
DOI: 10.4018/JITR.299382

Journal of Information Technology Research
Volume 15 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Target Sentiment Analysis Ensemble 
for Product Review Classification
Rhoda Viviane Achieng Ogutu, Jomo Kenyatta University of Agriculture and Technology, Kenya*

Richard M. Rimiru, Jomo Kenyatta University of Agriculture and Technology, Kenya

Calvins Otieno, Maseno University, Kenya

ABSTRACT

Machine learning can be used to provide systems with the ability to automatically learn and improve 
from experiences without being explicitly programmed. It is fundamentally a multidisciplinary 
field that draws on results from artificial intelligence, probability and statistics, information theory 
and analysis, among other fields that impact the field of machine learning. Ensemble methods are 
techniques that can be used to improve the predictive ability of a machine learning model. An ensemble 
comprises of individually trained classifiers whose predictions are combined when classifying 
instances. Some of the currently popular ensemble methods include boosting, bagging, and stacking. 
In this paper, the authors review these methods and demonstrate why ensembles can often perform 
better than single models. Additionally, some new experiments are presented to demonstrate the 
computational ability of the stacking approach.
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INTRODUCTION

There are various methods of constructing ensembles with different classifiers for data science 
and analysis. However, just as Wolpert and Macready (1997) puts it, different learning methods 
can be developed to solve different classification problems. Generally speaking, according to 
Seijo-Pardo, Porto-Díaz, Bolón-Canedo, and Alonso-Betanzos (2017) there are two kinds of 
ensembles, homogeneous ensembles and heterogeneous ensembles. Homogeneous ensembles 
are ensembles where all classifiers are of same type or family, while heterogeneous ensembles 
are ensembles where the classifiers are of different type or family, that is, diverse (Abuassba, 
Zhang, Luo, Shaheryar, & Ali, 2017).

Rokach (2005) explains that there are several factors that can be used to differentiate ensemble 
methods in different dimensions. These include factors to do with Inter-classifier relationship, 
classifier combining methods, classifier diversity generator and Ensemble size. However, 
classification can be based on two main dimensions, Inter-classifier relationship and Combining 
Methods (Araque, Corcuera-Platas, Sánchez-Rada, & Iglesias, 2017). Inter-classifier relationship 
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refer to the methods of achieving learning process, which include Sequential and Concurrent 
methods (Araque et al., 2017). In Sequential approaches, there is an interaction between the 
learning runs and it is possible to take advantage of knowledge generated in previous iterations 
to guide the learning in the next iterations. This approach includes techniques such as Model-
guided Instance Selection where the classifiers that were constructed in previous iterations are 
used for manipulating the training set for the next iteration. Such model-guided algorithms include 
Boosting, Uncertainty Sampling among others. Sequential approaches also includes Incremental 
Batch Learning, where the classifier produced in one iteration is given as “prior knowledge” to 
the learning algorithm in the following iteration (along with the subsample of that iteration). 
The learning algorithm uses the current subsample to evaluate the former classifier, and uses 
the former one for building the next classifier. The classifier constructed at the last iteration is 
chosen as the final classifier (Rokach, 2005). On the other hand, in the Concurrent ensemble 
approaches the original dataset is partitioned into several subsets from which multiple classifiers 
are induced concurrently. The subsets may be disjoint (mutually exclusive) or overlapping after 
which a combining procedure is applied in order to produce a single classification for a given 
instance. Since the method for combining the results of induced classifiers is usually independent 
of the induction algorithms, it can be used with different inducers at each subset. Concurrent 
methods aim either at improving the predictive power of classifiers or decreasing the total 
execution time. Algorithms that can be implemented in this approach include Bagging, Cross-
validated Committees among others (Rokach, 2005).

The second dimension Combining Methods include simple multiple classifier combination 
and Meta combining methods. The simple combining techniques are best suited for classification 
problems where the individual classifiers perform the same task and have comparable success. 
However, these combiners are more vulnerable to outliers and to unevenly performing classifiers. 
The simple combining techniques include techniques such as Uniform Voting where each 
classifier has the same weight, while a classification of an unlabelled instance is performed 
according to the class that obtains the highest number of votes (Rokach, 2005). In addition, in 
majority voting every classifier makes a prediction (votes) for each test instance and the final 
output prediction is the one that receives more than half of the votes (majority). If none of the 
predictions get more than half of the votes, it can be assumed that the ensemble method could not 
make a stable prediction for this instance (Demir, 2015). On the other hand, the Meta learning 
technique means that learning is from the classifiers produced by the base learners (inducers) 
and from the classifications of these classifiers on training data. This includes techniques such 
as Stacking and Arbiter Trees (Rokach, 2005).

Rocca (2019) identifies three common ways of creating ensembles from these classifiers 
or learners. In bagging approach, the original dataset is partitioned into several subsets 
from which multiple classifiers are concurrently induced. The subsets may be disjoint 
(mutually exclusive) or overlapping. A combining procedure is then applied in some kind of 
deterministic averaging process. Bagging approach can be used to decrease the total execution 
time for classifiers (Rokach, 2005). The second one is boosting, which is also a method 
for improving the performance of any learning algorithm (Rokach, 2005). The approach 
learns the weak leaners sequentially in a very adaptive way and combines them following a 
deterministic strategy (Rocca, 2019). According to Rokach (2005) sequential learning can 
be achieved by repeatedly running a weak learner, on various distributed training data. The 
classifiers produced by the weak learners are then combined into a single composite strong 
classifier in order to achieve a higher accuracy. Finally, the third approach is stacking, where 
meta-learning is done by learning from the classifiers produced by the inducers, and from 
the classifications of these classifiers on training data. This method tries to induce which 
classifiers are reliable and which are not. Stacking is usually employed to combine models 
built by different inducers (Rokach, 2010).
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Supervised vs. Unsupervised Machine Learning Approaches
According to Mitchell (1998) Machine Learning is a field concerned with the question of how to 
construct computer programs that automatically improve with experience, that is, Machine Learning 
explores the study and construction of algorithms that can learn from and make predictions on data.

Zhou (2012) state that the purpose of Machine Learning is to learn from training data so as 
to make predictions on new or unseen data, this is what is referred to as ‘Generalization’. There 
exist different learning settings, among which the most common ones are supervised learning and 
unsupervised learning (Zhou, 2012).

Supervised Learning is a Machine Learning approach where all data is labelled and the algorithms 
learn to predict the output from the input data or the training dataset. Specific output values are 
supplied, and the algorithm iteratively makes predictions on the training data, while learning is 
improved with the experience learned. Learning stops when the algorithm achieves an acceptable 
level of performance (Hastie, Tibshirani, Friedman, 2009).

According to Korjus, Hebart and Vicente (2016) and Alpaydin (2014) Supervised Machine 
learning require splitting of the dataset into a training set and a test set. A training set is the actual 
dataset or a sample of the dataset used to train (fit) a model. The model learns from the training set. 
A test set on the other hand, is the sample of the dataset used to provide an unbiased evaluation of 
a final model trained on the training dataset. It provides the ultimate standard used to evaluate the 
model. Finally, the goal of Supervised Machine Learning for a classification problem is to find a 
model that accurately classifies and generalizes, such as applicable in Tex classification. To test the 
generality of a learned model, that model is typically applied to the test dataset and the prediction 
outcome then informs a researcher about the performance of the model. This therefore informs the 
understanding that the learning process in a simple machine learning model is divided into two steps; 
training and testing (Nasteski, 2017).

Unsupervised Learning on the hand is a Machine Learning approach where algorithms are trained 
to use data that is not labelled. This means that no training data is provided and the algorithm is made 
to learn by itself while classifying the data without any prior experience (Sethi, 2020). The goal for 
unsupervised learning is to model the underlying structure in order to learn more about the data, 
provide insights that were previously unknown and to identify hidden patterns (Brownlee, 2019). 
As such, there aren’t necessarily defined outcomes from unsupervised learning algorithms. Rather, 
this type of learning determines what is different or interesting from the given dataset. Unsupervised 
Learning algorithms can therefore be practically applicable in fraud detection and identification of 
human errors during data entry among other applicable areas (Sethi, 2020).

The goal of the researchers in this study was to optimize performance criteria using experience. 
For this reason, the Supervised Learning algorithms applied allowed the researchers to collect data, 
label the data and produce a data output from the previous experiences.

According to Jurafsky and Martin (2017), one of the oldest tasks in Text classification is assigning 
a library subject category or topic label to a text. The researchers study reveal that subject category 
classification is the task for which Naïve Bayes algorithm was invented. The researchers state that the 
goal of classification is to take a single observation, extract some useful features, and thereby classify 
the observation into one of a set of discrete classes. There are other various methods of classifying 
texts such as the application of Rule-based classifiers, which, according to the researchers prove to 
be fragile, as situations or data change overtime while for some tasks humans aren’t necessarily good 
at coming up with the rules. For this reason, most cases of classification in language processing are 
done by Supervised Machine Learning. However, Decision Tree classifiers training in Supervised 
Learning on the other hand, are relatively expensive as complexity and time taken to train the model 
is more (Dhiraj, 2019).

This study’s researchers therefore implemented Naïve Bayes algorithm for sentiment detection, 
while experiments such as ‘Bag-of-words’ and n-gram were carried out for subjective analysis of the 
content. Naïve Bayes has also be been shown by Huang, Lu and Ling (2003) to be superior in terms 
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of CPU and memory utilization. In addition, the algorithm is a probabilistic classifier and is used to 
indicate the probability of observation being in the class, by calculating the conditional probability of 
each attribute occurring in the predicted classes. The algorithm also assumes attribute independence, 
meaning, each individual feature is assumed to be an indication of assigned class, independent of each.

Support Vector Machine (SVM) on the other hand, is a Supervised Machine Learning algorithm 
which is also widely used for classification problems, even though it can be employed for both 
classification and regression purposes. It is a non-probabilistic binary linear classifier that has the 
ability to linearly separate classes by a large margin (Osisanwo, Akinsola, Awodele, Hinmikaiye, 
Olakanmi & Akinjobi, 2017). According to Balahur and Perea-Ortega (2015), SVM has been proven to 
be highly effective in traditional text classification and has been applied successfully in many opinion 
mining tasks, performing better than other machine learning techniques. The rationale behind SVMs 
for the purpose of this study, can be best explained by considering a set of data points that belong to 
one of two classes, ‘positive’ and ‘negative’, as illustrated in Figure 1. The two classifying algorithms, 
Naïve Bayes and Support Vector Machine (SVM), were then used to build the Ensemble model.

RELATED WORK

Application of Ensemble Learning
Ensemble methods can be used for the creation and building of a more conventional model. For 
instance, Ensemble methods can also be used to evaluate the relationship and responses in conventional 
statistical models. As such, Akhtar, Gupta, Ekbal, and Bhattacharyya (2017) presented a cascaded 
framework of feature selection and classifier ensemble using Particle Swarm Optimization (PSO) for 
aspect based Sentiment Analysis, where aspect term extraction and sentiment classification was carried 
out. The researchers used features that were identified based on the properties of different classifiers 
and domains. Three classifiers were used as base learning algorithms. The eligible classifiers identified 
were combined using either majority or weighted voting. In this study, the ensemble learner was used 
to find out the most eligible models, that when combined together, maximized some classification 
quality measure such as F-measure or accuracy.

Additionally, Ensemble learning has also been applicable in areas such as deep learning techniques 
for Sentiment Analysis to provide automatic feature extraction, rich in both representation capabilities 
and better performance as compared to traditional feature based techniques in social applications 
(Araque et al., 2017). The focus of deep learning techniques is to learn complex features extracted 
from data with minimum external contribution (Bengio, 2009) using deep neural networks (Alpaydin, 
2014). Araque et al. (2017) confirmed that the performance of their proposed ensemble models 
surpassed that of their original baseline models on F1-Score.

Figure 1. Linearly Separable Dataset
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In addition, Ensemble learners have also been used to minimize error rate of models in Sentiment 
Analysis. For instance, Alnashwan, O’Riordan, Sorensen and Hoare (2016) employed a four base 
learners to investigate the effectiveness of using a combination of existing lexicon resources as meta-
level features in ensemble learning for sentiment classification. This offered advantages over using 
either a single lexicon resource or a single classifier. Moreover, their experiment showed that, based 
on a combination of existing lexicon resources, the ensemble learners minimized the error rate by 
avoiding poor selection from stand-alone classifiers.

Fersini, Messina, and Pozzi (2014), studied Ensemble Learning to reduce the noise sensitivity 
related to language ambiguity and therefore to provide a more accurate prediction of polarity. The 
researchers asserted that most of the existing approaches in Sentiment Analysis select the best 
classification model leading to over-confident decisions that do not take into account the inherent 
uncertainty of the natural language. They addressed the classifier selection problem by proposing a 
greedy approach that evaluated the contribution of each model with respect to the ensemble.

Boosting and Bagging Ensemble Methods
Boosting is a sequential ensemble approach, that works by repeatedly running weak learners on 
the training data (Viola & Jones, 2004). Schapire (1990) in his paper described weak learning as a 
situation where the concept class is weakly learnable if the learner can produce a hypothesis that 
performs only slightly better than random guessing. The classifiers that were constructed in previous 
iterations in boosting are then used for manipulating the training set for the next iteration. This makes 
it possible to take advantage of knowledge generated in previous iterations to guide the learning in 
the next iterations. Eventually, the classifiers produced by weak learners are combined into a single 
composite better performing classifier (Rokach, 2005) and (Viola & Jones, 2004).

A weaker model of learnability drops the requirement that the learner be able to achieve arbitrarily 
high accuracy. Algorithms such as boosting approach can therefore be used to improve the performance 
of a weak learner, that is, boost the low accuracy of a weak learning algorithm (Schapire, 1990). Due 
to the reason that it generates a final classifier whose error on the training set is small by combining 
many hypotheses whose error may be large (Rokach, 2005). Furthermore, in boosting, since base 
classifiers are influenced by the performance of those built previously, the new classifier pays more 
attention to error that were made in the previous ones and to their performances (Viola & Jones, 2004).

Bagging approach main goal is to improve accuracy by creating an improved composite classifier, 
by a means of integrating the various outputs of learned classifiers into a single prediction (Rokach, 
2005). In comparison to bagging ensemble, which require that learning systems be unstable (Quinlan, 
1996) and (Saugata, 2018) boosting however, does not require the use of unstable learning systems, 
provided that their error rate is kept below 50% (Rokach, 2005; Quinlan, 1996). Unstable classifiers 
are characterized by high Variance (Breiman, 1998).

Both bagging and boosting reduce bias to some extent, however, their major contribution to 
accuracy is in the large reduction of variance. As such, boosting performs better than bagging because 
it does better at variance reduction (Breiman, 1998).

A major drawback in boosting is over fitting which may lead to deterioration in performance. 
This can be brought about by having many iterations (Quinlan, 1996). A possible way to avoid this 
issue of over fitting is by keeping the number of iterations as small as possible (Rokach, 2005).

Fundamental Contributions of Ensemble Learning
An ensemble learning is a Machine Learning process to get better prediction performance by 
strategically combining the predictions from multiple learning algorithms (Abuassba et al., 2017; 
Tuwe, 2015). Further, Dietterich (2000) states that an ensemble of classifiers is a set of classifiers 
whose individual decisions are combined in some way to classify new examples. The study’s previous 
discussions have demonstrated that ensembles are usually significantly more accurate and successful 
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than single learners, as the base classifiers are trained to solve the same original problem but combined 
to get better results (Araque et al., 2017).

In addition, Dietterich (2000) elaborates that there are three fundamental reasons why ensemble 
methods outperform single classifiers. The first reason is statistical reason, where a learning algorithm 
or classifier can be viewed as searching a space H of hypotheses to identify the best hypothesis in the 
space. The statistical problem arises when the amount of training data available is too small compared 
to the size of the hypothesis space. Without sufficient data, the learning algorithm can find many 
different hypotheses in H that all give the same accuracy on the training data. By constructing an 
ensemble out of all of these accurate classifiers the algorithm can ‘average’ their votes and reduce 
the risk of choosing the wrong classifier. The second reason is a computational reason where the 
researcher identified that many learning algorithms or classifiers work by performing some form of 
local search that may get stuck in local optima. In instances where the statistical problem is absent, 
due to availability of enough training data, it may still be difficult computationally for the learning 
classifier to find the best hypothesis. An ensemble constructed by running the local search from many 
different starting points may provide a better approximation to the true unknown function than any 
of the individual classifiers. Finally, the third reason is representational, which refers to the functions 
which the model can learn. In most applications of machine learning, the true function f cannot be 
represented by any of the hypotheses in H. By forming weighted sums of hypotheses drawn from H, 
it may be possible to expand the space of representable functions. This is a somewhat subtle issue 
because there are many learning algorithms for which H is, in principle, the space of all possible 
classifiers (Dietterich, 2000).

Often times, there are various important factors to consider when creating ensembles such as 
biasness or variance of base learners (Rocca, 2019). However, Hansen and Salamon (1990) and 
Dietterich (2000) points out that accuracy and diversity are also some of the key metrics used when 
developing ensembles. With this, the researchers note that a necessary and sufficient condition for an 
ensemble of classifiers to perform better than its individual members, is if the individual classifiers 
are accurate and make independent errors (diverse) that is, the errors made by the classifiers are 
uncorrelated (Dietterich, 2000) and (Rokach, 2010). Diversity is important while creating ensemble 
models because it allows stronger learners from different regions to combine their ability to reduce 
risk of misclassification. While selecting and creating the predictive model in the study, classification 
accuracy - the proportion of correctly classified instances, was used as one of the metric. An accurate 
classifier is one that has an error rate of better than random guessing on new x values. On the other 
hand, the diversity of the members of an ensemble is known to be an important factor in determining 
its generalization error (Melville, 2003; Rokach, 2010; Moudřík & Neruda, 2015).

ENSEMBLE OF CLASSIFIERS

Sentiment Analysis Models
This research therefore presented the Sentiment analysis models proposed in the previous work 
(Ogutu et al., 2019). The models were validated with data sets of tweet reviews of “OnePlus 7 Pro” 
mobile phone product, in the first round of experiments where the data was categorized as positive 
and negative. As mentioned earlier, building a diverse set of initial models was essential for this 
study. Initial experiments in Ogutu et al. (2019) demonstrated the accuracy and diversity of Naïve 
Bayes and SVM classifiers, as used in the classification of twitter product review datasets. This can 
be seen in Tables 1 and 2.

As shown in Table 1 the average performances for Naïve Bayes and SVM in the initial experiments 
carried out by Ogutu et al. (2019) formed the basis for the intension to build an ensemble model. In 
addition, results in Table 2 also demonstrated that the errors made by the classifiers were uncorrelated. 
These outcomes indicated that the classifiers were strong, yet very diverse, a condition that supported 
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the building of the predictive ensemble model. A class of concepts is strongly learnable if there exist 
a polynomial-time algorithm that achieves low error with high confidence for all concepts in the 
class (Schapire, 1990).

With this in mind, the main assumption was that if Naïve Bayes and SVM classifiers were 
adequately and correctly combined, an even more accurate and robust model could be obtained from 
the previous study in Ogutu et al. (2019) with an intension of improving predictions.

Meta Classifier Model
With a Meta classifier technique, the outputs of the base classifiers are treated as inputs for the 
meta-learning model. In this approach, the model can learn and adapt to different situations 
(Araque et al., 2017).

Stacking Ensemble
Stacking is an ensemble approach where predictions by each different model is given as input for a 
Meta level classifier whose output is the final class (Wolpert, 1992). Stacking is usually employed 
to combine models built by different inducers, that is, heterogeneous models (Rokach, 2010) and is 
equally regarded as a technique for achieving the highest generalization accuracy for strong learners 
(Wolpert, 1992). Using a meta-learner, the method tries to induce which classifiers are reliable vis-
a-vie the ones that are not. Most importantly, Stacking actively seeks to improve the performance 
of an ensemble as the Meta classifier is trained to learn and correct the errors of the base classifiers 
(Breiman, 1996; Wolpert, 1992).

Table 1. Comparative Results for Classifier Accuracy

Sr. No. No. of Reviews
Accuracy

Naïve Bayes SVM

1 500 89.1% 90.8%

2 700 94% 95.7%

3 1000 95.8% 93.5%

4 1500 97.9% 95.8%

5 2000 98.4% 97.5%

6 3000 93.8% 97.6%

Average Performance 94.8% 95.2%

Table 2. Comparative Results for Classifier Error Rates

Sr. No. No. of Reviews
Error Rate (err)

Naïve Bayes SVM

1 500 10.9% 9.2%

2 700 6% 4.3%

3 1000 4.2% 6.5%

4 1500 2.1% 4.2%

5 2000 1.6% 2.5%

6 3000 6.2% 2.5%
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This study focused on how the two heterogeneous classifiers, Naïve Bayes and SVM could be 
improved by combining them to get an even better performance. Stacking has been used by various 
researchers to achieve greater predictive accuracy for strong leaners (Džeroski & Ženko, 2004; 
Moudřík & Neruda, 2015). As depicted by experimental results in Table 1 and 2, the study uses the 
two strong yet diverse base leaners which are then aggregated by a Stacking ensemble.

Mathematically, if an ensemble has H base classifiers with an error rate of e < 1
2

, while at the 

same time, the base classifiers’ errors are uncorrelated, then the probability that the ensemble will 

make an error is the probability that more than H
2

 base classifiers misclassify the example. Simply, 

if an input-output pair x y,( )  is left out of the training set of h
i
, after training is complete for h

i
, the 

output y can still be used to evaluate the classifier’s error. Since x y,( )  was not in the training set of 
h
i
, h x

i ( )  may differ from the desired output y. A new classifier is then trained to estimate this 
discrepancy, given by y h x

i
− ( ) . Essentially, a second classifier is trained to learn the error the first 

classifier made. Adding the estimated errors to the outputs of the first classifier can improve 
generalization (Oza & Tumer, 2008).

Binary classification model was then fit with caretEnsemble package in R-Studio. caretEnsemble 
has three primary functions: caretList, caretEnsemble and caretStack. caretList is used to build lists 
of caret models on the same training data, with the same re-sampling parameters. caretEnsemble and 
caretStack are used to create ensemble models from such lists of caret models. caretEnsemble uses a 
Generalized Linear Models (GLMs) to create a simple linear blend of binary classification models, 
while caretStack uses a caret model to combine the predicted outputs from several component caret 
models (Mayer, 2019). Using the caretList function, the base caret models Naïve Bayes “nb” and 
SVM “svmLinear” was fit to the same datasets. The function returned a list of objects which were 
then passed to caretEnsemble and caretStack.

EVALUATION

The evaluation results from this second round of experiments were based on two commonly used 
performance metrics, accuracy and error rate (Kalaivani & Shunmuganathan, 2013). This was in 
accordance with the goal of the study which laid emphasis on accuracy measures, precision and 
robustness. Robustness is the ability of a model to cope with errors (Rodriguez, 2019).

The Confusion Matrix
The study was a binary classification problem in which sentiments were classifies as either 
positive or negative. According to Hossin and Sulaiman (2015) the discrimination evaluation of 
the optimal solution during a classification training can be defined based on confusion matrix 
as in the Table 3. The confusion matrix is used for determining the correctness and accuracy 
of the model. The rows of the confusion matrix table represents the predicted class, while the 
column represents the actual class.

RESULTS AND DISCUSSION

For the purposes of carrying out the second round of experiments, collection and mining of tweet 
reviews of “OnePlus 7 Pro” mobile phone dataset was again done. The goal this time was to experiment 
on the accuracies and the error rates of the base models, so as to establish the impact and effectiveness 
of building the ensemble model.
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Naïve Bayes, SVM and the Stacked Ensemble Classifiers Comparative Results
See Table 4.

Confusion Matrix Statistics and Model Inspection
In the analysis of the two classification approaches, the results indicated that in terms of error rate, 
Naïve Bayes seemed to be generating a significant amount of errors during computation as compared 
to SVM. As indicated in Table 4, SVM performances were better than Naïve Bayes in terms of 
accuracies and error rate measure. However, the stacked ensemble model’s performances were 
similar to that of SVM performances, except for experiments carried out for 700 Reviews where the 
ensemble had a significant amount of errors at 3.9%. A 10-fold cross validation was also carried out 
during classifier training with the intension of tuning and developing a ‘best’ model; a model with 
minimum amount of error rate.

CONCLUSION

The goal of the final phase of experiments was to evaluate the performance for Sentiment classification 
in terms of accuracy, and robustness. We therefore compared the two supervised Machine Learning 
algorithms, for sentiment classification of Twitter product reviews. From the experiments, as much as 
there existed significant amount of errors, Naïve Bayes could not be regarded as an unstable learning 
system, since the error rate had been kept below 50%. Arguably, the experiments indicated that SVM 
and Naïve Bayes were good classifiers for Sentiment analysis and Text Classification due to the 

Table 3. The Confusion Matrix

Actual Negative Class Actual Positive Class

Predicted Negative Class True Negative (TN) False Negative (FN)

Predicted Positive Class False Positive (FP) True Positive (TP)

True Negatives (TN): The cases which were predicted Negative and the actual output was also negative.
True Positive (TP): The cases which were predicted Positive and the actual class of the data point was also positive.
False Negative (FN): False Negatives were the cases in which the actual class of the data point was positive and the predicted was Negative. False was 

because the model had predicted incorrectly and negative because the class predicted was a negative.
False Positive (FP): False Positives were the cases in which the actual class of the data point was Negative and the predicted was Positive. False was 

because the model had predicted incorrectly and positive because the class predicted was positive.

Table 4. Comparative Results for Sentiment Classification and Classifier Performance – with Caret Package

Sr. No. No. of 
Reviews

Accuracy
Sr. 
No.

No. of 
Reviews

Error Rate (err)

Naïve 
Bayes SVM Stacked 

Ensemble
Naïve 
Bayes SVM Stacked 

Ensemble

1. 500 91.6% 97.5% 97.5% 1. 500 8.3% 2.5% 2.5%

2. 700 81.1% 96.9% 96.1% 2. 700 18.9% 3.1% 3.9%

3. 1000 80.9% 96.6% 96.6% 3. 1000 19.0% 3.4% 3.4%

4. 1500 87.4% 98.1% 98.1% 4. 1500 12.6% 1.9% 1.9%

5. 2000 69.4% 97.4% 97.4% 5. 2000 30.6% 2.6% 2.6%

6. 3000 75.9% 96.5% 96.5% 6. 3000 24.1% 3.5% 3.5%
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relatively good performances achieved, with a minimum accuracy record of 69.4% and a maximum 
error rate of 30.6% for Naïve Bayes. The Stacked ensemble model additionally demonstrated a good 
ability to cope with errors as indicated in Table 4.
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