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ABSTRACT

Due to the rapid development of smart city, Hybrid Information Centric-Networking (HICN) 
emerges as a promising technology to enable the power of smart city. One of the most important 
application is the smart English translation, which becomes more and more popular with the process 
of internationalization. In this work, the authors focus on studying the intelligent English translation 
in smart city using the HICN technology. Particularly, a method using collaborative machine learning 
and quality estimation technique is proposed, which sets a fixed threshold to filter pseudo-parallel data 
during unsupervised neural machine translation training. The quality estimation is used to evaluate and 
screen the pseudo-parallel data with high performance generated during reverse translation training. 
The results indicate that the proposed method outperforms the state-of-the-art methods.

KEywoRDS
HICN, Machine English Translation, Quality Estimation, Smart City

1. INTRoDUCTIoN

The Information Centric-Networking (ICN) (Ion et al. 2013) is a novel and promising network 
architecture, which focuses on information and pays attention to the content itself. Instead, the location 
of the content storage is not the target. As the unique identification of the content, the content name 
is used for the positioning, routing and transmission of the content. Intra-network cache is one of 
the most important features of ICN network architecture (Kutscher et al. 2016). If the information 
requested by the user is matched in the router, the router sends the information directly to the user. 
Instead of parsing the address of the source host as in the traditional IP network, the source host must 
forward the message to the user, which greatly reduces the transmission delay and network traffic 
and improves the network performance (Eum et al. 2018). As you can see from figure 1, the biggest 
difference between ICN and the traditional TCP/IP model is that IP is replaced by Content Chunk at 
the “thin waist”, where the every node in the middle means the router or the switcher used to forward 
traffic from source to destination. From a network point of view, the naming of content is used instead 
of the naming of physical entities.In addition, the build-in storage function in the network is used to 
cache the passing data, to shorten the response time for other users to access the same data, and to 
greatly reduce the traffic in the network (Li et al. 2018).

ICN has been recognized by scientific research institutes and even some companies around the 
world (such as Cisco and Huawei) because of its unique characteristics of supporting on-net cache 
and IP address decoupling (Trossen et al. 2015). In order to speed up the process of ICN, many new 
networking modes, including data center network, software-defined network, mobile social network, 
satellite communication network and vehicle network, as well as cloud / fog / edge computing (Yi et 



International Journal of Information System Modeling and Design
Volume 13 • Issue 3

2

al. 2021), 6G/5G, big data and network function virtualization are introduced to enhance ICN. This 
important integration with ICN is called the Hybrid ICN (HICN) (Muscariello et al. 2018). Although 
HICN has improved ICN to a great extent, it also faces some challenges that need to be solved urgently.

Now, smart city (Su et al. 2017), as an important application scenario of HICN, presents an 
important trend in the process of continuous research and development. It makes full use of the new 
generation of information technology in various industries in the city to create an advanced form of 
urban informatization based on the knowledge society (Neirotti et al. 2014). At the same time, with 
the development and acceleration of the process of internationalization, the popularization of English 
has become inevitable. Then, the combination of the two is the trend of the times, and it has become 
an important application of smart cities to accelerate and optimize English translation based on new 
information technology. Therefore, the intelligent English translation technology based on HICN has 
become the current research hotspot (Naeem et al. 2018).

Recently, the method of Neural Machine Translation (NMT) (Wu et al. 2016) stands out in the 
field of machine translation and has made great progress. NMT is usually composed of two sub-
neural networks. The encoder network encodes the source language sentences into context vectors, 
and then the decoder network iteratively decodes the context vectors encoded by the encoder network 
into target language sentences with the same meaning (Sennrich et al. 2015). Usually in a supervised 
environment, a large number of bilingual parallel sentence pairs are needed to train the model. 
However, most language pairs have almost no parallel data. The Unsupervised Neural Machine 
Translation (UNMT) successfully breaks this limitation, and conventional machine translation tasks 
can be accomplished only by training with monolingual corpus in two languages. Unsupervised 
neural machine translation is based on neural machine translation, and combines denoising automatic 
encoder and reverse translation (Shakhnovich et al. 2018) training dual model initialization and cross-
language embedding (Asghari et al. 2019) to achieve the goal of machine translation. However, in the 
process of unsupervised neural machine translation model training, reverse translation will produce 
a large number of pseudo-parallel data, and the quality of these pseudo-parallel data becomes very 
important in reverse translation training. Therefore, controlling the quality of pseudo-parallel data 
in the process of training reverse translation is a key to improve the quality of unsupervised neural 
machine translation (Ren et al. 2019).

In this paper, a method using collaborative machine learning and quality estimation technique 
is proposed, which sets a fixed threshold to filter pseudo-parallel data during unsupervised neural 

Figure 1. Comparison of protocol structures between traditional IP and ICN
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machine translation training, which effectively improves the effect of unsupervised neural machine 
translation. Then, based on the generation countermeasure network (Fotohi et al. 2020), reverse 
translation and language modeling are used as generators and discriminators respectively. The quality 
estimation is used to evaluate and screen the pseudo-parallel data with high HTER generated during 
reverse translation training. At the same time of controlling the quality of pseudo-parallel data, this 
method enriches the generating sample of the generator, makes the discriminator collect more slowly, 
and makes the generation countermeasure network trained more fully, thus improving the translation 
effect of unsupervised neural machine translation.

The organizational structure of this paper is as follows: the second section introduces the related 
research work. The third section introduces the proposed model and method. The fourth section 
analyzes the experimental results. The fifth section summarizes this work.

2. RELATED woRK

At present, several methods have been proposed to train NMT models without using bilingual parallel 
corpus directly. The method (Shatsky et al. 2018) used by is to train independent translation from 
the source language to the pivot language, and then from the pivot language to the target language. 
Although this method is ingenious, it is highly dependent on the pivot language. at the same time, it 
invisibly introduces the translation error of the third language or even the fourth language, and the 
error introduced by the pivot language can not be eliminated (Meyer et al. 2015).

Due to the success of cross-language embedding, Lample et al and Artetxe et al also proposed 
an unsupervised neural machine translation method based on pre-training cross-language embedding 
training. This method only uses monolingual corpus of two languages to train the embedding of two 
languages independently, and learns linear transformation (Abdel et al. 2016) and confrontation training 
(Zhang et al. 2018) to map them to shared space. The resulting cross-language embedding is used 
to initialize the shared encoder of the two languages, and the whole system uses a combination of 
denoising automatic encoder, reverse translation and confrontation training (Aiguier et al. 2015). Yang 
et al. further improved this method by using two language-specific encoders (Sen et al. 2019), sharing 
only a subset of their parameters, and combining local and global generation to train unsupervised 
neural machine translation.However, when training the model, these methods do not take into account 
the quality of pseudo-parallel data generated by reverse translation, resulting in insufficient training 
of the model (Rudebeck et al. 2019).

At present, reverse translation technology is often used in unsupervised neural machine translation. 
Wang et al. used the method of quality estimation (Martins et al. 2017), that is, using OpenKiwi 
(Kepler et al. 2019) to screen the pseudo-parallel data generated by reverse translation and the square 
method of combining the real parallel data with the real parallel data to train NMT, which improved 
the performance of machine translation. Li et al. used reverse translation to expand parallel data using 
monolingual corpus (Bustamante et al. 2020), and adopted a new data enhancement method to further 
improve the robustness of NMT to noise and translation effect while keeping the model small. Miguel 
et al. adopted the scheme of synthetic data generation and reconstructed the reverse translation within 
the cross entropy optimization norm of the NMT module (Sennrich et al. 2017), elucidating its basic 
mathematical hypothesis and approximate values other than heuristic usage. The basic problems of 
the sampling-based method are pointed out by using the formula, and the problem of neural machine 
translation data enhancement is solved by disabling the label smoothing from the target to the source 
model and sampling from the restricted search space (Janson et al. 2016). However, Wang et al. and 
Miguel et al. all use supervised methods to solve the problem of insufficient data and control the 
quality of pseudo-parallel data, and do not solve the problem of training machine translation tasks 
without bilingual parallel corpus.

The method in this paper not only relies on using the collaborative machine learning, but also 
based on using the unsupervised NMT method proposed by Gu et al. 2017. It only uses two kinds of 
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monolingual corpus to screen pseudo-flat data to train reverse translation, while using less data to 
train and improve the performance of unsupervised neural machine translation.

3. PRoPoSED ALGoRITHM

In order to fulfill a better English translation framework, we first establish the whole system structure 
for English translation, as shown in Figure 2. In particular, there are three main modules which are 
the feature extraction module, the feature integration module and the machine translation module. 
In particular, the first module is in charge of extracting different features, and the second module is 
used to integrate different features. Based on these information, the last module can carry out the 
translation process easily.

3.1 Feature Extraction

1) Semantic Feature Model

On the basis of the above construction of the overall structure model of English-Chinese machine 
automatic conversion translation, the semantic features of English-Chinese machine automatic 
conversion translation are analyzed, and the semantic relevance mapping and association rules 
reorganization are adopted. The expression of semantic relevance degree model of English-Chinese 
machine automatic translation is as follows:

A P
a
b= +( )

2
2                   (1) 

where a is the balance factor of the semantic feature distribution of English machine translation; b is 
the adaptive analytical factor of English machine translation, and P is the entity probability density 
distribution set of English machine automatic translation control.

Figure 2. System framework and structure
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Now, we need to establish a fuzzy information fusion model, and the joint probability density 
space of n common notional words is obtained. Through the automatic transformation of the mapping 
results of semantic information in translation by the English translation machines, using linear 
weighting, the weighted control quantity is obtained as follows:

B
a b A k

a b
=

+( )−
−( )2

                 (2) 

where k is the keyword weight of the translated text. The feature extraction of English machine 
automatic transformation translation is carried out by using semantic mapping and relevance feature 
reorganization. According to the feature extraction results of English machine automatic transformation 
translation, the joint parameter distribution set of semantic mapping is obtained. Through fuzzy 
measure decomposition, the mapping expression of joint feature distribution is obtained as follows:

C
B k

B
k

k

=
+ +log ( )

log

1
                  (3) 

Combined with the fuzzy decision of English-Chinese machine automatic translation, the 
similarity fusion component of each subset translation is obtained, that is, e e e i r

i1 2
1, , , , , ,� �{ } ∀ ∈    

where i means the i-th word of the text to be translated and r is the total length of the text. By using 
subspace sequence fusion, the template learning function of English-Chinese machine automatic 
conversion translation is:

D QN
C

u
= +                   (4) 

Among them, Q is the semantic relevance distribution set of English machine automatic 
translation; N is the joint feature parameter distribution set, and u is the self-similar fusion distribution 
coefficient of English machine automatic translation. The fuzzy analytic feature clustering matrix 
is as follows:
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where ω represents the feature similarity corresponding to each word. Combined with feature 
distributed fusion and joint parameter analysis, a joint feature analysis model of English machine 
automatic conversion translation is constructed to improve the output adaptability and feature detection 
and analysis ability of English machine automatic conversion translation.

2) Semantic Feature Extraction
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The ontology fusion method of semantic unit is used to construct the extraction of semantic context 
in English-Chinese machine translation.By using the method of semantic modification, the joint feature 
distribution set An of automatic machine conversion between English and Chinese is constructed, and 
the piecewise function of automatic machine conversion between English and Chinese is constructed 
by combining the fuzzy comprehensive decision method. The semantic structure distribution of the 
translation output of automatic machine conversion between English and Chinese is obtained:

δ t t E
t t

D
T

1 2

1 2
2

,( ) = +
+( )

                (6) 

Among them, the t1 is the output time series of English machine automatic conversion translation; 
t2 is the sampling time interval of English machine automatic conversion translation, and the joint 
features of English machine automatic conversion translation are:

F t t uC= ( )+δ
1 2
,                  (7) 

By using the method of semantic probability set fusion, the semantic feature distribution nodes 
of English-Chinese machine translation are obtained. Denoting them by l1 and l2 respectively, then 
the distance between them is defined as the Euclidean distance, based on which we create the joint 
feature components of English-Chinese Machine automatic conversion translation that is denoted by 

∆x . In the interval of −
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automatic conversion translation is constructed, and the joint constraint features of English-Chinese 
machine automatic conversion translation are obtained, as follows.
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The vector model structure of the semantic unit of the English-Chinese translation model is 
constructed, and the semantic feature extraction of English-Chinese machine translation is carried out.

3)Model optimization

A remote fuzzy control model of English-Chinese machine automatic conversion translation 
is constructed, and linear statistical features and feature analysis are used to detect. The statistical 
functions of quality evaluation of English-Chinese machine automatic conversion translation are 
obtained as follows:

H G v F= + +( )2 β                  (9) 

where v is expressed as the set of constraint index parameters of English-Chinese machine automatic 
conversion translation, which is a standard normal distribution function, and β is the output stable 
characteristic quantity of English-Chinese machine automatic conversion translation. By using the 
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method of relevance mapping analysis, the mapping of the statistical feature sets R and S of English-
Chinese machine translation are carried out, and the optimal solution of English-Chinese machine 
conversion translation text is obtained.:

K
H

R

Hv

S
= ×

β
               (10) 

The semantic fusion model of English-Chinese machine automatic translation is established, and 
the spectral information clustering and attribute judgment are used to realize the automatic English-
Chinese machine translation.

3.2 Feature Integration
The feature integration is carried out in three steps which are the feature analysis, statistics, and the 
integration model building, . The details are as follows.

1) Feature Integration Analysis

Syntactic feature method, also known as dependency parsing or dependency grammar, focuses 
on the association of words in long sentences. In English grammar, the common relations of sentence 
components are subject-predicate relationship, verb-object relationship, juxtaposition relationship 
and so on. In a sentence, the verb is generally regarded as the core word in the sentence, and the other 
words in the sentence are directly or indirectly related to the core word. For the syntactic feature 
analysis of a sentence, the analysis process is usually represented by a directed graph. The words 
in the sentence are individual nodes, and the syntactic relationship between the core word and the 
dependent word is marked with a directed arrow, and the relationship is explained above the arrow.

In the syntactic feature model proposed in this paper, it is stored according to the unit, and the 
syntactic feature unit model will be established below. In this model, the syntactic relations between words 
are directly stored in the corresponding syntactic units, and the unit construction rules are as follows:

M Mx MPx MCx MBx
i i i i i
= { }, , ,              (11) 

where Mi represents the storage syntactic unit of the first word in a sentence. MPxi, MCxi, and MBxi represent 
the position of the first parent node word, child node word and adjacent node word in the sentence.

Although the syntactic feature model can judge the sentence components, the translation model 
can also achieve a better accuracy.However, due to the limitations of the model itself, the model 
can not better learn the weak features of sentences. Therefore, it is still necessary to add a statistical 
model on the basis of syntactic features to strengthen the semantic relationship of each word in a 
long sentence, so as to further generate correct results.

2) Feature Integration Statistic

In the process of cutting long sentences, not any long sentence can be divided into appropriate 
short sentences. Only when the segmented sentence has an independent syntactic feature structure 
can it be considered meaningful for the segmentation of long sentences. Therefore, the conditional 
random field model is introduced to make a meaningful segmentation of words and commas in long 
sentences. In the conditional random field model, all corpus should be properly trained to judge 
whether the sentence segmentation in the corpus set is reasonable or not.
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The subordinate classification of conditional random field is undirected graph model, which has 
the characteristics of maximum entropy and hidden Markov chain. This statistical model is widely 
used in the field of natural language processing. The conditional random field can be defined as a 
conditional probability event, X is used to represent the observation sequence set condition, and Y is 
used to mark the sequence set condition, then the conditional random field model can be represented 
by conditional probability P(Y|X). The conditional random field is defined according to the statistical 
mathematical model.

Definition 1: Suppose that an undirected graph is T(V, E), where V is the set of vertices and E is the 
set of edges. Suppose that Y={Yv | v Î V}, that is, each individual element in the vertex set has a 
variable Yv. Let X satisfy the condition of Yv, then the variable Yv can satisfy the following formula:

p Y X Y u v p Y X Y u v
v u v u
( | , , ) ( | , , : )≠ =              (12) 

where u, v indicates any two nodes in the graph T and the pair (X, Y) is a strip random field.

3) Feature Integration Model

The model based on syntactic features can not learn the weak features of sentences. Therefore, 
a translation model based on syntactic features is established by combining the translation method 
based on language template and the translation method based on statistics. This model can strengthen 
the semantic relationship of each word in long sentences and further improve the translation quality of 
long sentences. The combination of the two simple models uses parallel execution, that is, sentence 
analysis based on syntactic features; sentence analysis based on conditional random field, and then 
two ways of long sentence segmentation are obtained. Then the two methods are fused, and the 
fusion methods include merging, de-duplication and so on. Finally, the translation is carried out in 
the translation engine.

Before using the fusion syntactic feature model for sentence segmentation, we should first train the 
conditional random field model according to definition 1. The process of model training is as follows:

• The corpus set merging is selected for pre-processing, and the sentences in the corpus are 
pre-processed, including the removal of repetitive sentences, the removal of sentence special 
symbols and so on.

• Extract the features of the sentences in the corpus set, then use the syntactic feature filter to 
analyze the components of the sentences and establish the dependency digraph, and then complete 
the sentence feature extraction.

• Input the sentence features into the conditional random field model for training. After the model 
training is completed, the training results of the conditional random field in the pre-processing 
module will be input to the conditional random field decoder in the segmentation process for 
decoding. At the same time, the sentences processed by syntactic features are compared with the 
sentences processed by syntactic features, and the operations such as merging and de-duplication 
are completed, and finally the processed sentences are fed into the translation model for translation.

3.3 Collaborative Machine Translation

1) Model Training
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The process of model training is separated into the following steps:

Step1: Initialization

Although most of the previous studies rely on bilingual dictionaries, the method of pre-training 
cross-language embedding proposed is more simple and effective. First of all, the Byte-Pair Encoding 
(BPE) is done for the corpus of the two languages. This process reduces the size of the vocabulary 
and eliminates the unknown words in the output translation. Secondly, through the joint processing 
of the corpus of the two languages, the need for bilingual dictionaries is eliminated by using part 
of the shared words of the joint BPE. Finally, learn tag embedding on the same two-language joint 
corpus and use these embedding to initialize lookup tables in encoders and decoders.

Step2: Language model establishment

Language modeling is realized through the denoising automatic encoder, which optimizes and 
updates the neural network parameters for the source language and the target language respectively, 
so that the pseudo-parallel data generated by reverse translation is getting better and better. Minimize 
the objective function can be described as follows:

L E P x C x E P y C ylm
x S s s y T t t

= − ( ) + 
 − ( )→ →~ ~

[ log ( | ) log ( | )]           (13) 

Among them, C is a noise model in which a partial single word is deleted. P
s s→  and P

t t→  targets 
are composed of encoders and decoders working on the source side and the target side, respectively.

Step3: Reverse translation

In the process of reverse translation, by using a common encoder and decoder, the target function 
is as follows.

L E P y u y E P x v xback
y T s t x S t s

= − ( ) + 
 − ( )→ →~ ~

[ log ( | ) log ( | )]* *  (14)

2) Semantic Quality Establishment

In order to solve the problem that neural machine translation needs a large number of bilingual 
parallel corpus, unsupervised neural machine translation uses the method of reverse translation to 
train the translation model. The method of reverse translation has always been widely used in the 
field of unsupervised neural machine translation. Usually, when minimizing the loss function, it is not 
back-propagated through the model that generates the data. This is to train the simplicity of reverse 
translation, but it ignores the importance of using data quality in neural machine translation training. 
Therefore, this paper proposes a square method of using quality estimation to control the quality of 
pseudo-parallel lines generated in the process of reverse translation training.

In this paper, the quality estimation model OpenKiwi is selected and trained. In order to train 
the OpenKiwi quality estimation model, we chose the quality estimation test set, verification set and 
training set provided by the WMT2019 shared task. In order to simplify the complexity of the system 
loading model, we only train the English-German and English-Czech quality estimation models, 
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which avoids the problem of introducing errors due to the use of different models in reverse translation 
and screening pseudo-parallel data. Finally, the sentence-level quality estimation models of English-
German and English-Czech with Pearson coefficients of 58.51 and 54.91 are used in reverse translation.

3) Reverse Translation

The method of reverse translation (also known as round-trip translation) mainly uses encoders 
and decoders to train independent translation models on the monolingual corpus of the two languages.
Therefore, during the training process, the unsupervised neural machine translation will train the 
same encoder and decoder iteratively in two directions, and finally apply the encoder and decoder 
to conventional machine translation.

The method of conventional reverse translation is a process of translating the source language to 
the target language and then back to the source language. Assuming that the source language sentence 
is S and the target language sentence is T, then the conventional reverse translation is S “T” S. The 
method used in this paper needs to use the QE model in the process of reverse translation. first, the 
conventional reverse translation process is divided into two stages: translating the source language 
sentence into the target language sentence, that is, S translating the target language sentence back 
to the source language sentence. Then, after the first stage, the QE model is added to evaluate the 
quality of the pseudo-parallel sentence pairs, and the evaluation result is the HTER value given by 
the QE model, and then the HTER value given by the QE model is compared with the threshold to 
filter the data. Finally, the pseudo-parallel data whose HTER value is greater than the threshold is 
carried out for two stages and the loss is calculated. after optimization, the neural network parameters 
are updated to end the current reverse translation process.

The final result of the estimator of the quality estimation model is the Human Translation Error 
Rate (HTER). The HTER metric is the percentage needed to be manually corrected in the translation. 
The HTER value ranges from 0 to 1, and the closer to 0 generation table, the better the translation, 
without manual editing. The closer to 1 means the worse the translation, which requires many manual 
edits. In the sentence-level quality estimation model, the translated parallel sentence pairs are put into 
the quality estimation model, and then the HTER value is predicted by the quality estimation model 
for us to select. Finally, the data obtained from the batch evaluation is calculated as the evaluation 
result of the pseudo-parallel data of the batch. Note that in order to improve the evaluation efficiency, 
we put a batch of pseudo-parallel data into the model to predict.

H
H H H

nbatch

i n=
+ + + +( )1
, , , ,� �

 (15)

where n is the number of sentences in a batch and Hi is the HTER value of a pair of pseudo-parallel 
data in a batch. The threshold for screening pseudo-parallel data is to take the average value of the 
highest value (Hmax) and the lowest value (Hmin) of HTER for generating sentence pairs through many 
experiments, as follows:

δ =
+(H H

minmax

2
 (16)

where is the threshold for filtering parallel data (we run the test ten thousand times and obtain the 
average value that can maximize the profits, that is, the threshold is generally set to 0.46 and 0.49 
respectively). Finally, the pseudo-parallel data generated by the reverse translation are screened 
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through the fixed threshold, and then the pseudo-parallel data satisfying the threshold are used to 
train and update the neural network parameters.

As for the setting of the threshold, because the quality of generating pseudo-parallel data in the 
process of reverse translation training is getting better and better, and the threshold and HTER values 
are not fixed, if the method of dynamic threshold can not control the retention ratio of pseudo-parallel 
data, it is impossible to analyze the experimental results, so we did not choose to use the method of 
setting dynamic threshold. Instead, the method of setting a fixed threshold is adopted to control the 
quality of pseudo-parallel data.

4. PERFoRMANCE EVALUATIoN

4.1 Setup
The parameters used for experimental simulation are summarized and shown in Table 1. In particular, 
the value of δ  is set to 0.5. The batch size is set to 32 and the learning rate is set to 0.004. Moreover, 
the pre-processing data set used for model training and testing exceeds 100 million. This model has 
4 network layers and 512 hidden layers. 

4.2 Experimental Results
The chapter control distribution of machine translation text can reflect the relationship between 
translation results and semantics. When the distribution of chapter control points is loose, it shows that 
the keywords of the translated text are not close enough to the semantic context, and the distribution 
of section control points is close. It shows that the translated text is correct, contextual and coherent. 
The analysis indicates that the designed English-Chinese machine automatic translation system has 
good accuracy in capturing key words, coherent and accurate translation, and suitable for semantics.
The node control points of the other two systems are loosely distributed, and the keyword capture 
is not enough, and the semantic representation of the translated text is insufficient. The accuracy of 
automatic translation between English and Chinese by different systems is tested, and the contrastive 
results are shown in Table 2. In particular, the compared methods are Baseline1 (Sennrich et al. 
2015), Baseline2 (Aiguier et al. 2019), Baseline3 (Gu et al. 2017), where 1) Baseline1 implements 
the translation by using the neural machine learning of rate words with sub-word units; 2)Baseline2 
implements the translation by using the shared encoder and language-specific decoders; 3)Baseline3 
implements the translation by using the non-auto-regressive neural machine learning.

According to the analysis of Table 2, the system can exceed 93% after 100 iterations. After the 
iteration of 500, the 100% accurate translation can be achieved, which is much higher than that of other 
methods. The highest accuracy of the other methods can also reach above 96% with large number of 

Table 1. Parameters

Parameters Value

Network layer
Multi-head attention

Word embedding dimension
Hidden layer dimension

Learning rate
δ

Batch Size

4 
8 

512 
512 

0.004 
0.5 
32

dropout
Pre-processing training set

0.1 
>100 million
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iterations. In this way, the more iterations also lead to more resource consuming, which is obviously 
a drawback. For example, only when the number of iteration exceeds 800, baseline3 can achieve the 
100% accuracy. However, for the other two methods, their translation accuracy approaches 100% even 
when the number of iteration becomes 1000, which presents the benefits of the proposed method.

Table 3 shows the results of the data filtering comparison between the English translation Baseline 
models and the proposed model, as well as the comparison of the BLEU metric of the first epoch test. In 
particular, the parameter HTER only works for the proposed method. Then, as can be seen from Table 
3, the square method described in this paper successfully uses the quality estimation model to control 

the quality of pseudo-parallel data generated by unsupervised neural machine translation training.
By using the square method described in the algorithm section, the quality estimation model 

trained in this paper evaluates the pseudo-parallel data. Two kinds of translation are used, that is, the 
translation between English and Japaneses (E-J), the translation between English and Chinese (E-C). In 
particular, compared with the Baseline1 model, our model enriches the samples generated by reverse 
translation, makes the discriminator converge more slowly, and makes the generation countermeasure 
network trained more fully, thus improving the translation effect of unsupervised neural machines. 
The threshold obtained from the method described in the algorithm section is 0.46. As can be seen 
from Table 4, when selecting sentences, the proposed model reduces the number of sentences and 
increases the quality of model training (BLEU metric) at the same time. When the threshold is 0.36, 
the number of proposed model is 9.32% higher than that when the threshold is 0.46, but the BLEU 

Table 2. Translation accuracy (%)

Iterations Proposed Baseline1 Baseline2 Baseline3

100 93.3 83.6 85.2 86.0

200 95.6 86.7 87.7 90.4

300 98.1 89.1 91.3 92.7

400 99.2 93.7 94.3 93.2

500 99.7 93.9 94.7 93.9

600 100 94.9 95.2 94.0

700 100 95.0 95.4 98.7

800 100 95.8 95.6 100

900 100 98.2 97.6 100

1000 100 99.8 98.5 100

Table 3. The date filtering ratio (%)

Iterations HTER Ratio (%) BLEU

Proposed 0.46 53.21 2.43

Baseline1 — 92.8 1.02

Baseline2 — 89.1 1.13

Baseline3 — 100 1.43



International Journal of Information System Modeling and Design
Volume 13 • Issue 3

13

metric is lower than that when the threshold is 0.46. When the threshold is 0.56, the number of 
data removed by model screening is relatively large, which is not conducive to model training. The 
experimental results show that when the ratio of the filtered data to the retained data is close to 1: 
1, the BLEU metric of the model is higher, and neither too much data can be filtered nor retained.

5. CoNCLUSIoN

Unsupervised neural machine translation aims to use less monolingual corpus. To solve the problems 
of insufficient bilingual parallel corpus and language expansion in machine translation. The method 
proposed in this paper solves the existing unsupervised neural machine turning. It is impossible to 
control the quality of pseudo-parallel data when training reverse translation. We divide the conventional 
reverse translation into two stages. Firstly, the segment uses quality estimation to score the pseudo-
parallel data generated by it. In contrast, the pseudo-parallel data with higher than the threshold value 
are screened out to complete the reverse translation. Secondly, through experiments, it is found that 
our method can enrich the network and quality based on generating confrontation at the same time 
by controlling the pseudo-parallel number according to the prime quantity. The results indicate that 
the proposed method can achieve better performance.
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Table 4. The results achieved under E-J and E-C respectively

Model E-J (HTER>0.46) E-C (HTER>0.49)

BLEU PPL BLEU PPL

Proposed 18.11 44.56 12.01 53.2

Baseline1 17.13 46.60 10.45 58.6

Baseline2 16.82 44.99 11.97 55.24

Baseline3 16.48 47.21 11.68 56.71
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