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ABSTRACT

Wind energy is generated via the use of wind blades, turbines, and generators that are deployed over 
a given area. To achieve a higher energy and system reliability, the wind blade and other units of the 
system must be designed with suitable materials. In this paper, however, a computational intelligent 
model based on an artificial neutral network has been proposed for the evaluation of the reliability of 
the wind turbine blade designed with the FRP material. The simulation results show that there was 
a reduction in the training mean square error, testing (re–training) mean square error and validation 
mean square error, when the number of training epochs is increased by 50% such that the minimum 
mean square error and maximum mean square error were 0.0011 and 0.0061, respectively. The low 
validation mean square error in the simulation results implies that the developed artificial neural 
network has a good accuracy when determining the reliability and the failure probability of the wind 
turbine blade.
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1. INTROdUCTION

Wind, which is a limitless and a clean energy source (renewable in nature), is one of the oldest 
alternative source of energy. It has been described by energy researcher as one of the most reliable 
energy resources ever discovered (Pfaffel et al., 2017), a renewable green energy and harmonious to 
environment, since it neither consumes fossil fuel nor makes dirty atmosphere (Jiang et al., 2017; 
Oyedepo, 2012).

This renewable green energy which can be realized via the use of wind blades which can be 
connected to a turbine and a generator, is deployed over a given area for the purpose of generating 
electrical energy (Periola & Aikhuele, 2021). In generating the electrical energy, the wind blades of 
the system are made to turn by the forces of nature (wind), such that it generates a kinetic energy which 
then fires the turbine to generate the electrical energy output via the generator. The wind blades and 
the turbine used in the system, are deployed in arrays which usually covers a large geographical area 
(Aikhuele et al., 2019). This is done with the aim of intercepting the wind at a significant number 
of points thereby generating a significant electrical energy output. In this manner, wind renewable 
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energy systems are aimed to take advantage of the diversity in wind speeds at different epochs over 
a given area using the wind blades. To achieve a higher efficiency rate of the wind blade, suitable 
materials must be chosen for the design and development of each of the units of the system. Figure 
1; describe a schematic diagram of a wind blade which consists of layup of a composite material 
used in various regions of the system.

Composite materials especially the fibre reinforced plastic (FRP), which have found application 
recently in the design and development of turbine rotor of the Boeing 787 Dreamliner (Milberg, 
2015; Nicolais et al., 2011), is one candidate that can be used in the design of wind turbine blade 
(Mishnaevsky et al., 2017; Schubel & Crossley, 2012). To fully take advantage and control of the 
material for the wind turbine blade design and for other engineering purposes, it is important therefore 
that the reliability of the wind turbine blade designed with this material is adequately studied and 
investigated. Although, the attractive characteristic of the FRP, particularly its physical and mechanical 
properties, some of which includes, its high strength and stiffness, low weight characteristic, high 
durability, damping property, resistance to corrosion, fire and wear, has been studied extensively in 
literature, and has made it one of the most sorts after material for engineering design (Aikhuele, 2019; 
Mohammed et al., 2015). The complete benefits of the FRP material for the design of wind turbine 
blade however, cannot be fully realised in practice, where this is due to the conventional safety factors 
issues which normally arise as a result of lack of understanding of the uncertainties associated with 
the material, which research have shown could affect its overall performances.

Uncertainties in FRP components exist at several scales or levels, as such they interact with 
one another. Some of the scales or levels include; the micro-scale (e.g. bonding of matrix and fibre, 

Figure 1. Schematic diagram of a wind turbine blade (Wang et al., 2016)
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volume ratio, matrix voids, cracks), the ply level (e.g. fibre alignment, thickness) and the component 
level (e.g. curing, geometry) respectively (Sriramula & Chryssanthopoulos, 2009). Predicting fatigue 
damage and failure probability due to uncertainties from material properties, operation-ability, 
manufacturing and external load in wind turbine blade is not an easy task. Although, some authors, 
have contributed to the uncertainties study of FRP and that of the wind turbine system, however there 
are some research gaps that still need to be filled in this study area. These gaps, however, have been 
extensively reviewed in (Hu, 2015; Hurley, 2015).

Some of the research contributions that have been reported include, the probabilistic model 
developed for the analysis of safety in the wind-turbine rotor blade against fatigue failure by Ronold 
et al., (1999). The fuzzy inference based model developed for optimizing the performance and for 
harvesting wind energy by controlling the pitch angle which adjusts the speed of the generator of 
a wind energy harvesting system by Mitiku & Manshahia, (2018). A multi-scale analysis method 
developed for addressing and accounting for the effect of the micro-scale, ply and component material 
configuration in the FRP material by Corradi et al., (2017). The application of a dynamic Kriging 
(DKG) method (a surrogate uncertainty model) for the reliability design of wind turbine blade made 
with composite materials by Hu et al., (2016). And the development a fuzzy logic controller which 
is based on a maximum power point tracking, for the optimization of the wind power by controlling 
the speed of the generator in a wind energy harvesting system located in remote areas (Mitiku & 
Manshahia, 2019; Vasant et al., 2019).

Several other methods have also been applied in literature for the uncertainty study of the FRP 
and that of the wind turbine system, some of which include, models for addressing uncertainties 
due to material properties in the entire complex system (Ganesan et al., 2020), uncertainties in the 
wind power penetration and imbalance between generation and consumption (Badmasti et al., 2012), 
uncertainties due to operation-ability issues of the wind turbine system as reported in (Vasant et al., 
2020, 2018), uncertainties in the manufacturing system (Zhang et al., 2019) and in the external load 
applied to the wind turbine system (Bacharoudis et al., 2015; Odofin et al., 2017).

From the reviewed literatures above, and from the future research work presented by Hu, (2015), 
it is not hard to see that, much attention have not been given to the wind turbine blade, which is one 
of the main component that allows for the generation of wind energy (Choubey & Baredar, 2020). 
Hence, the need to fill these research gaps, some of which include. The development of a turbine 
control model and an intelligent system for fatigue reliability analysis of the wind turbine blade with 
special consideration of uncertainties in the material properties, in the operation-ability of the system, 
manufacturing and external load uncertainties for the wind blade. To the best of my knowledge, no 
study has reported or has fully addressed or develops an intelligent model for the fatigue reliability 
analysis of the wind turbine blade. In this paper however, a computational intelligent model based 
on an artificial neutral network have been proposed and presented for the evaluation of the fatigue 
reliability and failure probability of the wind turbine blade designed with the FRP material.

The study contributes to the fatigue reliability analysis of the wind turbine blade literatures, by 
presenting a new intelligent predictive model for its evaluation. The model, holistically captures, 
utilized and investigates the effect of several parameters including wind speed and turbine rotational 
speed to address a fundamental gap in the fatigue reliability and failure probability literature of the 
wind turbine blade. It is important to emphasize here also that, the model was able to take advantage 
of the big reliability data associated with this type wind turbine blade, which is used for the systems 
modelling.

The remaining part of the paper is organized as follows; in section 2, the ANN model is introduced, 
this is followed by the implementation of the model in section 3, for failure probability and fatigue 
reliability damage evaluation of an actual Siemens industrial wind turbine of 3.6 MW rated power, 
which has a wind turbine blade that is designed with a FRP material. In section 4, a detailed managerial 
implication of the reliability-based model for the wind turbine blade is discussed, finally in section 
5, some concluding remarks are presented.
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2. ARTIFICIAL NEUTRAL NETwORK MOdEL: AS A RESPONSE METHOd

Artificial Neural Network (ANN) is a computational model that works similar to the biological neurons 
of the human brain (Bullinaria, 2015). The model which can be trained and tuned such that they are 
able to make good decisions, allows information to be passed through the architecture of network, 
where such information are sensed, and then they learn, by adjusting the network to generate a good 
solution (Sildir et al., 2020).

ANN model are used for modelling non-linear statistical data with complex relationships between 
their inputs and outputs data (Ouma et al., 2020). Training the neural network is the process used to 
determine those complex relationships and patterns in the data set (Işığıçok et al., 2020). A typical 
ANN model architecture (see Figure 2) can exist in, either of the following forms; as a feed-forward 
neural network, recurrent neural network, regulatory feedback neural network or radial basis neural 
network etc. (Abbas et al., 2015; Boutaba et al., 2018).

When information are passed through the architecture of ANN model, they starts from the input 
layer and end at the output layer (Anand & Suganthi, 2017). It is important to note here that, the 
information (statistical data) can take various ways going from the input layer to the output layer in the 
network. Each of the network routes has different points, such that when they get to their destination 
(output layer), the scores are summed up to determine the best network route for information presented 
as statistical data (Tambouratzis et al., 2019). To achieve the objective of study, a flowchart in Figure 
3, which show the procedure for the evaluation of the fatigue reliability and failure probability of the 
wind turbine blade designed with the FRP material have been presented. The flowchart shows the 
key stages that have been adopted in the realization of the study objective. These stages includes; 

Figure 2. A typical ANN model architecture
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(1) the collection the necessary reliability and failure data; (2) the preparation and normalization 
of the data; (3) the design of the ANN architecture; (4) training of the network; and finally (5) the 
post-training analysis and implementation of the network.

3. NUMERICAL IMPLEMENTATION OF THE ANN MOdEL

In the implementation of the ANN model for failure probability and fatigue reliability damage 
evaluation, the study has adopted the parameters of an actual Siemens industrial wind turbine of 
3.6 MW rated power (with a wind turbine blade, designed with FRP), at the Walney 1 wind farm site 
originally presented by Arany et al., (2015). The information and parameters of the Siemens industrial 
wind turbine are shown in Table 1.

3.1. Assumption for ANN Model Implementation
To make the ANN model simpler and easy to implement, the following assumptions for the flow of 
information from one layer of the system to another can be summarized as follows.

(a)  The artificial neurons (Input Layer, Hidden Layer and output Layer) are arranged in sequentially 
as shown in Figure 2,

(b)  The artificial neurons within the same layer don’t interact nor communicate with each other.
(c)  All the inputs parameters enters the ANN model through the input layer and passes through the 

output layer,
(d)  At the same level, all the hidden layers has the same activation function,
(e)  At consecutive layers, the artificial neurons are densely connected and finally,
(f)  All the inter-connected network has their own weight and biased associated with them.

Figure 3. Flowchart showing the key stages in the methodology.
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3.2. Simulation and Analysis of Results
The performance of the trained artificial neural network is done considering three phases. These are 
the training phase (training), testing and re–training phase (second training) and validation phase. In 
the training phase, the weights of the artificial neural network (ANN) are adapted by considering the 
training data and training objective. The testing and re–training phase is also deemed as the training 
phase, however, in this case, the ANN’s weights are also re–adapted to reduce the prediction mean 
square error. The validation process is one in which new data is used as an input to the ANN and a 
re–computation of the ANN mean square error is executed. The ANN performance is to determine 
if the well trained artificial neural network is suitable for predicting the fatigue reliability and failure 
probability of the wind turbine. To achieve this, different ANN configurations were analysed, starting 
with Tables 2, were the configuration parameters for the first set of 5 ANNs were analysed.

Table 1. Information and parameters of the Siemens industrial wind turbine

Turbine data Parameters

Turbine type Siemens SWT‐3.6‐107

Turbine power 3.6 MW

Turbine rotational speed 5–13 rpm

Operational wind speed range 4–25 m s−1

Number of blades 3

Tower and support structure data

Hub height from mean sea level H = 83.5 m

Tower top diameter Dt = 3 m

Tower bottom diameter Db = 5 m

Monopile/substructure diameter DP = 6 m

Rotor and blade data FRP material

Turbine rotor diameter D = 107 m

Rotor overhang b = 4 m

Blade root diameter Broot = 4 m

Blade tip chord length Btip = 1 m

Blade length L = 52 m

Site data

Mean sea depth 21.5 m

Average distance from closest shore 19 km

Yearly mean wind speed 9 m s−1

Dominant wind direction West/south‐west

Estimated fetch 60 km



International Journal of Energy Optimization and Engineering
Volume 11 • Issue 1

7

From the above Table, it is not hard to see that the proportion of samples used for training, testing 
and validation are different for each of the ANN configuration. Here, five (5) ANN configurations 
were considered, and these configurations include configuration 4a, 4b, 4c, 4d and configuration 4e 
respectively. The proportions of the samples were given as , where and are the proportion of data 
samples used in the training, testing and validation respectively. 

Table 2. Shows the configuration parameters for the first set of 5 ANNs

S/N 4a 4c 4c 4d 4d

1 Size of Input Layer 2 2 2 2 2

2 Size of Hidden Layer 45 45 45 45 45

3 Size of Output Layer 1 1 1 1 1

4 Number of Hidden Layers 1 1 1 1 1

5 Input Layer Transfer Function tansig tansig tansig tansig tansig

6 1ST Hidden Layer Transfer Function Tansig tansig tansig tansig tansig

7 2ND Hidden Layer Transfer Function N/A N/A N/A N/A N/A

8 Output Layer Transfer Function purelin purelin purelin purelin purelin

9 Input Layer Bias Yes Yes Yes Yes Yes

10 First Hidden Layer Bias Yes Yes Yes Yes Yes

11 Second Hidden Layer Bias N/A N/A N/A N/A N/A

12 Output Layer Bias No No No No No

13 Number of Training Samples 2212 2212 2212 2212 2212

13 Pre – processing function logsig logsig logsig logsig logsig

14 Proportion of training samples 90% 80% 70% 70% 70%

15 Proportion of validating samples 5% 10% 15% 20% 10%

16 Proportion of testing samples 5% 10% 15% 10% 20%

17 Training Mean Square Error 0.0011 0.011 0.0011 0.0011 0.0011

18 Testing Mean Square Error 0.0013 0.0025 0.0013 0.0014 0.0058

19 Validation Mean Square Error 0.0011 0.0013 0.0012 0.0015 0.0067

20 Corresponding Figure Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

21 Number of Iterations 1000 1000 1000 1000 1000

22 Training Algorithm Levenberg 
Marquadt

Levenberg 
Marquadt

Levenberg 
Marquadt

Levenberg 
Marquadt

Levenberg 
Marquadt

23 MSE Target 0.00001 0.00001 0.00001 0.00001 0.00001

24 Number of Actual Iterations 1000 1000 1000 1000 1000

25 Training Duration 0:02:35 0:02:10 0:01:51 0:01:32

26 Number of Validation Checks 999 999 997 874

27 Gradient 0.0000201 0.000106 0.0000376 0.00158

28 Mu 0.0000001 0.0000001 0.0000001 0.0000001
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The concerned proportions are;,, ,, and respectively for the configuration 4a, 4b, 4c, 4d and 4e. 
The results for the artificial neural network mean square error for the training process in the case 
of configuration 4a is shown in the Figure 4a. While, the testing mean square error, the re–training 
mean square error and validation mean square error are shown in Figure 4b. 

In Figure 5a, the result of the ANN training mean square error for configuration 4b is presented, 
while the results in Figure 5b shows the testing and re–training of the network, alongside the validation 
mean square error for the configuration 4b. The result in Figure 6a describes the mean square error 
for the initial ANN training process in the case of configuration 4c. Figure 6b shows the mean square 
error for the training (re–training) and validation error for ANN with configuration 4c. A similar 
set of results are presented for configuration 4d and 4e, and the results are shown in Figure 7 and 8 
respectively for the mean square error of the initial training of configuration 4d and 4e respectively. 
As well as the testing and re–training of the network, alongside the validation mean square error for 
the configuration 4d and 4e. The results presented in Figures 4, 5, 6, 7 and 8, were conducted for a 
training epoch having 1000 iterations. On the overall, the validation mean square error has minimum 
and maximum values of 0.0011 and 0.0067, respectively. In this case, there are 45 neurons in the 
hidden layer.

Figure 4. Results for configuration 4a

Figure 5. Results for configuration 4b
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Figure 6. Results for configuration 4c

Figure 7. Results for configuration 4d

Figure 8. Results for parameters for configuration 4e
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Table 3. Increase in hidden layer size from 45 to 50

S/N 5a 5b 5c 5d 5e

1 Size of Input Layer 2 2 2 2 2

2 Size of Hidden Layer 50 50 50 50 50

3 Size of Output Layer 1 1 1 1 1

4 Number of Hidden Layers 1 1 1 1 1

5 Input Layer Transfer Function tansig tansig tansig tansig tansig

6 1ST Hidden Layer Transfer 
Function

Tansig tansig tansig tansig tansig

7 2ND Hidden Layer Transfer 
Function

N/A N/A N/A N/A N/A

8 Output Layer Transfer 
Function

purelin purelin purelin purelin purelin

9 Input Layer Bias Yes Yes Yes Yes Yes

10 First Hidden Layer Bias Yes Yes Yes Yes Yes

11 Second Hidden Layer Bias N/A N/A N/A N/A N/A

12 Output Layer Bias No No No No No

13 Number of Training Samples 2212 2212 2212 2212 2212

13 Pre – processing function Logsig logsig Logsig logsig Logsig

14 Proportion of training samples 90% 80% 70% 70% 70%

15 Proportion of validating 
samples

5% 10% 15% 20% 10%

16 Proportion of testing samples 5% 10% 15% 10% 20%

17 Training Mean Square Error 0.0011 0.011 0.0011 0.0011 0.0012

18 Testing Mean Square Error 0.0014 0.0058 0.0012 0.0020 0.0020

19 Validation Mean Square Error 0.0012 0.0011 0.0013 0.0015 0.0511

20 Corresponding Figure Figure 6 Figure 7 Figure 8 Figure 9 Figure 10

21 Number of Iterations 1000 1000 1000 1000 1000

22 Training Algorithm Levenberg 
Marquadt

Levenberg 
Marquadt

Levenberg 
Marquadt

Levenberg 
Marquadt

Levenberg 
Marquadt

23 MSE Target 0.00001 0.00001 0.00001 0.00001 0.00001

24 Number of Actual Iterations 1000 1000 1000 1000 1000

25 Training Duration 0:02:04 0:02:20 0:01:57 0:01:39 0:01:58

26 Number of Validation Checks 991 997 999 999 999

27 Gradient 0.0000306 0.000471 0.0000968 0.000556 0.00330

28 Mu 0.0000001 0.000001 0.0000001 0.0000001 0.0000001
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Figure 9. Results for parameters for configuration 5a

Figure 10. Results for parameters for configuration 5b

Figure 11. Results for parameters for configuration 5c
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In order to reduce the validation error in the network, the size and number of neurons in the 
hidden layer is increased. The hidden layer size was increased from 45 to 50 as show in Table 3. In 
this case the results are presented in Figures 9, 10, 11, 12 and 13 respectively, such that Figure 9a, 
10a, 11a, 12a and 13a shows the initial training mean square error for configuration 5a, 5b, 5c, 5d and 
5e respectively. While the testing, re–training and validation mean square error for the configuration 
5a, 5b, 5c, 5d and 5e respectively are shown in the Figure 9b, 10b, 11b, 12b and 13b. In this case, it 
is observed that the maximum validation mean square error increased to 0.0511. This is an increase 
from 0.0067 (when size of the hidden layer is 45) to 0.0511 (when size of the hidden layer is 50).

In the attempt to obtain a more reduced validation mean square error, the number of training 
epochs is increased from 1,000 to 2,000 while the size of the hidden layer is changed back to 45 as 
shown in Table 4. The results of the ANN performance is shown in Figure 14, 15, 16, 17 and 18, such 
that Figure 14a, 15a, 16a, 17a and 18a shows the initial training mean square error for configuration 
6a, 6b, 6c, 6d and 6e respectively. While the testing, re–training and validation mean square error for 
the configuration 6a, 6b, 6c, 6d and 6e respectively are shown in the Figure 14b, 15b, 16b, 17b and 
18b. From the Figures, it is not hard to see that there are reduction in the training mean square error, 

Figure 12. Results for parameters for configuration 5d

Figure 13. Results for parameters in configuration 5e
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Table 4. Increase in number of training epochs from 1000 to 2000.

S/N 6a 6b 6c 6d 6e

1 Size of Input 
Layer

2 2 2 2 2

2 Size of Hidden 
Layer

45 45 45 45 45

3 Size of Output 
Layer

1 1 1 1 1

4 Number of 
Hidden Layers

1 1 1 1 1

5 Input Layer 
Transfer 
Function

tansig tansig Tansig tansig tansig

6 1ST Hidden 
Layer Transfer 
Function

Tansig tansig Tansig tansig tansig

7 2ND Hidden 
Layer Transfer 
Function

N/A N/A N/A N/A N/A

8 Output Layer 
Transfer 
Function

purelin purelin purelin purelin purelin

9 Input Layer 
Bias

Yes Yes Yes Yes Yes

10 First Hidden 
Layer Bias

Yes Yes Yes Yes Yes

11 Second Hidden 
Layer Bias

N/A N/A N/A N/A N/A

12 Output Layer 
Bias

No No No No No

13 Number of 
Training 
Samples

2212 2212 2212 2212 2212

13 Pre – 
processing 
function

logsig logsig Logsig logsig logsig

testing (re–training) mean square error and validation mean square error. This shows that 
increasing the number of training epochs by 50% from 1000 to 2000 reduces the validation mean 
square error. In this case, the minimum mean square error and maximum mean square error are 
0.0011 and 0.0061, respectively.

Table 4 continued on next page
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Figure 14. Results for parameters of configuration 6a

S/N 6a 6b 6c 6d 6e
14 Proportion of training 

samples
90% 80% 70% 70% 70%

15 Proportion of 
validating samples

5% 10% 15% 20% 10%

16 Proportion of testing 
samples

5% 10% 15% 10% 20%

17 Training Mean 
Square Error

9.29 x10^(-4) 9.13 x10^(-4) 9.49x10^(-4) 8.67x10^(-4) 9.19x10^(-4)

18 Testing Mean Square 
Error

9.29 x10^(-4) 0.0011 0.0053 0.0011 0.0029

19 Validation Mean 
Square Error

0.0061 0.0011 0.0054 0.0012 0.0013

20 Corresponding 
Figure

Figure 11 Figure 12 Figure 13 Figure 14 Figure 15

21 Number of Iterations 2,000 2,000 2,000 2,000 2,000

22 Training Algorithm Levenberg 
Marquadt

Levenberg 
Marquadt

Levenberg 
Marquadt

Levenberg 
Marquadt

Levenberg 
Marquadt

23 MSE Target 0.00001 0.00001 0.00001 0.00001 0.00001

24 Actual Iterations 2,000 2,000 2,000 2,000 2,000

25 Training Duration 0:08:04 0:05:16 0:06:13 0:04:49 0:05:43

26 Validation Checks 1983 1957 1994 1996 1980

27 Gradient 0.0000877 2.08 x10^(-6) 6.56 x10^(-5) 0.000412 0.000673

28 Mu 1.00 x10^(-7) 1.00 x10^(-7) 1.00 x10^(-7) 1.00 x10^(-8) 1.00 x10^(-7)

Table 4 continued
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3.3. discussion of the Results
From the results above, it can be concluded that a low validation mean square error implies that the 
developed artificial neural network has a good accuracy when determining the fatigue reliability 
and failure probability using the given input big data of the wind speed, turbine rotational speed and 
the other parameters. This occurrence of a low validation mean square error implies that the given 
parameters in the ANN model, is able to predict the wind turbine blade fatigue reliability and failure 
probability accurately and this meets, the goal of the proposed research and intelligent solution.

Furthermore, it can be deduced from the above results also, that the evaluation of the fatigue 
reliability and failure probability of the wind turbine blade using the intelligent model (ANN), has less 
errors, has the ability to learn, robust, easier to obtain, safer and has less mathematical complexity as 
compare to the analytical fatigue reliability and failure probability of the wind turbine blade presented 
in (Arany et al., 2015). It can also be established that, the fatigue reliability and failure probability 
of the wind turbine blade can be obtained using even fewer or hyper-parameter and with insufficient 
knowledge or data as compared to traditional algorithms. The intelligent model (ANN) however, is 
computationally expensive which is one of it weakness.

Figure 15. Results for parameters of configuration 6b

Figure 16. Results for parameters of configuration 6c
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4. MANAGERIAL IMPLICATION OF THE RELIABILITy-
BASEd MOdEL FOR THE wINd TURBINE BLAdE

The developed reliability-based model has several managerial implications for the wind turbine 
blade, first the simulation result show how the parameters most especially the turbine rotational 
and operational wind speed affects the fatigue reliability of the wind turbine blade and the overall 
wind turbine system. The result provides reliability experts with the opportunity to understand the 
behaviour of the wind turbine blade and when the wind turbine blade parameters and data are varied.

Secondly, the simulation results demonstrate the capability of the ANN-based model to accurately 
predict the fatigue reliability of the wind turbine blade, which depends on the input parameters and data 
used by smoothing the fatigue response and reducing the convergence problems. Thirdly, the results 
provide an improved insight in understanding the dynamic performance of the ANN algorithm as a 
fatigue reliability simulation model. The model resulted in a significant computational cost reduction 
in the prediction of probabilities of failure in the wind turbine blade. Fourthly, the implementation 
of ANN model is a unified framework and it can be applied to evaluate the reliability of other kind 
of structural safeties in industrial systems and. Finally, the ANN-based model used for the fatigue 
reliability evaluation of the wind turbine blade, is considered a robust and an efficient alternatives 
to traditional reliability methodologies.

Figure 17. Results for parameters of configuration 6d

Figure 18. Results for parameters of configuration 6e
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5. CONCLUSIONS

In this paper, a computational intelligent model based on an artificial neutral network has been 
implemented for the evaluation of the fatigue reliability and failure probability of the wind turbine 
blade designed with the FRP material. The simulation results shows that, there was a reduction in the 
training mean square error, testing (re–training) mean square error and validation mean square error. 
When the number of training epochs is increased by 50% that is from 1000 to 2000, also the result 
shows a reduction in the validation mean square error. Such that, the minimum mean square error 
and maximum mean square error reduces to 0.0011 and 0.0061 respectively. The low validation mean 
square error in the simulation results implies that the developed artificial neural network has a good 
accuracy when determining the fatigue reliability and the failure probability of the wind turbine blade.

Furthermore, it can be deduced from the results that the evaluation of the fatigue reliability and 
failure probability of the wind turbine blade using the intelligent model (ANN), has less errors, robust, 
has the ability to learn, easier to obtain, safer and less complicated than the traditional analytical 
fatigue reliability and failure probability of the wind turbine blade presented in literature. It can 
also be established that, the fatigue reliability and failure probability of the wind turbine blade can 
be obtained using even a fewer or hyper-parameter, and with an insufficient knowledge or data as 
compared to traditional algorithms.

6. LIMITATION ANd FUTURE RESEARCH dIRECTION

Although the study have been able to achieve its set objective, however, it is limited with the expensive 
computational simulation of the ANN model and it’s heavily reliance on big data which has made 
it unattractive to researchers and organization with no access to big data. Also, the study have been 
limited with the lack of performance comparison with other intelligent models like support vector 
machine, learning vector quantization and the Naïve Bayes model.

In the future however, the study will be focus on the comparison of several intelligent models 
for the evaluation of the fatigue reliability and failure probability of the wind turbine blade. The 
development of a state-of-the-art framework for predicting the long-term process performance of 
the wind turbine blade and the and finally, the optimization of future operating conditions for the 
turbine blade.
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