
DOI: 10.4018/IJIRR.299935

International Journal of Information Retrieval Research
Volume 12 • Issue 2 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Detection of Change in Body Motion 
With Background Construction 
and Silhouette Orientation:
Background Subtraction With GMM
Rohini Mahajan, Central University of Jammu, India*

 https://orcid.org/0000-0003-3577-9811

Devanand Padha, Central University of Jammu, India

ABSTRACT

Background subtraction techniques have been widely implemented and improvised to obtain a stable 
background model. The novelty of the proposed work is to generate a stable background model under 
dynamic changes in the environmental conditions where 1) an improved background subtraction 
algorithm is proposed based on GMM with EM algorithm for computing granulometry to run faster 
for the generation of a stable background model; 2) detecting the foreground by curvelet based 
denoising process with improvised semisoft thresholding techniques with morphological operations 
is done; 3) background maintenance is done by an adaptive algorithm in which the intensity values 
are mapped to remove the connected components with less than P pixels. The proposed scheme works 
for the spatio-temporal motion of the object in both spatial and temporal modes. The experimental 
outcome for the proposed model results in the accurate shape analysis of the object in motion thereby 
dipping the complexity.
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I. InTRODuCTIOn

Tracking and assessment of the activity in a moving body is a challenging task. The evaluation of object 
in motion and distinguish the background and foreground, many techniques have been implemented. 
This includes optical flow algorithm, interframe difference and background subtraction(Kim & Jung, 
2017). The optical flow algorithm proposed by researchers (Fuentes et al., 2018) requires estimation 
of flow vectors computing the magnitude of flow estimations and warping flow fields. But the 
technique cannot deal with dynamic conditions. The temporal frame differencing as per researchers 
(Chiu et al., 2018) exploit the consecutive frames to mine the pixel by pixel difference of the two 
images. The subtraction process cannot handle the fast moving objects because when the object in 
motion goes still or moves fast, for a few frames, background and foreground can’t be distinguished. 
Also, thresholding the difference is a kind of exacting approach which may lead to unnoticed activity 
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of the interest of researcher (Anandhalli & Baligar, 2015)(Mahajan & Padha, 2018). The widespread 
modus operandi for distinguishing the background from the foreground is Background Subtraction 
(BS) which extracts low entropy based pixels of the object in motion without any prior information 
about the scene proving to be effectual in stationary camera arrangements and highly precise in pixel, 
frame as well as region level procedure (Kumar & Yadav, 2016b). The procedure of background 
subtraction comprise of three stages: a) initialize the background by mapping the spatio-temporal 
constraints and reconstruct the model based on intensity variations, b) Foreground extraction which 
detects and segments the moving object and c) Maintenance of background by updating of pixel 
variance in spatial domain along temporal constraints in the video processing of the sequences.

The techniques implemented by various researchers (Kumar & Yadav, 2016a) (Fazli et al., 
2009a) (Fazli et al., 2009b) in these three stages define the accuracy and precision of the proposed 
algorithms. In our study, in the background modeling stage, an improved Expectation Maximization 
based algorithm for Gaussian mixtures is proposed to initialize the multi modal background with 
dynamic conditions. In the foreground detection stage, a curvelet based denoising method with 
adaptive normalization of the intensities values is done to minimize the intraclass variance of the 
pixels for the removal of isolated background pixels and filling of the isolated foreground pixels. In the 
background maintenance stage, the updation of pixel variance in spatial domain is done by removing 
all connected components (objects) that have fewer than P pixels, producing another image sequence 
and the convolution of image vectors in done in temporal domain. This is illustrated in Fig. 1.

Section II contains the relevant research based on the literature surveyed, Section III contains the 
proposed technique for the construction and updating of the background model, Section IV contains 
the Experimental results and Section V contains the conclusion and future scope.

II. BACKGROunD ReSeARCh AnD COnTRIBuTIOnS

A. Literature Review
Researchers (Wang & Adelson, 1994) have worked on temporal segmentation for tracking the activity 
while Wren et. al (Wren et al., 1997) models human as a set of associated blobs. Another researcher 
Heikkila et. al (Heikkila & Silven, 1999) proposed the use of Kalman filtering for the tracking of 
the object in motion. Lo et.al in his work (Lo & Velastin, 2001)suggested that the optimal removal 
of background pixels is done implementing a variance filter and focusing on this furthermore the 
researchers proved that the non-parametric kernel density with an optimal bandwidth provide better 
accuracy while extracting the background pixels (Okasha et al., 2006). The spatio-temporal techniques 
were further enhanced as when Elgammal et. al (Elgammal et al., 2002) introduced the kernelized 
GMM for the construction of a background model. Additionally many authors (Lee & Park, 2012) 
applied an adaptive threshold to extract dynamic background for which Subudhi et. al (Subudhi et al., 
2011) proposed spatio temporal spatial segmentation with incorporation of Markov’s Random Field 
(MRF) and a hybrid algorithm included SA as well as ICM for MAP estimation. To detect the change, 
wronskian model as per Durucan et.al (Durucan & Ebrahimi, 2001) proved to be less dependent on 

Figure 1. Tracking of the foreground moving object
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thresholding while Fazli et. al (Fazli et al., 2009a) stated that background reconstruction can be done 
with adaptive Gaussian mixture model incorporating neighborhood difference and overlapping based 
classification. Barnich (Barnich & Van Droogenbroeck, 2011) proposed a non-parametric model for the 
extraction of background initialized by a single frame. Furthermore, He et. al suggested improvisation 
of the ViBe (He et al., 2019) while another seminal group of workers proposed integration of Gaussian 
distribution for multi modal background construction and Wronskian (Subudhi et al., 2013)with ratio 
of current versus background frame and Panda et. al (Panda & Meher, 2013) proposed the same 
technique with ratio of background to current frame resulting in accurate shape detection. Another 
improvisation (Subudhi et al., 2013) suggested the use of linearly dependent past images and some 
other researchers (Subudhi et al., 2016) assigned labels based on the majority voting. Foreground 
extraction based on the outliers in the Gaussian distribution as well as morphological processing 
was proposed by Mahajan et. al (Mahajan, 2020) (Mahajan & Padha, 2020b). Chan et. al, 2018 
(Chan, 2018a) suggested the background construction as well as updation in the spatio-temporal 
variance. Furthermore, Chan et.al, 2018 (Chan, 2018b) recommended the background initialization 
via calculation of LTP with Photometric features and Chen et. al (Chen et al., 2018) with Panda et.al 
(Panda & Meher, 2018) proposed spatio-temporal background subtraction. Authors Darwich et. al 
(Darwich et al., 2018) recommended fuzzification of Gaussian Mixture Construction. Naidoo et.al 
(Naidoo et al., 2018) uses the spatio-temporal estimation of the video sequences. Lu et. al(Lu et 
al., 2018) proposed improved Background subtraction and (Zheng et al., 2019) exploited low rank 
factorization model. Rout et. al (Rout et al., 2017) proposed the 5-frame differencing based background 
construction and improvised the algorithm further with GMM (Rout et al., 2018). Moreover, Mahajan 
et. al (Mahajan & Padha, 2020a) performed the background subtraction through thresholding and 
Background maintenance via selective adaptive maintenance algorithm. Lu et. al (Lu & Xu, 2018) 
proposed foreground detection via semi soft thresholding function for denoising of the moving object 
frame sequences with the wavelet based denoising which work for the horizontal, vertical, diagonal 
and approximate scales but not for the angular change in orientation.

To the best of the author’s knowledge, the researchers still find it difficult to make a distinction 
between foreground and background models due to the minute difference.

B. Contributions of Research
The proposed technique has following contributions taking in consideration the research gaps of the 
above background literature:

• Background initialization via iteratively using EM for Gaussian mixture based multimodal 
background construction results in better accuracy for dynamic background.

• For Foreground Extraction, Curvelet based denoising process is proposed for adaptive 
normalization of the intensities values to minimize the intraclass variance of the pixels leading 
to removal of shadows.

• Background is updated by updation of pixel variance in spatial domain and the convolution of 
image vectors for handling scale and orientation.

III. PROPOSeD TeChnIque

The proposed technique implement improvised Background Subtraction based on Spatiotemporal 
GMM with EM algorithm for local change detection. This promotes robust background construction 
and generation of a stable silhouette for the body motion to evaluate the activity.
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A. Background Initialization
Background construction is the initial process for the extraction of moving objects. The background 
model is based on the K Gaussian distributions which outline the intensity value cluster based on mean 
and variance, each time a frame is processed. When the captured new frame sequence is processed 
based on probability distribution function of GMM, the pixels in the existing guassian distribution 
are compared with the overlapping intensity values of pixels of the new frame. If the new pixel 
matches, it is added to background model construction. To handle the complexity of the model, the 
iterative Expectation Minimization is used which handles the multi modal background distribution. 
To obtain a single gaussian background distribution, the Maximum Likelihood Estimation is done.

The initialization process begins with the calculation of the components mean and weights as 
per the conventional GMM model (Stauffer & Grimson, 1999). The difference of the pixel values is 
calculated using the frame difference method based on the standard deviation rather than mean. The 
guassian component for each of the pixel is computed and if the pixel matches the component, it is 
considered a match for the foreground else the weights, mean, standard deviation and learning rate 
are updated. The probabilistic distribution of the k gaussian component is calculated and matched 
with the incoming pixels which can be illustrated as the following set of equation (1) to (10). The 
initial set of equation from (1) to (6) depict the equations for conventional GMM model.
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In equation (1) the µ  diff(i,j,k) is the difference of each pixel intensity in the RGB 3D matrix of the 
frame sequences from the mean kth gaussian distribution model-based pixel intensity value represented 
by µ

t (i,j,k), D is the positive deviation threshold and σt (i,j,k) represent the standard deviation of the 
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pixels of the current frame sequence. In equation (2) fr bw_t (i,j,k) represents the intensity of the image 
pixels and in equation (5) µ

t (i,j,k) represents the mean pixel intensities of the frame sequences with i 
as number of rows, j as number of columns and k as number of the guassian distribution while in 
equation (6) �

t I j k
Ã

, ,( )  represents the standard deviation of the intensities . 
Background initialization includes initialization of weight, mean, variance of each Gaussian 

component. It is carried out with commonly used expectation maximization (EM) algorithm using 
pure (no foreground object present) training sequence. Based on the equation (1) if pixel is a hit for 
the kth gaussian distribution model then the mean µ

t
 (i, j,k) and standard deviation σt (i,j,k) are updated 

for the current pixel intensities. Here in equation (3), w(i,j,k) is the weights associated with the guassian 
components, a represents the learning rate and p represents the updation rate for the background 
initialization where p is obtained in equation (4). But if it is a miss, then the weight is slightly decreased 
based on the equation (9) and (10). 

A Gaussian Mixture Model (GMM) is a parametric probability density function represented as 
a weighted sum of K Gaussian component densities. The probability that the pixel has value at time 
t is represented in the equation (7).
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matrix for the pixel intensities at (i,j) of the kth guassian distribution in the mixture model at time t 
and f  is the guassian probability density function represented by the equation (8). There are several 
variants on the GMM shown in Equation (8). The covariance matrices 

ti j k, ,
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diagonal (Fazli et al., 2009b) . Additionally, parameters can be shared, or tied, among the Gaussian 
components, such as having a common covariance matrix for all components. The choice of model 
configuration (number of components, full or diagonal covariance matrices) is often determined by 
amount of data available for estimating GMM parameters and how GMM is used in a particular 
application.

1)  Expectation Maximization Algorithm

EM algorithm is commonly used method to initialize various parameters of GMM such as weight 
mean, variance of each component. This algorithm is an iterative algorithm that starts with initial 
estimate of λ (w
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for the pixels and µ
t I j k, , ,( )  represents the mean intensities at time t. To handle this, the improved 

Expectation-Maximization approximation (Stückler & Behnke, 2015) is implemented with base 
model as GMM grounded on equation (7) and (8) by estimating the distribution of the pixel values 
for multi modal background while maximizing the joint distribution to obtain optimal value of pixel 
intensities. 

exPeCTATIOn STeP:

The process is based on calculating the current parameter q
t t i j ki j k i j k
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, , , ,
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= ( )∑ ( )t I j k
 and membership 

weights are estimated for the matrix of the frame sequences in the pixel intensities denoted by w
t i j k, ,( ) . 

The weight of distribution K at time t is updated as follows:
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MAxIMIzATIOn STeP:

If the pixel value is within 2.5 standard deviations of one Gaussian distribution, a match is found. If 
this pixel value does not fit into any one of the K distributions, the distribution with the least weight is 
replaced by a new distribution with the current pixel value as its mean, an initially high variance, and 
a low weight. So, the values are now changed to 9 and 10. After computation of all new parameters, 
M-step is complete and it is followed by re-computation of membership weights in the E-step, then 
re-computation of parameters again in E-step, and parameters are updated continuously in this manner. 
Each pair of E and M step is considered to be one iteration.

2)  Convergence of Expectation Maximization Algorithm

The EM algorithm (Fazli et al., 2009a) can be started by either initializing the algorithm with 
a set of initial parameters and then conducting an E-step, or by starting with a set of initial weights 
and then doing a first M-step. The initial parameters or weights can be chosen randomly or could be 
chosen via some heuristic method (such as by using k-means algorithm to cluster data first and then 
defining weights based on k-means memberships). Convergence is generally detected by computing 
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value of log-likelihood after each iteration and halting when it appears not to be changing in a 
significant manner from one iteration to next. The log likelihood of GMM is calculated in equation 
5.10 and represented in Fig. 5.3 but due to its complexity the kth mean is set to 0 which makes it an 
unsolvable problem. The mixture model updating is processed by checking each new pixel X against 
the existing K Gaussian distributions.
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The log likelihood of GMM is calculated as in Fig. 3 but due to its complexity the kth mean is 
set to 0 which makes it an unsolvable problem. To handle this, the Expectation-Maximization step 
is defined (Stückler & Behnke, 2015) and is incorporated with GMM to estimate the distribution of 
the pixel values for multi modal background and maximize the joint distribution to obtain optimal 
value of pixel intensities.

B. Foreground extraction
For the extraction of foreground from the voxels, the initial denoising of the frame sequences is done 
based on curvelet denoising process based on Bayes’ Shrink Method [40].Then the soft thresholding 
is performed for the frame sequences by taking the median value and computing the single-level 
reconstructed approximation. The pixel matrix is scaled by the standard deviation and maps the 
values in intensity values in the registered frame sequence to the new frame sequence such that 1% 
of data is saturated at low and high intensities of the registered image. This increases the contrast 
of the background as well as foreground model and computes a global threshold that can be used to 
convert an intensity image to a binary image. The improvisation is done by integrating the feature 
interest points in the foreground moving object. The foreground extraction is based on the denoising 
process for the extraction of the foreground features and then thresholding the pixel values using 
Bayes’ Shrink Method. The curvelet based denoising extracts the relevant curvelet based features to 
extract the movement of the object in varying scales and orientation.

Figure 2. Training cycle of EM based GMM
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C. Background Maintenance
The maintenance and updation of the background model is done based on measures a set of properties 
for each connected component and removing pixels on the boundaries of the moving objects without 
allowing objects to break apart. Morphological operations with disk approximations are applied 
iteratively on the sequence matrix for the current frame sequence until the image no longer changes. 
This also requires setting a pixel to 0 if its 4-connected neighbors are all 1’s, thus leaving only 
boundary pixels. This preserved the nature of the foreground and maintains the RGB intensities of 
the background pixels as illustrated in Figure 4.

IV. exPeRIMenTAL ReSuLTS

The experimental evaluation for the background subtraction model suggested that the proposed 
algorithm can deal with numerous dynamic conditions with swaying tees, moving water, flowing 
river, fountain and so on. The results include the experimental setup, quantitative analysis using 
frame sequences from three different datasets (CAVIER, PETS 2004 and ACTIVITY database) and 
qualitative analysis via calculating the segmentation scores for the proposed algorithm compared to 
the state-of-the-art technique.

A. experimental Setup

The database used is the well-known PETS 2004, CAVIER DATABASE and the Activity Database for 
background subtraction via adaptive foreground extraction and dynamic illumination conditions. The 
illumination condition disparity in different location and the presence of the multi modal background 
are the factors of misclassification of the frame sequences which may results in presence of false 
positives where the proposed algorithm performs well.

The calibration of camera is different for different datasets.

Figure 3. Preservation of background pixel intensities where X-axis represent the number of pixels in the frame 
sequences and Y-axis represents the thresholding value causing least luminance variance in the intensity values
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The machine is trained in MATLAB and the three databases are evaluated. Investigation of public 
spaces, recognition of doubtful activities, challenging detection/tracking scenes on water, outdoor 
people tracing and indoor people tracking are all included in the datasets for which the system is 
trained to track the body motion.

The primary features of the frame sequences are described in Table 1.

B. quantitative Analysis

1)  Background Initialization

The background initialization process recommends the construction of a background model. Various 
techniques have been proposed for the construction of model and some of them have been compared 
with the proposed method as illustrated in Figure 4. Our system improvises the mixture of Gaussian 
by applying Expectation Maximization cycle for the enhancement of the background model.

Table 1. Primary features of frame sequences

Video Title
Properties

Image Size Environment Background Illumination Condition

Crowd 576x768x3 Outdoor Static Bright

Sofa 240x320x3 Indoor Static Dark

Fighting 256x256x3 Indoor Static Medium

Bus Station 240x360x3 Outdoor Static Bright

Canoe 240x320x3 Outdoor Dynamic Bright

Figure 4. Performance comparison for the construction of background using various frame sequences where Column 
1 represents the Crowd, Sofa, Fighting, Bus Station, Canoe frame sequences. Column 2 represents the background 
frame for each sequence. Column 3 represents the ground truth for each sequence. Column 4 represents the Simple 
Statistical Difference for each of the frame sequence. Column 5 represents the Fuzzy Background subtraction. 
Column 6 represents the non-parametric background subtraction. Column 7 represents the Mixture of gaussian, 
and Column 8 represents the proposed technique.
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FOReGROunD exTRACTIOn

The foreground extraction process is handled using the semi soft thresholding based on curvelet 
denoising with mapping of the pixel intensities and choose a threshold to minimize the intraclass 
variance. Also, spatio-temporal feature point is extracted from the frame sequences thereby removing 
the connected components with less than a predefined number of pixels. The process involves the 
encoding of local shape statistics from the foreground sections within a frame sequence extracted 
from the moving object video in case of a dynamic or multi modal background. The process captures 
large scale spatial data for the voxels in the foreground and condenses the ability for minimization 
of the effect of local radiance changes.

The frame sequences for accurate foreground extraction need to guarantee an intersection of at 
least half the frame block size to certify that an unbiased contrast normalization is performed. This 
is illustrated in Figure 5 and 6.

Figure 5. Snapshots taken from the five scenes where column 1 represents the original frames, column 2 represent 
the anisotropic diffusion based denoising and column 3 represents the bilateral filter based denoising, column 4 
represents the curvelet denoising, column 5 represents the guassian denoising with median filtering, column 6 
represents wavelet based anisotropic diffusion based denoising of the foreground, column 7 represents the weiner 
denoising process and column 8 represents the proposed curvelet based denoising where row 1 represents the 
crowd in university, row 2 represents person sitting on a sofa, row 3 represents 2 people fighting, row 4 represents 
the person waiting on the bus station and row5 represents a moving canoe
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2)  Adaptive Background Updation

The background updation process is performed by adaptive orientation of the moving object with 
temporal frame sequences in consideration. The absolute mean shift difference image is generated 
with respect to the first background frame and the spatio temporal feature points encode local shape 
information from regions within an image. Then the gradient and spatial weights of the intensity 
values are computed to update the background model.

C. qualitative Analysis
The background subtraction model generated the silhouette of the object in motion and detect the 
change by measuring the various image segmentation metrices of the system. The results are obtained 

Figure 6. Snapshots taken from the five scenes where columns(a) represents the noisy images, columns (b) represent 
the soft thresholding, column (c) represents the hard thresholding, column (d) represents the Bayes’ thresholding 
method and columns (e) represents the proposed curvelet based semi-soft thresholding where row 1 represents 
person sitting on a sofa, row 2 represents 2 people fighting, row 3 represents the person waiting on the bus station, 
row 4 represents a moving canoe and row 5 represents the crowd in university
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by comparing the proposed background subtraction technique with the state-of-the-art techniques using 
segmentation parameters of accuracy, sensitivity, precision, F-measure and Mathew’s Correlation 
coefficient. This is depicted in Table 2, 3, 4, 5 and 6 with respective graphs in the figures 7,8,9,10,11.

Table 2. Value of Image Segmentation Scores for various techniques in Frame sequence Sofa

Frame 
sequence

Different state-of-the-art techniques with proposed technique for SOFA

Parameter SSD NP Fuzzy BS GMM Proposed

Accuracy 44.32 47.01 45.07 89.68 92.39

Sensitivity 9.44 17.85 10.88 100 87.44

F measure 17.04 17.85 19.35 92.15 93.30

Precision 87.39 76.99 87.44 85.44 100

MCC 14.52 13.58 15.69 79.42 85.62

Table 3. Value of Image Segmentation Scores for various techniques in Frame sequence Canoe

Frame sequence Different state-of-the-art techniques with proposed technique for CANOE

Parameter SSD NP Fuzzy BS GMM Proposed

Accuracy 85.1 86.85 85.06 88.55 98.33

Precision 92.98 88.73 91.79 79.42 94.56

Sensitivity 71.71 80.47 72.68 97.89 96.23

F measure 80.97 84.39 81.13 88.53 98.08

MCC 70.64 73.34 70.32 79.45 96.66

Table 4. Value of Image Segmentation Scores for various techniques in Frame sequence Fighting

Frame sequence Different state-of-the-art techniques with proposed technique for FIGHTING

Parameter SSD NP Fuzzy BS GMM Proposed

Accuracy 87.096 86.19 86.76 53.52 88.54

Sensitivity 59.694 63.01 60.44 98.77 98.5

F measure 69.672 69.39 69.39 51.65 77.44

Precision 83.655 77.21 81.47 34.82 90.18

MCC 63.184 61.12 62.29 36.45 71.44
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Table 5. Value of Image Segmentation Scores for various techniques in Frame sequence Crowd

Frame sequence Different state-of-the-art techniques with proposed technique for CROWD

Parameter SSD NP Fuzzy BS GMM Proposed

Accuracy 74.32 75.53 74.88 46.76 96.55

Sensitivity 17.55 25.16 19.86 97.65 97.99

F measure 29.44 38.56 32.55 53.42 94.65

Precision 91.19 82.52 90.09 36.44 89.84

MCC 32.92 36.17 34.74 29.18 92.45

Table 6. Value of Image Segmentation Scores for various techniques in Frame sequence Bus Station

Frame sequence Different state-of-the-art techniques with proposed technique for BUS STATION

Parameter SSD NP Fuzzy BS GMM Proposed

Accuracy 47.11 47.44 47.7 89.73 92.99

Sensitivity 12.79 16.21 14.16 99.78 91.48

F measure 22.38 26.89 24.42 92.06 93.37

Precision 89.82 78.96 88.49 85.44 90.78

MCC 18.73 14.71 19.1 79.66 80.91

Figure 7. Value of segmentation scores for various techniques in frame sequence Sofa depicting the presence of 
an intermittent object



International Journal of Information Retrieval Research
Volume 12 • Issue 2

14

Figure 8. Value of segmentation scores for various techniques in frame sequence Fighting depicting the presence 
of changing illumination conditions

Figure 9. Value of segmentation scores for various techniques in frame sequence Canoe depicting the presence 
of Dynamic Backgrounds
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Figure 10. Value of segmentation scores for various techniques in frame sequence Crowd depicting the presence 
of occlusion

Figure 11. Value of segmentation scores for various techniques in frame sequence Bus Station depicting the presence of Shadows
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V. COnCLuSIOn

A novel technique for the background construction based on modified GMM with Expectation 
Maximization Cycle for the iterative handling of multi modal background model is proposed. The 
foreground extraction is proposed by using the curvelet filtering based semi soft thresholding of the 
frame sequences leading to saturation of the model and integration of feature interest points. Finally, 
the background maintenance is done by setting a pixel to 0 if its 4-connected neighbors are all 1’s, thus 
leaving only boundary pixels with the implementation of morphological operations. The experimental 
results proved that the accuracy of the algorithm is enhanced than the GMM and the complexity is 
reduced. The algorithm overcomes the research gaps of various state of the art techniques but still 
cannot handle the occlusions and presence of intermittent objects in the frame sequences.

Future scope of the work suggests two stream CNN based deep learning algorithms for the 
extraction of the foreground features which are based on spatio temporal extraction. Another aspect 
is to deal with the tracking of an object in motion with moving cameras or through GPS.
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