
DOI: 10.4018/JITR.299917

Journal of Information Technology Research
Volume 15 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

A Multi-Budget-Based Approach to
Enhance the Responsiveness of
Aperiodic Task for a Bandwidth-
Preserving Server in Real-Time Systems
Ajitesh Kumar, AKTU, Lucknow, India & GLA University, Mathura, India*

 https://orcid.org/0000-0003-0196-5640

Sanjai Kumar Gupta, Bundelkhand Institute of Engineering and Technology, Jhansi, India

ABSTRACT

Within the advanced computation time, real-time application pulled in much more attention.
Implementing a better high-quality real-time system requires to improve the responsiveness of the
tasks set. This research work aims to achieve the best quality of service (QoS) in terms of improving
the responsiveness of aperiodic tasks and also improved acceptability domain, by accepting to execute
multiple aperiodic functions while maintaining the feasibility of periodic tasks in a real-time system.
The functional analysis with simulation shows that the proposed algorithm is highly effective in terms
of task sets deemed schedulable and also by allowing aperiodic tasks that were rejected by existing
approaches. The simulation results indicate that it reduces overall average response time of aperiodic
tasks approximately 13% at lowest periodic load (35%), 7% at 60% periodic load, and 4% at 80%
periodic load, and in all observed circumstances, the proposed novel algorithm received 7%-10%
improvement over the existing one.

Keywords
Aperiodic Task, Budget, MLBBPS, Real-Time System

INTRODUCTION

Real-Time applications have the requirement of both fixed arrival patterns as well as random patterns
in nature. The ‘fixed arrival sequence’ is termed as a periodic task, whereas term, ‘aperiodic task’ is
used for a random one. For example, a mobile video phone application has stringent regular computing
requirements for the number of frames received per second along with aperiodic requirements
generated by a user such as a volume control and play-list editing. These user-generated requests are
event-driven. Similarly, the flight control system executes pilot control commands such as control of
sudden rise of temperature, and speeds are aperiodic requirements along with routine computation

https://orcid.org/0000-0003-0196-5640

Journal of Information Technology Research
Volume 15 • Issue 1

2

requirements. Besides these requirements patterns, time criticality classifies the system as hard and soft
in nature. For hard real-time system failures to met one condition may lead to catastrophe; however,
degraded quality is received even missing to meet many requests for the case of a soft real-time system.

The algorithms described in this paper determine when aperiodic tasks are executed in presence
of periodic task set. They are solutions to the following challenges:

1. 	 Based on the execution time and deadline of each newly arrived aperiodic task, the scheduler
decides whether to accept or reject the task. If it accepts the task to execute, it schedules the task
so that the task completes its execution in time without causing periodic tasks and previously
accepted aperiodic tasks to miss their deadlines. The problems are how to do the acceptance test
and how to schedule the accepted aperiodic task set.

2. 	 The scheduler tries to complete each aperiodic task as soon as possible. The problem is how to
do so without causing periodic tasks and accepted sporadic jobs to miss their deadlines.

The novel two-phase approach proposes for multi-level budget bandwidth preserving server
(MLBBPS) is utilizing the concept of the multi budget with the construction of the budget sample
on or after hyper-period. It consumes budget at a multi priority level for execution of aperiodic tasks
while ensuring periodic one. The first phase performs offline feasibility analysis for periodic tasks
and fixes up the static budget renovated at regular intervals. Apart from the static budget, slack based
budget is computed, forming a budget pattern from hyper period to hyper period. Over the above
budget pattern formed in the first phase, the calculated budget tuned in the second phase. The tuning
has achieved through utilizing the online slack availability that arises due to execution of the task with
less execution time (as compared to worst-case time considered at the time of feasibility analysis),
and accumulating the small budget fragments into a larger one. Abeni.L. et al. (2015) proposed the
improvement in the responsiveness of aperiodic tasks to enhances the acceptance execution ratio of
aperiodic tasks, rejected by a deferrable servers. The complexity of the proposed novel algorithm
is very similar to the deferrable server that intended to make sure of the correctness of the server.
MemGuard: Memory bandwidth reservation system discussed by Yun, H. et al. (2013, April) gives
efficient performance under heavy memory workloads in the multiprocessor system but lacking on
throughput under time-varying memory workloads.

The significant contribution of proposed research work is to develop a novel approach to enhance
the responsiveness of aperiodic task for multi-level budget bandwidth preserving server in Real-Time
System. The proposed algorithm developed in two phases, the first phase is for the construction of
budget1, budget2, and proposal for MLBBPS algorithm; the second phase is for refinement of budget
to increase the responsiveness of aperiodic task. An illustrative example of a functional analysis of
the algorithm shows the effectiveness of the proposed approach. The performance of the proposed
algorithms evaluates for both synthesized task sets used in Erciyes K. et al. (2019) and data available
for different applications in Hamann A. et al. (2018). The study indicates that the proposed multi-
level budget bandwidth preserving server receives better responsiveness with an increased number
of completed aperiodic tasks over a wide range of variations.

The rest of the research paper organizes as follows. Section 2 describes the system model and
related work. The proposed approach multi-level budget bandwidth preserving server has been explored
in section 3, while section 4 deals in results and analysis work. In the end, section 5 concludes the paper.

TASK MODEL AND RELATED WORK

This proposed real-time system deals with applications consisting of a preset coming pattern of the
tasks along with arbitrary arrival tasks. The fixed arrival pattern and random arrival task are known
as periodic tasks and aperiodic tasks, respectively. The periodic tasks are time-driven initiated at the

Journal of Information Technology Research
Volume 15 • Issue 1

3

specified time, whereas occurrences of specific events are initiated at aperiodic one, as stated by
Hilman MH.et al. (2020). The full guarantee can be given for periodic tasks in well advance, whereas
completion of aperiodic one can be ensured after its arrival online. The proposed system has n()
independent periodic tasks τ τ τ τ

1 2 3
, , …

n
. Each task τ

i
 has the attributes, worst-case execution time

e
i() , period p

i() , and relative deadline d
i() . The author assumes the relative deadline of a periodic

task is less than or equal to its period. In addition to these n periodic tasks, there is another periodic
task τ

s
 characterized by an ordered pair (q

s
, p

s
) that used to provide execution budget for aperiodic

one. Here, q
s

 is the amount of budget released with period p
s

. Execution of these tasks is fully
preemptive, and preemption overhead is considered negligible for the worst execution time.

Here, Summarizes the symbol used, followed by a definition of key terms used.

Terms Used

•	 Finish Time ft
i
j() : It is the sum of its release time, own requirement, the requirement of the

higher priority tasks executing between its release and its completion:

ft rel e t p e where rel t p
i
j

i
j

i
k

k i

k k i
j= + + () ≤ ≤

=

= −

∑
1

1

/ * 	 (1)

•	 Relative response Time of R
i
j

i
jτ() : It is the difference between the finish time and the release

time of a τ
i
j . Mathematically, R ft r

i
j

i
j

i
j

i
jτ() = −

•	 Critical instance release of the task τ
i
: It defines as a time when a task τ

i
 release, along with

all higher priority tasks.
•	 Hyper-period (L): It can define as the point of time after which all the tasks in the task set T

are in phase and schedule pattern for each task restart, i.e., the release pattern of tasks at time
t = 0 repeat at an integral multiple of hyper period:

L LCM p p p p p
n s

= …()1 2 3
, , , 	 (2)

•	 First Budget: Fixed budget of the amount q
s

 fixed to the server and replenish at every integral
multiple of p

s
 call budget 1.

Table 1. Symbol Used

Symbol Meaning(Description)

ri
j j th release time of task τi

Di
j Absolute deadline of j th release of task τi

τi
j j th release of task τi

fti
j j th release, Finish Time of task τi

Ri
j Response time of j th release of task τi

L Hyper-period

Journal of Information Technology Research
Volume 15 • Issue 1

4

•	 Second Budget: The dynamic budget generates on account of slackness available is called
Budget 2.

Related Work
Abeni, L. et al. (2019) proposed a scheduling algorithm for a real-time virtual machine that
practically implemented hierarchical scheduling with the vanilla Linux platform. According
to Ashjaei, M. et al. (2017), resource reservation technique ensures the predictability and
allows flexibility during the task execution in a real-time system. This paper also provides a
method for an end to end timing analysis of executed task sets. Stated by Ashmawy A. et al.
(2018), a total bandwidth server (TBS) works with the periodic and aperiodic task set very
efficiently. In this system, a job is divided into the subpart, and each one has an individual
deadline. The simulation results show that average response time reduces the aperiodic task,
and when processor utilization is high. The reduction rate of the aperiodic job reaches more
than 50%. Brandenburg B. et al. (2016) proposed a scheduling algorithm that can reduce run-
time overheads. This algorithm also avoids 50% migration in the worst-case execution time
analysis. Hilman M. H. (2020) proposed a novel approach for budget-constrained multiple
workflows resource provisioning and scheduling in the context of the WaaS cloud platform.
This work also explains the different issues in resource sharing, performance evolution, and
unusual activity related to networks. According to the proposed framework of Hosseinimotlagh,
S. (2019) significantly reduces sporadic task response time. Simulation results show that
randomly-generated task sets demonstrate the performance characteristics of the proposed
structure with different configurations. Hussien H. et al. (2019) proposed an adaptive framework
for a set of application which is independent of each other and runs on a single processor.
This scheduling approach has a less miss ratio with minimal overhead. According to Kim H.
et al. (2015), modern processors need virtualization in the field of real-time processes. In this
work, a vINT scheme for real-time application benefits in reducing the interrupt handling
time and also protecting from interrupt storms. Khan A. A. et al. (2019) proposed a two-phase
scheduling process where aperiodic task executes at full speed. Periodic jobs are migrating
in another processor if the deadline is earlier and complete the aperiodic task at a lower rate
if slack available. Manthalkar et al. (2018) proposed a scheduler framework simulator called
PATSAS to predict the behavior of the system and allow scheduling different periodic and
aperiodic algorithm. According to EDF based approach by Nascimento F. et al. (2019), hard
tasks assigned a dedicated processor. They do not migrate during execution, but the soft
job is allowed for migration. Schlatow J.et.al.(2019) provides a novel method for run-time
monitoring in a mixed-critical real-time system. A job-shifting approach for online admission
of non-preemptive aperiodic tasks in the partitioned time-triggered environment proposes
by Syed A. et al. (2018). Wu J.et al. (2019) introduced an RTDS based scheduler to provide
an additional amount of PCPU capacity. Zhang Y. et al. (2019) compute the optimal speed
of periodic task and introduce a new novel scheduling algorithm for static mixed tasks. The
simulation results show that the novel algorithm reduces 53.66% energy consumption response
time when compared with the SMTS algorithm.

PROPOSED NOVEL APPROACH

The proposed novel two-phase approach is to work with a fixed budget, termed as budget 1. The
additional budget is known as budget-2. This excess budget is restraining to slack available for the
lowest priority periodic task. Both types of budgets are determined in phase 1. However, budget 2 is
being refined in phase 2 online.

In the next subsection, phase 1 is discussed, followed by phase 2 of the proposed approach.

Journal of Information Technology Research
Volume 15 • Issue 1

5

Phase I: Proposed MLBBPS
The major responsibility of phase 1 is to determine the possibility of periodic tasks server budget (Ts),
characterized by execution budget in terms of time and renovation period of budget 1. It also decides
budget 2, based on slack available in the schedule of the periodic task set. The fixed amount of Ti
rests budget 1 of equal to Es allocates at each time instant same to the integral multiple of Ps. The
budget released will be retained up to the next due time of the allocation in case it not consumed; the
server retains an unconsumed budget is known as a deferrable server. The server executes aperiodic
tasks against budget 1 at the priority decided at the feasibility analysis done in offline. The server
consumed budget 1, on the occurrence of either condition a) sever is executing aperiodic tasks or
b) system idle. The next paragraph deals with the computation of budget 2. Over the above budget
1, another kind of dynamic budget compute based on slack available in the schedule of the task set
Ts. Here, we decided on the amount of progressive budget available for a specific time interval and
consumed at a different priority level. The amounts of the budget available for consumption at different
priority levels are different. The amount of the budget available for consumption at priority level (i)
is equal to the minimum of the slack available for the task having priority less than or equal to Ti.
The detailed steps for the computation of budget 2 offline, along with its consumption window, will
discussed. The consumption window time, the interval in which this computed budget is available
for execution of aperiodic tasks along with executing priority.

The priorities for the execution of budget 2 with the amount of budget consumed at that level
decided offline.

Offline Priority Estimation for the Consumption of Additional Budget
Apart from consumption and replenishment rules and forming a budget pattern for budget 2 from
hyper-period to hyper-period, priority of server also plays an essential role in achieving responsiveness
and improves acceptance ratio for aperiodic tasks. It always desires to operate the server at the highest
priority and have the best quality in terms of responsiveness and acceptance ratio. However, on the way
to increase server priority, maintaining the feasibility for the periodic tasks is a significant problem.
That is, with an increased preference of periodic server task may become infeasible, which was feasible
without priority improvement of the server. So in this section, discuss growth in priority of server to
enhance the response time of aperiodic tasks keeping in account the feasibility of periodic tasks. The
main problem occurs, at which priority level budget 2 will consume to improve the responsiveness
of aperiodic tasks while ensuring the feasibility of periodic tasks at the same time.

In offline priority, estimation decides how much available budge consumed at which priority
level in the worst case. Firstly, estimate the laxity of each release of the task that is released within
the expiry interval of budget 2 and then take a minimum of them. That termed as laxity of the task in
that interval. After computing the laxity for each task, trying to find out at which priority level how
much budget 2 consumed without affecting the likelihood of periodic tasks.

The priority estimation algorithm computes the amount of budget 2 consumed at each priority
level for budget 2.

Over the above estimation of both budget1 and budget 2 along with the priority of its execution
at different priority levels. In phase1, budget calculated on considering the worst-case requirement
in terms of both esteemed release time and worst-case execution requirement. However, in online
execution a task may not be released in the estimated time, it takes lesser time to complete than that
considered in phase 1, and budget 1 may not consume up to the next replenishment time. Thus, online
tuning of budget2 is discussed on algorithm-2.

Online Tuning of Budget 2
In the view of online variation in the requirement due to:

Journal of Information Technology Research
Volume 15 • Issue 1

6

1. 	 Budget 1 assigned to the server has not consumed up to the next replenishment time.
2. 	 Task releases the resource in case, and it takes lesser time than that considered offline phase 1.

That is, the task has executed in the worst case.

Budget 2 needs to recompute. Here, the authors require to answer several questions about what
the new dimension of budget 2 is? Whether budget 2 may be updated? What amount of budget is
available at different priorities? What will be further laxity for various tasks?

On the way to answer these questions, online tuning divided into two cases:

1. 	 Tuning due to unused budget1.
2. 	 tuning due to release took lesser time than that already booked.

For the case of the remaining budget, the stuffing of the unspent budget from one-time interval to
another time interval decided based on idle slots available in the previous execution window of budget1.

The algorithm for scheduling periodic tasks along with the aperiodic by using the proposed
multi-level budget bandwidth preserving server (MLBBPS) is potted as shown in Algorithm 5.

Algorithm 1. Priority estimation (PE) algorithm

Input: PE Algorithm for Budget 2 (task set T= {τ1,τ2,τ3…τn ∪ τs})

Output: budget 2 pattern along with priority level

Assumption: • Periodic task set (T) is the union of periodic tasks and server (τs). here τ1is the highest and τn is
the lowest priority periodic tasks
• Critical instance discharge of tasks in (T) is measured

START:

1: for 1 to LCM ((p1,p2,p3……….pn,ps)/pn) do

2: B2,j = Ln,j // maximum budget 2 available in jth interval of p_n

3: for 1………………….N-1 do

4: a. Compute (Ni=⌈(jpn)/pi⌉ - ⌈((j-1)pn)/pi⌉)

 // number of releases (N_i) of task τi in the interval ((j-1)pn,Jpn]

5: b. Compute Li
j using equation2

6: c. Compute Li,j =min (Li
1, Li

2, Li
3,……Li

N // laxity of task τi in jth interval of length pn (Laxityi) during ((j-1)pn,Jpn]

7: for deciding priority level for execution of budget 2

8: for i = 1……..n do

9: Execution at priority level= i-1

10: B2,j
i = MIN (Li,j, Li+1,j, ……….Ln,j)

 //amount of budget 2 executed at priority level i in j th interval of length pn

11: for j = i+1 …………n do

12: Li,j = Li,j - B2,j
i)

13: End for

14: End for

15: End for

16: End for

END

Journal of Information Technology Research
Volume 15 • Issue 1

7

Algorithm 2. Function to refine budget 2

//while there is unused budget 1 in any interval [(k-1)Ps, kPs]

START:

1: Initially B2,j (0)= Ln,j // // maximum budget 2 available in jth interval of pn

2: K = 1

3: t = kPs

4: B2,j (t)= B2,j (t) + max(unused budget1(t)-Σ(k) Ps
(k-1) Ps idle slot,0)

5: Update the laxity of all periodic tasks which priority is less as compared to server

6: Update the laxity of release which arrives or incomplete during the interval [(k-1)Ps, kPs]

7: Li
j (t)=di - t - remei (t) - Σkϵτ_H∪τ_s (⌈(di-t)) / pk ⌉)*(ek)

8: Li,j (t) = min (Li
j, Li

j+1, Li
j+2,……Li

N)

9: B2,j
i = min (Li,j , L i+1,j Li+2,j, ….. Ln,j)

END

Algorithm 3. Function to fine-tune budget 2 through aperiodic tasks

//while there is unused budget 1 in any interval [(k-1)*Ps, k*Ps]

START:

1: Current time (tc)=t

2: Compute k=⌈tc/Ps⌉

3: UB1(tc)= cs-B1c [(k-1)Ps, kPs)]

 // where B1c [(k-1)Ps,kPs)] amount of budget1 consume in interval [(k-1) Ps, kPs]

4: If (Il
i ≥ (k-1)*Ps && Iu

i ≤ k*Ps) // compute the length of idle slot in interval [(k-1) Ps, kPs] then

 {

5: I(i)= Iu
i- Il

i // where, I(i) length of ith interval idle slot

6: IL = I(i) + IL and i = i +1

 }

7: B2,j (tc)= B2,j (tc) + max (UB1(tc) - IL, 0)

 // Update the laxity of release for all task Ti which priority is less as compared to server and kPs ≤ ai
r ≤ (k-1) Ps

8: Li
r (t) = di- t - remei (t) - ΣkϵτH∪τs (⌈(di - t)) /pk⌉)*(ek)

9: Li,j (t) = min (Li
r, Li

(r+1), Li
(r+2),……Li

N)

 // (Li
r, Li

(r+1),, ……Li
N) are already computed in offline

10: B2,j
i = min (Li,j, Li+1,j Li+2,j, ….. Ln,j)

 End If

END

Journal of Information Technology Research
Volume 15 • Issue 1

8

Phase II: Refinement of Budget 2

Case 1: When there is unused budget1 in any interval j p Jp
s s

−()1 , (see Algorithm 6).
Case 2: When periodic task execute in less time online which assigned in offline (see Algorithm 7).

Illustrative Example for Functional Analysis of Algorithm
Example 1: Considering a periodic task set:

T e p d
i i i

= { } = < >τ τ
1 2

1 5 10 10 2 5 15 15, { , , , : . , , , . , , } 	

and server having attribute τ
s s s
q p= (,) = 1 5 3. ,() .

For the given task set in the case of phase 1 hyper-period is 30, and deferrable server budget
(budget 1) release at 0, 3, 6….with amount equal to 1.5 units. During the hyper-period of 30 units’
lowest priority task τ

2
, release twice (at 0 and 15) with respective laxities 2.0 and 3.5 units. These

laxities are referred to as budget 2 in respective intervals of expiry, i.e., 2.0 and 3.5 units of budget
2 during (0-15] and (15-30] interval. This process forms a budget pattern that repeats from hyper-
period to hyper-period. During interval (0,15] τ

s
 is release 5 times with laxities equal to 1.5 for each

release while τ
1
 is release 2 times with laxities equal to 2.5 and 4.0, respectively. So 1.5 unit budget

budget2 consumed at a priority level 0 and τ
s

, 0.5 unit budget 2 is consumed at a priority level τ
s

and τ

1
 depend upon the availability of aperiodic tasks. However, for the interval (15, 30] 3.5 units

of budget 2 are available and the laxity of server τ
s

 and task τ
1
 is 1.5 and 2.5 units, respectively. So

1.5 unit of budget 2 is consumed at priority level 0 or τ
s

, 2.0 unit budget consume between priority
level τ

1
 and τ

s
.

It depends upon the availability of aperiodic tasks. For better sake of understanding of budget
2, consumption and distribution are given in table 2.

In this approach, apart from framing the budget pattern and estimation of priority level for
consumption of budget2 at offline. In online, the authors improve budget 2 by fine-tuning of budget 2.

Algorithm 4. Function to fine-tune budget 2 through periodic tasks

// Here τ1 is the highest and τn is the lowest priority periodic tasks

START:

1: Current time (tc) = FTi

2: B2,j (tc) = B2,j (tc) + ei
j (online(t)) - ei

j (offline (t)

 // Update the laxity of release for all task Ti which priority is less as compared to the task, Ti

 // For all task Tk

3: For (k=i-1,k--, k≤n) do

4: Lk
r (t) = Lk

r (t) + ei
j (online (t)) - ei

j (offline(t))

5: Li,j (t)= min (Li
r, L i

(r+1), Li
(r+2),……Li

N) Li
(r+1),Li

(r+2),……Li
N are already computed in offline

6: B2,j
i = min (Li,j, Li+1,j Li+2,j, ….. Ln,j)

 end for

END

Journal of Information Technology Research
Volume 15 • Issue 1

9

continued on following page

Algorithm 5. MLBBPS Algorithm (Task Set T= { , , }τ τ τ τ τ
1 2 3

… ∪
n s

)

// Union of periodic tasks and server (τs) is called periodic task set T

START:

1: Make sure the likelihood of tasks (T) by using the fixed priority rate monotonic (RM) first algorithm.

2: For Jth release of τn where τn is the lowest priority task in the periodic task set T and j=0,1,2…L/pl. t=current time, n=0,k=1

 Do

3: for ((s=n*(L/ps), s++, s<(n+1)*(L/pls)) do

 {

4: a. B1s= Cs

5: b. expiry_time_B1s= (s*ps) + ps

6: c. replenishment _time_B1s = s*ps

 }

7: for (j=n*(L/pl), j++, j<(n+1)*(L/pl)) do

 {

8: a. B2,j = laxityτl
j // using equation 1

9: b. expiry time_B2,j = (j*pl) + pl

10: c. replenishment _time_B2,j = j*pl

11. d. Formation of budget2 pattern is within the hyper period

 }

12: Budget 2 pattern repeated from hyper period to the hyper period

13: Compute the amount of budget 2 consume at various priority level in each length of pl by priority estimation algorithm

14: end for

15: While (the aperiodic queue is not empty (t))

16: if (total budget (t)>0)

17: if (PL (B2,j) or priority of server 3highest priority periodic tasks available at time t then

 {

18: a. Select the aperiodic tasks on the EDF basis

19: b. Execute the aperiodic tasks and consume the budget 1 or budget2

 }

 else

 {

20: a. Place the aperiodic task in aperiodic queue

21: b. Compute the idle slot / by idle slot algorithm

22: c. Execute the periodic tasks as per their priority level

23: d. Remove the periodic task into the periodic queue

 }

 end if

24: at the finish time of each periodic task go to step 17

Journal of Information Technology Research
Volume 15 • Issue 1

10

Suppose aperiodic A1 arrives at time t=1, and its execution time is 0.75 units. At the end of time
t=3, the aperiodic queue is empty, and there is a 0.75 unit of budget1 unused. This unused budget
uses to improve budget 2 by algorithm fine-tuning of budget2. At time t=3, budget 2 is 2.75; however,
offline, it is only 2 units.

The usefulness of the proposed approach (MLBBPS) can be pragmatic in example 2.

Example 2: Considering a periodic task set:

T e p d
i i i

= { } = < >τ τ
1 2

1 5 10 10 2 5 15 15, { , , , : . , , , . , , } 	

and server having attribute τ
s s s
q p= (,) = 1 5 3. ,() .

Algorithm 5. Continued

25: if (ei
j (online(t))<ei

j (offline(t)) then

 // at any current time (t) periodic job executes in less time as compare to execution time booked in offline

 {

26: a. t = FTi
j

27: b. Call tune budget2 (t,ei
j (o(online),B2,j (tc))

28: c. Update the amount of budget 2 and update the priority level for consumption of budget2

 }

29: else Go to step 15

30: At each time instant t = k*ps

31: If (UB1 (k*ps)>0) then

 {

32: a. Call tune budget2 (t,cs)

33: b. k=k+1

34: c. Update the amount of budget 2 and update the priority level for consumption of budget2

 }

35: Go to step 15

36: else then

 {

37: Aperiodic task wait for the next replenishment of budget 1 and budget 2 (which one is earlier)

38: Go to step 8

 }

39: end if

40: end else

41: end if

42: end else

END

Journal of Information Technology Research
Volume 15 • Issue 1

11

Aperiodic tasks A1, A2, A3, A4, A5, A6 and A7 arrive at times 0, 3, 4.5., 6, 7.5, 8.5, and 12
with their respective execution time 0.75, 2, 1, 2, 1, 1 and 1.5. Their respective deadlines are 2, 6, 9,
10, 14, 17, and 19 units.

Figures 1 and 2 show, the proposed novel MLBBPS approach reduces the response time of
aperiodic jobs, minimizes the rejection ratio of aperiodic tasks, reduces average response time, and

Algorithm 6. Refinement of budget 2: Case 1

// Here τ1 is the highest and τn is the lowest priority periodic tasks

START:

1: for j=1 to n do

 {

2: When there is unused budget1 in any interval ((j-1)ps, Jps

3: Pre-pone the schedule of lowest priority periodic task as compare to server

4: Unused budget 1= remaining budget at time t = Jps

5: Budget 2= Budget 2 + unused budget -Σ(J-1)
j idle slot

 }

6: end for

7: for i=k to n do

 {

8: Laxity of lowest priority periodic tasks as at time t=Jps compare to the server is increased by amount unused
 budget except all the job which finish before time t=Jps

9: Laxity of lowest priority periodic tasks as at time t=Jps compare to the server which finishes before time t=Jps

10: Laxity K = laxity K + unused budget – (Jps- finish time τk)

}

11: end for

END

Algorithm 7. Refinement of budget 2: Case 2

// Here τ1 is the highest and τn is the lowest priority periodic tasks

START:

1: for task Ti do

 {

2: When periodic task execute in less time as compare to assigned in offline

3: Budget 2= Budget 2 + worst-case execution time Ti-original execution time Ti

4: j=i+1 to n

5: Pre-pone the schedule of the periodic task which priority is less than task Ti

6: Laxity j = laxity j + worst-case execution time Ti-original execution time Ti

 }

7: end for

END

Journal of Information Technology Research
Volume 15 • Issue 1

12

also improves the quality of service (QoS). The success of the proposed approach has summarized
in table 2. Table 2 observation shows that the intended multi-level budget bandwidth preserving
server improves the quality of service (QoS) in terms of enhancing responsiveness of aperiodic tasks,
accepting more aperiodic tasks for execution, and increased system utilization while maintaining the
feasibility of periodic tasks.

RESULT ANALYSIS

This section utilizes the simulation of the proposed algorithm, and it uses the task set to performs and
evaluates the performance of the proposed novel approach, multi-level budget bandwidth preserving
server, with available deferrable bandwidth preserving server.

Here, the authors compare the performance of multi-level budget bandwidth preserving server is
referred as MLBBPS with exiting deferrable server with background approach is referred as DSWB
by Yoder J.et.al (2017).

Load Effect on Average Response Time of Aperiodic Task
The critical parameters for performance measurement in Figures 3, 4, and 5 are response time (avg.)
and acceptance quotient.

Here, the authors measure the variation of system load on aperiodic average responce time. Figures
3, 4, and 5 are comparing the proposed approach with the available deferrable server approach when
the load of periodic task 40%, 60%, and 80%. In Figure 3, the regular task load is 40% of the total
capacity of the system, and the aperiodic task load is varied from 10% to 60% with server utilization
0.2. The authors observe that in this satuation the aperiodic task response increases when the total

Table 2. Budget 2 consumption distribution for interval (0, 15]

The priority level
for execution of

budget 2

Budget2 consumption
distribution starting from

priority above τs

Budget2 consumption
distribution starting from

priority between the level τs and
τ1

Budget2 consumption
distribution starting

from priority between
the level τ1 and τ2

Between priority
level τs and 0 1.5 Nil Nil

Between priority
level τs and τ1

1.5 2 Nil

Between priority
level τs and τ2

1.5 2 2

Table 3. Budget 2 consumption distribution for the interval (15, 30] in online at time t=3

The priority level
for execution of

budget 2

Budget2 consumption
distribution starting from

priority above τs

Budget2 consumption
distribution starting from

priority between the level τs and
τ1

Budget2 consumption
distribution starting

from priority between
the level τ1 and τ2

Between priority
level τs and 0 1.5 Nil Nil

Between priority
level τs and τ1

1.5 2.5 Nil

Between priority
level τs and τ2

1.5 2.5 2.75

Journal of Information Technology Research
Volume 15 • Issue 1

13

Table 4. Shows the performance evaluated in Example 2

Aperiodic task Time Response of Aperiodic task with DS and
background by Yoder J.et.al (2017) (DSWB)

Response time with Proposed
MLBBPS

A1 0.75 (accepted) 0.75 (accepted)

A2 3.5 (rejected) 2 (accepted)

A3 3.0 (accepted) 1.5 (accepted)

A4 3.75 (accepted) 2 (accepted)

A5 5.25 (rejected) 2.25 (accepted)

A6 4.75 (rejected) 1.75 (accepted)

A7 3.25 (accepted) 1.75 (accepted)

A8 4.5 (accepted) 3.0 (accepted)

A9 6.5 (rejected) 4.0 (accepted)

A10 8.0 (accepted) 4.5 (accepted)

A11 6.5 (rejected) 3.0 (rejected)

A12 5.5 (accepted) 3.0 (accepted)

A13 5.0 (accepted) 3.5 (accepted)

Average response time for 13 aperiodic tasks within the interval [0, 30]

DS + background MLBBPS

4.634 2.538

Acceptance ration of aperiodic tasks within time interval [0,30]

DS + background MLBBPS

8/13 (61.5%) 13/13(100%)

Budget available within hyper-period

DS + background MLBBPS

21.75 units 21.75 units

Figure 1. Schedule for proposed novel approach MBBPS

Journal of Information Technology Research
Volume 15 • Issue 1

14

Figure 3. Shows the aperiodic Avg. response time with 60% periodic load

Figure 2. Schedule for existing DS and Background

Table 5. Shows some assumptions which consider during the simulation

About Task Parameter Assumption Variation

Utilization Threshold assigned 0.01-0.02

Utilization
If Utilization-Σu(i-1) ≥Uth then any random
number selected (0,Ui-ΣU(i-1)]

If Utilization-Σu(i-1) < Uth then assigned Utilization = Ui-Σu(i-1)

WCET Any random selection (0,90]

Execution Period Any random selection (0,900]

Task Deadline Any random selection [ei, pi]

Periodic task load assigned 40%, 60%,80%

Aperiodic task arrival time By using a process(Poisson Arrival Method)

Journal of Information Technology Research
Volume 15 • Issue 1

15

load increases. When the aperiodic task load varies from 30% to 60%, the proposed approach gives
a 15% reduction in average response time of aperiodic task over the existing method. That will
happen due to a more number of aperiodic jobs that occurred; budget 2 utilized better, and most of
the time, the aperiodic task complete execution within the assigned budget. In Figure 4, periodic task
load increases up to 60% of total capacity, and aperiodic task varies from 5% to 40%, so that budget
2 decreases and the performance of the proposed algorithm is better only 7% in comparison with
deferrable server approach. In Figure 5, periodic task load increases up to 80% of total capacity, and
aperiodic task varies from 5% to 20%, so that budget 2 is meager, and performance of the proposed
algorithm is almost 3% better in comparison with deferrable server approach.

Load Effect on Rejection Ratio of Aperiodic Task
In this simulation, the authors measure the result of periodic and aperiodic load variation, server
utilization on average response time, and aperiodic task rejection ratio.

Figure 6, 7, and 8 shows the comparison of the proposed two-phase novel approach with the
deferrable server algorithm. Here aperiodic task rejection has been measured when a periodic load
is 40%, 60%, and 80%. In Figure 6, regular capacity is only 40%, and the aperiodic amount varies in

Figure 4. Shows the aperiodic Avg. response time with 80% periodic load

Figure 5. Shows the aperiodic Avg. response time with 40% periodic load

Journal of Information Technology Research
Volume 15 • Issue 1

16

Figure 7. Shows the aperiodic task rejection ratio (%) with periodic task load 60%

Figure 8. Shows the aperiodic task rejection ratio (%) with periodic task load 80%

Figure 6. Shows the aperiodic task rejection ratio (%) with periodic task load 40%

Journal of Information Technology Research
Volume 15 • Issue 1

17

between 10% to 20% then only 3% aperiodic task accepted but when aperiodic job varies in between
20% to 40% later in the proposed algorithm acceptance ratio increases up to 10% due to higher
value of budget 2. The observation of Figures 7 and 8, almost 5% and 3% aperiodic task accepted
correspondingly in comparison with the existing algorithm.

Response Time Disparity of Aperiodic Task in Presence of Periodic Task
In Figure 9, in general, periodic response time is decreased when the utilization of the server increases.
For better responsiveness to the user, it is a better opportunity to finish the aperiodic task efficiently
when severing utilization increases. When the server utilization raises, for better responsiveness to
the user need to be finish aperiodic task earlier. When server utilization is lower almost 8% (0.1-0.2)
while improvent in utilization is received 2% as compare to existing server approach in terms of
average response time.

CONCLUSION

In this research work, the authors proposed a two-phase novel approach for multi-level budget
bandwidth preserving server to schedule periodic and aperiodic task. One of our main objectives in
this research work was to enhance the responsiveness of aperiodic task to guarantee that the real-time
constraints are easily verified. The author reduces the response time of aperiodic task and provides
better responsiveness with improved budget. The innovative approach provides improved budget
consumption, and its accessibility achieved through utilizing the conception of multi budget with a
multi priority level with deferment. The functional analysis indicates that the proposed multi-level
budget bandwidth preserving server receives better responsiveness (Up to 7% - 10%) with an increased
number of completed aperiodic tasks over a wide range of variations. Two-phase approach has been
performed to analysis the responsiveness of aperiodic tasks, the first phase is for the construction
of budget1, budget2, and proposal for MLBBPS algorithm; the second phase is for refinement of
budget to increase the responsiveness of aperiodic task. An illustrative example of a functional
analysis of the algorithms and simulation results shows that, it reduces overall average response time
of aperiodic task approximately 13% at lowest periodic load (35%), 7% at 60% periodic load and 4%
at 80% periodic load. The simulation results shows that in all observed circumstances the proposed
algorithm received 7%-10% improve over existing one.

Figure 9. Response time of aperiodic tasks (avg.) with periodic task load 40% and aperiodic load 20%

Journal of Information Technology Research
Volume 15 • Issue 1

18

Although the novel approach are quite good and constitute a set of results to guarantee the better
performance in terms of average response time of aperiodic task, there are some improvements that
can still be made. We may enhance our approach to include the normal aperiodic task set as well
as the sporadic arrival of task set.Proposed Novel approach will be enhancing the performance of
fixed-priority system with slack stealing concept.

FUNDING AGENCY

The publisher has waived the Open Access Processing fee for this article.

Journal of Information Technology Research
Volume 15 • Issue 1

19

REFERENCES

Abeni, L., Biondi, A., & Bini, E. (2019). Hierarchical scheduling of real-time tasks over Linux-based virtual
machines. Journal of Systems and Software, 149, 234–249. doi:10.1016/j.jss.2018.12.008

Abeni, L., Lipari, G., & Lelli, J. (2015). Constant bandwidth server revisited. Acm Sigbed Review, 11(4), 19–24.
doi:10.1145/2724942.2724945

Ashjaei, M., Khalilzad, N., Mubeen, S., Behnam, M., Sander, I., Almeida, L., & Nolte, T. (2017). Designing end-
to-end resource reservations in predictable distributed embedded systems. Real-Time Systems, 53(6), 916–956.
doi:10.1007/s11241-017-9283-6

Ashmawy, A., & Tanaka, K.(2018). Reinforcing Total Bandwidth Server with Multivalued WCET. Academic Press.

Brandenburg, B. B., & Gül, M. (2016, November). Global scheduling not required: Simple, near-optimal
multiprocessor real-time scheduling with semi-partitioned reservations. In 2016 IEEE Real-Time Systems
Symposium (RTSS) (pp. 99-110). IEEE. doi:10.1109/RTSS.2016.019

Erciyes, K. (2019). Uniprocessor-Independent Task Scheduling. In Distributed Real-Time Systems (pp. 151–182).
Springer. doi:10.1007/978-3-030-22570-4_7

Hamann, A., Dasari, D., Martinez, J., & Ziegenbein, D. (2018, October). Response Time Analysis for Fixed
Priority Servers. In Proceedings of the 26th International Conference on Real-Time Networks and Systems (pp.
254-264). doi:10.1145/3273905.3273927

Hilman, M. H. (2020). Budget-constrained Workflow Applications Scheduling in Workflow-as-a-Service Cloud
Computing Environments. Academic Press.

Hosseinimotlagh, S., & Kim, H. (2019, April). Thermal-aware servers for real-time tasks on multi-core GPU-
integrated embedded systems. In 2019 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS) (pp. 254-266). IEEE. doi:10.1109/RTAS.2019.00029

Hussien, H., Shaaban, E., & Ghoniemy, S. (2019). Adaptive Hierarchical Scheduling Framework for TiRTOS.
International Journal of Embedded and Real-Time Communication Systems, 10(1), 119–135. doi:10.4018/
IJERTCS.2019010107

Khan, A. A., Ali, A., Zakarya, M., Khan, R., Khan, M., Rahman, I. U., & Rahman, M. A. A. (2019). A Migration
Aware Scheduling Technique for Real-Time Aperiodic Tasks Over Multiprocessor Systems. IEEE Access:
Practical Innovations, Open Solutions, 7, 27859–27873. doi:10.1109/ACCESS.2019.2901411

Kim, H., Wang, S., & Rajkumar, R. (2015, August). Responsive and enforced interrupt handling for real-time
system virtualization. In 2015 IEEE 21st International Conference on Embedded and Real-Time Computing
Systems and Applications (pp. 90-99). IEEE. doi:10.1109/RTCSA.2015.15

Li, H., Lu, C., & Gill, C. (n.d.). Predicting Latency Distributions of Aperiodic Time-Critical Services. Academic
Press.

Manthalkar, R. N. M. D. R., & Vengatesan, K. (2018). PATSAS: Periodic and Aperiodic Real-Time Task
Scheduling Algorithms Simulator. International Journal of Pure and Applied Mathematics, 118(20), 2681–2687.

Nascimento, F. M. S., & Lima, G. (2019, November). A Flexible Framework to Schedule Soft Aperiodic Tasks
in Hard Real-Time Systems. In 2019 IX Brazilian Symposium on Computing Systems Engineering (SBESC) (pp.
1-8). IEEE. doi:10.1109/SBESC49506.2019.9046046

Nikolov, V., Wesner, S., Frasch, E., & Hauck, F. J. (2017). A Hierarchical Scheduling Model for Dynamic
Soft-Realtime System. In 29th Euromicro Conference on Real-Time Systems (ECRTS 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Nirmala, H. (2015). Aperiodic task Scheduling Algorithms for Multiprocessor systems in Real Time environment.
International Journal of Engineering and Computer Science, 4(08).

Schlatow, J., Möstl, M., & Ernst, R. (2019, April). Self-aware scheduling for mixed-criticality component-based
systems. In 2019 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) (pp. 267-
278). IEEE. doi:10.1109/RTAS.2019.00030

http://dx.doi.org/10.1016/j.jss.2018.12.008
http://dx.doi.org/10.1145/2724942.2724945
http://dx.doi.org/10.1007/s11241-017-9283-6
http://dx.doi.org/10.1109/RTSS.2016.019
http://dx.doi.org/10.1007/978-3-030-22570-4_7
http://dx.doi.org/10.1145/3273905.3273927
http://dx.doi.org/10.1109/RTAS.2019.00029
http://dx.doi.org/10.4018/IJERTCS.2019010107
http://dx.doi.org/10.4018/IJERTCS.2019010107
http://dx.doi.org/10.1109/ACCESS.2019.2901411
http://dx.doi.org/10.1109/RTCSA.2015.15
http://dx.doi.org/10.1109/SBESC49506.2019.9046046
http://dx.doi.org/10.1109/RTAS.2019.00030

Journal of Information Technology Research
Volume 15 • Issue 1

20

Syed, A., Pérez, D. G., & Fohler, G. (2018). Job-shifting: An algorithm for online admission of non-
preemptive aperiodic tasks in safety critical systems. Journal of Systems Architecture, 85, 14–27. doi:10.1016/j.
sysarc.2018.01.005

Wu, J., & Li, J. F. (2018). An Enhanced Real-Time Deferrable Server Scheduler for Xen Virtualization Systems.
IAENG International Journal of Computer Science, 45(3), 403–412.

Yadav, R. S., & Agrawal, S. (2010). Enhanced aperiodic responsiveness by multi budget bandwidth preserving
server. ACM SIGBED Review, 7(2), 1–8. doi:10.1145/1850820.1850821

Yoder, J., Amaro, L., Hagey, R., & Bankston, M. S. (2017). U.S. Patent No. 9,679,299. Washington, DC: U.S.
Patent and Trademark Office.

Yun, H., Yao, G., Pellizzoni, R., Caccamo, M., & Sha, L. (2013, April). Memguard: Memory bandwidth
reservation system for efficient performance isolation in multi-core platforms. In 2013 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS) (pp. 55-64). IEEE.

Zhang, Y., & Li, H. (2019). Energy aware mixed tasks scheduling in real-time systems. Sustainable Computing:
Informatics and Systems, 23, 38–48. doi:10.1016/j.suscom.2019.06.004

Ajitesh Kumar is working as an Assistant Professor in the department of CEA at GLA University Mathura. He has
15 years of experience in teaching and published ten research papers in the reputed journals. His current research
interest includes real-time system, IoT, and its application.

Sanjai Kumar Gupta is working as an Associate Professor in the Department of CS&E at B.I.E.T., Jhansi U.P.,
India . He has been published more than 40 papers in different reputed journals.

http://dx.doi.org/10.1016/j.sysarc.2018.01.005
http://dx.doi.org/10.1016/j.sysarc.2018.01.005
http://dx.doi.org/10.1145/1850820.1850821
http://dx.doi.org/10.1016/j.suscom.2019.06.004

