 1.0 0.986 0.992

Bagging

Accuracy 0.87 0.89 0.894 0.912

Precision 0.87 0.89 0.894 0.912

Recall 0.87 0.89 0.894 0.912

F1 Score 0.87 0.89 0.894 0.912

Logistic 
Regression

Accuracy 0.99 1.0 0.982 0.99

Precision 0.99 1.0 0.982 0.99

Recall 0.99 1.0 0.982 0.99

F1 Score 0.99 1.0 0.982 0.99
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and Anatomical diseases, which consists of 17 classes. In this case, the highest accuracy and F1-score 
are 84.98 % and 73.13 % respectively and we have achieved the same as 97.03 % and 90% respectively. 
The comparison graph for the F1-score and AUC is as shown in Figures 6(a) and 6(b) respectively. 
We are comparing the metrics like F1-score and AUC disease wise not considering hidden layers.

The values in bold represent the highest F1 score and AUC for different experiments.

5.2.1 Discussion
The proposed algorithm gives better accuracy as compared to the existing algorithm. In all four 
experiments, the results are better. When the classes are less, the difference in accuracy and F1-score 
of the existing and proposed approaches is less. As the number of classes is increasing, the difference 
has improved. When the number of classes is 2, the difference is only 3-4% as shown in Table 2. 

Figure 5. Graphical Representation of Traditional and Ontology-based Text Classification

Table 2. Comparison of F1-Score and AUC for different classes using different hidden layers
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Diseases 2 94.65 95.31 94.83 95.97 95.32 96.06 100 100 100 100 100 100 100 100 100 100 100 100

Infectious 
disease 5 95.65 95.01 96.01 95.74 95.43 95.22 85.43 85.43 100 100 100 100 100 94.04 100 100 100 100

Anatomical 
disease 13 69.18 77.22 70.15 70.20 70.20 76.98 79.06 79.06 87.60 87.60 95.86 89.53 90 80.19 90 95.24 90.00 96.34

Infectious + 
anatomical 
diseases

17 71.07 84.75 73.13 84.03 72.61 84.98 71.59 71.59 93.96 93.96 96.10 96.10 72.19 70 90 95.08 80. 97.03
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Similarly, in the case of the 5 classes, the difference is the same. When the classes are 13, the difference 
is around 20%, and similarly in the last case also. The F1-score and Accuracy are better in all the 
disease classifications as compared to the existing one. This neural network trains on a reduced set 
of classes after ontology matching and thus upgrades the training process.

6. THReATS oF VALIDITy

There must be a certain degree of validity in the results presented in this research before it can be 
considered as a contribution to the area.

Figure 6. (a) Comparison of F1-Score (b) Comparison of Accuracy



International Journal of Information System Modeling and Design
Volume 13 • Issue 10

13

One threat of validity is the usage of Python libraries in this research. The library that implements 
the algorithms, sci-kit-learn, is what we rely on. The open-source library’s simplicity is tempting, 
but it also poses a threat to validity because we have no control over its implementation. Another 
threat against validity in this research is how the data gets split. The splitting of data must be done 
in a balanced way if the results are to be trusted. An unreliable result may be obtained if there is 
an imbalance between distinct classes or labels. This can be avoided by balancing the amount of 
data for each category in a way that makes sense. One more threat is the Reliability of treatment 
implementation, which means that there is a possibility of varying implementation across researchers 
in their application of the treatment or between different time periods. As a result, it’s necessary to 
use the same implementation, or as identical as possible, for different treatments or at different times. 
Results can also be affected by changes in the dataset.

7. CoNCLUSIoN

The result of this study shows that text classification with ontology gives a better result as compared 
to text classification without ontology using an Artificial Neural Network. A difference of 0% to 12% 
is observed in all the parameters, i.e. accuracy and F1 score with Ontology-based classification. When 
the classes are very less, the difference is less. As the number of classes is increasing the difference 
is improved. We have also compared our work with one of the research papers and we have achieved 
better results in terms of F1 score and accuracy for different classes for different hidden layers. In 
all four experiments, it has been observed that the accuracy and F1 score are better as compared 
to the results given by Althubaiti et al 2020. Disease ontology is used to categorize the symptoms 
of different diseases and to form relationships among them. The obtained text is used for ontology 
matching, and then finally for classification. This neural network trains on a reduced set of classes 
after ontology matching and thus upgrades the training process. Thus, our initial assumption proves 
to be valid. This research proved out to be beneficial however it won’t be efficient enough in the case 
of a vast dataset where a brief medical history of the patients is provided as input. Therefore, there 
is scope to improve the neural network to function readily on similar vast datasets.
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