
DOI: 10.4018/IJIRR.298649

International Journal of Information Retrieval Research
Volume 12 • Issue 1 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

SLIC-Based Cloud Removal Approach 
with Inpainting for Landsat 8 SAR Images
Vaishnavi Pillalamarri, Anna University, India

Angelin Gladston, Anna University, India*

ABSTRACT

Clouds that exist in optical remote sensing images can degrade their applicability for earth 
observation. Ground-cover information is degraded by thin clouds or even completely occluded 
by thick clouds, which limits further analysis and applications. Thus, a SLIC-based cloud removal 
approach is formulated for clustering the similar superpixels and forming column stack. Group 
sparsity constrained robust principal component analysis is used to detect cloud and generate a 
column stack mask. Discriminative robust principal component analysis is conducted to remove 
clouds. Finally, inpainting is performed by finding the similar patches to obtain the gaps filled. The 
experimental results of reconstructed Landsat 8 real images are compared with the Landsat 7 real 
images using PSNR and RMSE. The values for PSNR are varying from 25 in Landsat 7 real images 
to 90 in Landsat 8 reconstructed real images in green channel, and RMSE has changed from 175 in 
Landsat 7 real images to 3 in red channel. This indicates that Landsat 8 reconstructed real images 
have greater quality and the error rate is lower.

Keywords
Discriminative Robust Principal Component Analysis, Group Sparsity Constrained Principal Component Analysis, 
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1. INTRODUCTION

Clouds which exist in optical remote sensing images with high possibility can degrade limiting to 
their applicability for earth observation. The Enhanced Thematic Mapper Plus (ETM+) land scenes 
are reported to be about 35% cloud covered by Yongjun Zhang et.al (2019) globally. Ground cover 
information is degraded by thin clouds or even completely occluded by thick clouds, which remarkably 
limits further analysis and applications of such images. In particular, the effect of clouds varies 
according to the thickness. Thin clouds allow part of underlying objects being observed, which are 
often ambiguous and could be fairly subtle to formulate and solve such cloud associated problems. 
On the other hand, thick clouds allow no groundcover information being observed, thus solutions 
are required urgently to overcome such a challenging problem.

However, because of the significant influence of atmospheric density and cloud layer change 
on remote sensing processes, most of the remotely sensed images encounter different levels of cloud 
contamination. The attenuation and even loss of some image information caused by cloud not only 
reduces the quality and utilization of remote sensing data dramatically but also causes the difficulty 
of the analysis and application of remote sensing images. In order to improve the usability of remote 
sensing images (Hemalatha et. al., 2017), it is indispensably essential to conduct cloud detection and 
removal before any task-specific remote sensing analysis.
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In recent years, a large number of cloud detection methods have been proposed. For moderate-
spatial resolution and low-spectral-resolution sensors like Landsat, many automated cloud detection 
algorithms have been developed based on a single Landsat image. Y.Shen et.al (2016) proposed an 
assessment using the measurement that is traditionally done in remote sensing studies is impossible 
because of the spatiotemporal variability of clouds. An alternative approach is to find a reference 
image from the same remote sensor, and the image is cloud free. In addition, the image should be of 
the closest acquisition or near anniversary dates such that the temporal/seasonal variation is minimized. 

Since the algorithm is applied to the entire study area, we not only need to assess the algorithm’s 
ability to remove clouds. S. Qiu et.al (2017) proposed Clouds and cloud shadows are a pervasive, 
dynamic, and unavoidable issue in Landsat images, and their accurate detection is the fundamental basis 
for analyzing LTS. Many cloud and/or cloud shadow detection algorithms have been proposed in the 
literature. For cloud detection, most approaches are based on a single-date Landsat image, which rely 
on physical-rules or machine-learning techniques. Fei Wen et.al (2017) proposed that the inevitable 
existence of clouds and their shadows in optical remote sensing images, certain ground-cover information 
is degraded. A two-pass robust principal component analysis (RPCA) framework for cloud removal in 
the satellite image sequence was used. First, a plain RPCA is applied for initial cloud region detection, 
followed by a straightforward morphological operation to ensure that the cloud region is completely 
detected. Subsequently, a discriminative RPCA algorithm is proposed to assign aggressive penalizing 
weights to the detected cloud pixels to facilitate cloud removal and scene restoration. 

The main contributions in this paper are: The proposed concept is formulated using Simple 
Linear Iterative Clustering (SLIC) for clustering the similar superpixels by Radhakrishna Achanta 
et.al (2011) and form a Column Stack. The cloud detection and removing is proposed by Fei Wen 
et.al (2018) which can be formulated using Group sparsity constrained Robust Principal Component 
Analysis (GRPCA) and Discriminative Robust Principal Component Analysis (DRPCA). The input 
image sequence of the same area obtained at different times can be misaligned. First, simple linear 
iterative clustering (SLIC) superpixel segmentation and arranging each image to a column of a matrix 
are conducted as preprocessing. Then, Group-sparsity constrained RPCA (GRPCA) combined with 
geometrical transformation proposed by Yongjun Zhang et.al (2019) is applied to detect cloud and 
shadow regions initially and also generate a well aligned image sequence. 

2-D Transformation proposed by Y.Peng et.al (2012) explained that the satellite images will get 
into a well aligned satellite images. Finally, Discriminative RPCA (DRPCA) is conducted to remove 
clouds and shadows given by Yongjun Zhang et.al (2019) to obtain a sequence of cloud removed 
images. The reconstruction is carried out using log det(·) low-rank regularization method explained 
by Jiaqing Miao et.al (2019). The Landsat 8 Cloud free Real images are compared with Gap filled 
Landsat 7 satellite image using the performance metrics namely Peak Signal to Noise Ratio (PSNR), 
Root Mean Square Error (RMSE), to evaluate the quality and error rate of the satellite images. 

The rest of the paper is organized as follows: Section 2 summarizes discussion on works related to cloud 
removal and impainting. Section 3 describes the overall system design, algorithm and detailed description 
about each module. Section 4 describes the dataset used for the implementation of the proposed framework, 
results of the experiments conducted and test cases. Further it presents the performance evaluation and 
discusses the inferences drawn from the results of proposed system in comparison with the existing system. 
Section 5 concludes the work and provides limitations and scope for future work.

2. LITERATURE WORK

Radhakrishna Achanta et.al (2011) proposed a method for computer vision applications have come 
to rely increasingly on superpixels in recent years, but it is not always clear what constitutes a good 
superpixel algorithm. In an effort to understand the benefits and drawbacks of existing methods, a 
new superpixel algorithm, simple linear iterative clustering (SLIC), which adapts a k-means clustering 
approach to efficiently generate superpixels is used.
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Liang Yan et.al (2020) explains about the Pixel-level classification for very high resolution 
(VHR) images is a crucial but challenging task in remote sensing. However, since the diverse ways 
of satellite image acquisition and the distinct structures of various regions, the distributions of the 
same semantic classes among different data sets are dissimilar. Therefore, the classification model 
trained on one data set may collapse, when it is directly applied to another one. To solve this problem, 
a triplet adversarial domain adaptation (TriADA) method that jointly considers both domains to learn 
a domain-invariant classifier by a novel domain similarity discriminator is used. 

Yongjun Zhang et.al (2019) proposed a method for Clouds and accompanying shadows, which 
exist in optical remote sensing images with high possibility, can degrade or even completely occlude 
certain ground-cover information in images, limiting their applicabilities for Earth observation, change 
detection, or land-cover classification. A course to fine grained superpixels where first decompose 
the observed cloud image sequence of the same area into the low-rank component, group-sparse 
outliers, and sparse noise, corresponding to cloud-free landcovers, clouds, and noise respectively. 
Subsequently, a discriminative robust principal component analysis algorithm is utilized to assign 
aggressive penalizing weights to the initially detected cloud pixels to facilitate cloud removal.

Yigang Peng et.al (2012) proposed a method for the problem of simultaneously aligning a batch 
of linearly correlated images despite gross corruption. This method seeks an optimal set of image 
domain transformations such that the matrix of transformed images can be decomposed as the sum 
of a sparse matrix of errors and a low- rank matrix of recovered aligned images. 

Qiang Zhang et.al (2018) explains about the internal malfunction of satellite sensors and poor 
atmospheric conditions such as thick cloud, the acquired remote sensing data often suffer from 
missing information, i.e., the data usability is greatly reduced. A novel method of missing information 
reconstruction in remote sensing images is used. The unified spatial-temporal- spectral framework 
based on a deep convolutional neural network (CNN) employs a unified deep CNN combined with 
spatial-temporal-spectral supplementary information. In addition, to address the fact that most methods 
can only deal with a single missing information reconstruction task, the proposed approach solves 
typical missing information reconstruction tasks.

Zhenfeng Shao et.al (2019) explains the Cloud detection in remote sensing images is a challenging 
but significant task. Due to the variety and complexity of underlying surfaces, most of the current cloud 
detection methods have difficulty in detecting thin cloud regions. In fact, it is quite meaningful to distinguish 
thin clouds from thick clouds, especially in cloud removal and target detection tasks. Method based on 
multi-scale features convolutional neural network (MF-CNN) is used to detect thin cloud, thick cloud, and 
non-cloud pixels of remote sensing images simultaneously. Landsat 8 satellite imagery with various levels 
of cloud coverage is used to demonstrate the effectiveness of our proposed MF-CNN model. 

Wenyuan Li et.al (2014) explains about the Cloud detection, as an important preprocessing 
operation for remote sensing (RS) image analysis, has received increasing attention in recent 
years. Most of the previous cloud detection methods consider the detection as a pixel-wise image 
classification problem, cloud versus background, which inevitably leads to a category-ambiguity 
when dealing with the detection of thin clouds. 

Jiaqing Miao et.al (2019) proposed a method of a novel inpainting algorithm for recovering the 
ETM+ SLC-off images. The two slopes of the boundaries of each missing stripe were extracted through 
the Hough transform, ignoring the slope of the edge of the strip that overlaps the edge of the image. 
An adaptive dictionary was then developed and trained using ETM+ SLC-on images acquired before 
May 31, 2003 so that the physical characteristics and geometric features of the ground coverage of the 
data-missing strips can be considered during recovery. The algorithm was tested using the simulated 
ETM+SLC-off images created from a multiband ETM+SLC-on image file and compared to the high 
accuracy low-rank tensor completion (HaLRTC), logDet, and tensor nuclear norm (TNN) algorithms. 

Luca Lorenzi et.al (2011) proposed a technique for missing data in very high spatial resolution 
(VHR) optical imagery take origin mainly from the acquisition conditions. Their accurate 
reconstruction represents a great methodological challenge because of the complexity and the ill-posed 
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nature of the problem. In this work, they presented three different solutions, all based on the inpainting 
approach, which consists in reconstructing the missing regions in a given image by propagating the 
spectro-geometrical information retrieved from the remaining parts of the image. 

In conclusion, all available methods essentially recover only one target cloud image at each 
time, no matter how the relationship between contaminated pixels and cloud-free pixels is exploited. 
Though visually plausible recovery results can be generated by these methods. Hence, we propose a 
batch-processing approach based on RPCA framework to remove cloud from image sequence with 
high efficiency and accuracy. We introduce a 2-D affine transformation model to enable our method 
to handle misaligned images of the sequence. The detailed design of the proposed SLIC based cloud 
removal approach is elaborated in the following section.

3. EXPERIMENTAL DESIGN

This section discusses the detailed experimental design for the Cloud Removal strategy put forth 
in this work to address and enhance the Landsat 8 satellite images. Cloud removal in Landsat 8 
satellite images, superpixel based segmentation, SLIC algorithm, detection of cloud region, GRPCA 
algorithm, clouds removal, DRPCA algorithm, filling the missing cloud regions as well as the Image 
reconstruction algorithm used are discussed in detail. 

Cloud Removal in Landsat 8 Satellite Images
Figure 1 explains the input image sequence of the same area obtained at different times can be 
misaligned. First, simple linear iterative clustering (SLIC) superpixel segmentation and arranging 
each image to a column of a matrix are conducted as preprocessing. Then, group-sparsity constrained 
RPCA (GRPCA) combined with geometrical transformation is applied to detect cloud and shadow 
regions initially and also generate a well aligned image sequence. The dotted box denotes our 
extension based on group sparsity to align the misaligned image sequence. Finally, discriminative 
RPCA (DRPCA) is conducted in order to remove clouds and shadows to obtain a sequence of cloud 
removed images. Finally the satellite image is reconstructed using log det (·) low-rank regularization 

Figure 1. Proposed SLIC based Cloud Removal Approach
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method. The slope of missing stripes is detected at first by the method of Hough Transform. Missing 
pixels are then located along the slope using the KNN algorithm to find similar patches within an 
intercepted local window around the missing point and filled. Thus the clouds are removed to form 
a gap filled Landsat 8 satellite image.

Super Pixel Based Segmentation
The new superpixel algorithm, Simple linear iterative clustering (SLIC) Radhakrishna Achanta 
et.al (2011) is an adaptation of k-means for superpixel generation, with two important distinctions: 
1) the number of distance calculations in the optimization is dramatically reduced by limiting the 
search space to a region proportional to the superpixel size. This reduces the complexity to be linear 
in the number of pixels N–and independent of the number of superpixels k. 2) A weighted distance 
measure combines color and spatial proximity, while simultaneously providing control over the size 
and compactness of the superpixels. The color image is converted from an RGB color space to a 
CIELAB color space. A pixels color is represented in the CIELAB color space [li, ai, bi]T, and [xi, 
yi]T denotes the feature vector in the XY coordinates. Each pixel has a 5-D feature vector, Ci = [li, 
ai, bi, xi, yi]T . Image pixels are clustered to generate superpixels using their 5-D feature vector.

SLIC Algorithm 
//Initialization 
Initialize cluster center C

k
= [ l

k
,  a

k
, b

k
,x

k
, y

k
] by sampling 

pixels at regular grid steps 
Move Cluster Center to the lowest gradient position in a 3x3 
neighborhood. 
Set label l i( )= −1  for each pixel i.

Set distance d i( ) =∞  for each pixel i.//Assignment

for each cluster center C
k
 do

for each pixel i in a 2S x 2S region around C
k
 do

Compute the distance between C
k
 and i.

if D d i< ( ) then
Set d i D( ) =
Set l i k( ) =
end if 
end for 
end for 
//Update 
Compute new Cluster centers 
Compute residual error E. 
Until E≤  threshold.
	 The straightforward idea to segment pixels into groups is to cluster them into blocks, a new group 
structure that adapts well to objects in remote sensing images. Each image can be segmented into 
superpixels. Superpixel technique clusters pixels into perceptually meaningful regions according to 
their feature similarity explained by Sina Ghassemi et.al (2019), such as color, texture, location, and 
soon, which is flexible to cover random-shaped natural objects. Due to their proper approximation to the 
boundaries of objects, no further post-processing is required to generate group-sparse outlier regions.

Figure 2 shows that the preprocessed satellite image is transformed in CIELAB color space. 
First, the cluster centers are initialized. The distance is measured from the cluster center to the data 
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point. If the distance is small then it is merged into the cluster and thus the superpixels are obtained. 
Thus, the superpixels are made into a column stack.

Detection Of Cloud Region 
The Group-sparsity constrained RPCA (GRPCA) proposed by Yongjun Zhanget.al (2019) combined 
with geometrical transformation is initially applied to detect cloud and shadow regions and also 
generate a well aligned image sequence. Many other techniques using multi-scale feature convolution 
neural network proposed by Zhenfeng Shao et.al (2019) and Clouds and Earth’s Radiant Energy 
System proposed by Qing Z. Trepte et.al (2019) (CERES) is used for monitoring clouds and empirical 
relationship of two landsat-8 visible bands data explained by Haitao Lv et.al (2019) is used for detecting 
the clouds. The decomposition into three parts, namely, a low-rank part and a group sparse part as 
usual, and an additional part of noise like sparse outliers modeled by L1-norm.

The GRPCA equation is formulated

min ( )
,L
L S N
∗
+ + γ

1
	 (1)

s.t D=L+S+N	

where Ψ( )S  is the superpixel group-structured sparsity norm and λ and γ are the positive values 
controlling the sparsity of group-structured and noise like outliers respectively.

However, the low-rank proposed by X.Liu et.al (2015) is an assumption of background may no longer 
hold if the images are not well aligned. Due to the complicate acquisition processes, satellite images 
acquired at different times are always misaligned to some extent. A model for the alignment between 
satellite images was explained by Y.Peng et.al (2012) as 2-D affine transformation. The groupwise weight 
value is fairly important in our non-overlapping GRPCA method, especially for the cloud removal task. 
An intuitive comparison between the cloud pixels and cloud free pixels can be easily made. Based on 
the RPCA, cloud pixels are decomposed as sparse outliers. By applying a plain RPCA decomposition, 
the observed matrix is decomposed into a low-rank component and a sparse one.

Figure 2. Output of SLIC
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GRPCA ALGORITHM
Step1. Choose the number of clusters (L) and obtain the data points.
Step 2. Place the centroids L_1, c_2 ... c_L randomly
Step 3. Repeat steps 4 and 5 until convergence or until the end of 
a fixed number of iterations 
Step 4. For each data point x_i:
-	 Find the nearest centroid(c_1,c_2...c_L)
-	 assign the point to that cluster
Step 5. For each cluster j = 1...L
-	 newcentroid=mean of all points assigned to that cluster
Step 6. End
The figure 3 presents the input images performs 2D transformation. It performs pixel level alignment 
where similar pixels are been fused together. Thus, they are been arranged into a column stack mask.

Clouds Removal 
The low rank component proposed by X.Liu et.al (2015) obtained in the original RPCA is too smooth 
or blurred for the reason that it is computed by iterative singular value decomposition (SVD) explained 
by Jiaqing Miao et.al (2019), in order to reduce dimension, and lot of unique information of each 
column is decomposed into sparse components. If we increase λ to generate a low-rank component 
with a higher rank to maintain an original cloud free region, then more hosts of cloud and its shadow 
will be left in the backgrounds indicating ineffective cloud and shadow removal.

The different balance values for cloud as well as shadow pixels and cloud-free pixels guided by 
the mask, are called DRPCA. Within an over covered cloud mask, a lower balance value would ensure 

Figure 3. Output for GRPCA
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that all the cloud and its shadow will be entirely decomposed into an outlier matrix and not leave any 
ghostly presence in the background. For a cloud-free region, the balance value is set to a relatively 
large value to guarantee background maintenance. The new formulation is defined as

min ,L L a P S P S∗+ + −( ) ( )Ω Ω1 β 	
(2)

s.t D
^

= L+S	

where D
^

denotes observed matrix after transformation where

D vec I vec I vec I
n n

^

{ ( ), ( ),..., ( )}=
1 1 2 2
� � �τ τ τ 	 (3)

Ώ denotes the cloud and shadow mask obtained, 𝛼 and 𝛽 are two discriminative balance values.
The purpose of reconstructing cloud contaminated images, is to recover pixels in cloud and 

shadow region while maintaining original cloud free pixels at the same time. Therefore, different 
balance values are assigned for cloud and shadow pixels and cloud free pixels according to the initial 
region in the first GRPCA step, which is named as DRPCA explained by Yongjun Zhang et.al (2019). 
Within the cloud-covered region, a lower balance value ensures that all cloud and shadow polluted 
pixels will be thoroughly decomposed into sparse outlier matrix without leaving any such presence 
in the background, yet not incurring a large false positive rate.

DRPCA ALGORITHM
Step 1: 	 First, randomly select k initial clusters
Step 2: 	 Randomly assign each data point to any one of the k clusters
Step 3: 	 Calculate the centers of these clusters
Step 4: 	 Calculate the minimum intensity value of all the points from the center of each cluster
Step 5: 	 Depending on this distance, the points are reassigned to the nearest cluster
Step 6: 	 Calculate the center of the newly formed clusters
Step 7: 	 Finally, repeat steps (4), (5) and (6) until either the center of the clusters does not change or 
we reach the set number of iterations.
The Figure 4 shows the input image assigned different balance values for cloud and shadow pixels 
and cloud-free pixels obtained in the first GRPCA step named DRPCA. Within the cloud-covered 
region, a lower balance value ensures that all cloud and shadow polluted pixels will be thoroughly 
decomposed into sparse outlier matrix without leaving any other presence in the background.

Filling The Missing Cloud Regions
Log dot low rank regulation method explained by Jiaqing Miao et.al (2019) method is used for filling 
the missing region to get the gap filled satellite image. Many techniques namely morphological 
learning using example based learning proposed by Huihui Song et.al (2018) and information cloning 
proposed by Chao-Hung Lin et.al (2019) on cloud contaminated patches for multi-temporal satellite 
images are also conducted. The input is the cloud free SAR images and the output is the gap filled 
satellite images. The non-convex and non-local low-rank regularization model is used for inpainting 
the Landsat images. A non-convex regularization model contains a group of self-similar feature 
patches and a low- rank approximation explained by Fei Wen et.al (2019). The nonlocal self-similarity 
is to intercept a window in an image, and select an image patch as the sample patch as the window.
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The sample patch is compared to other patches in the window to find m−1 most similar patches so 
that there are totally m similar patches in the window. The sample patch and the m−1 similar patches 
are transformed into column vectors and all column vectors are arranged into a matrix, then this 
matrix will have low rankness. The low rankness of the matrix is very important priori information, 
which has great significance for the establishment and solution of the inpainting model. The effective 
part of an image patch is that does not need to be repaired in the patch. A given sample patch should 
contain no more than 3 data-missing pixels of which the pixel values are set to be zero.

IMAGE RECONSTRUCTION ALGORITHM

(1) 	 The initial image ŷ  is estimated using the random valuation method.

(2) 	 Set the initial parameters:λ µ τ
µ

, , .=
v

2
(3) 	 Initialize the weights :ω η

i
and set y y= …

 ( ) = ( ) =1 1 1 1 1 0, , .ˆ ˆ� � �

(4) 	 For each sample patch x
i
\ .Ω  Perform merging of patches and find the location M

i
of similar 

patches.
Loop: for p=1,2,…Q
Loop for k=1,2,…K
(i)Establishment of patch sets y

i
\Ω : each sample patch x

i
\Ω  and its similar patches form a 

set of patches.
(ii)Inner loop for L=1,2,….L

(a) 	 Calculate Zl+1

(b) 	 Calculate αl+1

(c) 	 η η β α β ρβl l l l l l lZ+ + + += + −( ) =1 1 1 1. .

Figure 4. Output for DRPCA
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(d) 	 If l L = , then the output α αl l= +1

end for
(iii) 	Using formula ˆ ˆy Dl l= α  to calculate ŷl  and used to merge patches and find y

i
\Ω

(iv) 	Set Z
i
\Ω= y

i
\Ω .

(5) 	 Inner Loop low rank approximation for J=1,2,….J
(a) 	 If (K>K

0
) update weights ω

j
k =1/α ε

j
k + .

(b) 	 The Singular Value Threshold Value can be calculated Z S y
i j i
\ ( \

,
Ω Ω= ω τ ).

(c) 	 If j=J, then the output Z Z
i i

j\ \Ω Ω=
end for
(6)If k=K, the output of the coefficient SR ˆ ˆα α= K

end for
(7) 	 Using formula ˆ ˆy D= α  to calculate ŷ .

(8) 	 Using the formula ˆ /
y

y
Ω

Ω=  to project the observation data y y
Ω
= .̂

end.

The Figure 5 illustrates how the input image which contains the cloud region gaps are filled by the 
algorithm employed, taking its corresponding color and thus forming a reconstructed image. The Figure 
6 illustrates the intermediate results of the input image to form the reconstructed image. First the image 
undergoes the SLIC and forms a column stack. The alignment of the input image is performed using 
2D Transformation and finally the cloud is detected and removed to form the reconstructed image.

Testing is a process of exercising a program with the specific intent of finding errors prior to 
delivery to the end user to check if the system works accurately and efficiently. The Table 1 summarizes 
the various possible test samples and the intermediate results obtained along with the result expected. 

Figure 5. Output of Gap filled Satellite image



International Journal of Information Retrieval Research
Volume 12 • Issue 1

11

Module testing carried out are listed in Table 1. DRPCA and GRPCA testing are discussed with both 
the expected output along with the actual output obtained in the experiments.

4. RESULT ANALYSIS

This section presents discussion on the experimental results obtained for the Cloud Removal strategy 
put forth in this work to address and enhance the Landsat 8 satellite images. Cloud removal in Landsat 
8 satellite images, superpixel based segmentation, SLIC algorithm, detection of cloud region, GRPCA 
algorithm, clouds removal, DRPCA algorithm, filling the missing cloud regions as well as the Image 
reconstruction algorithm are implemented and the implementation details are given. 

The proposed cloud removal framework is implemented using MATLAB R2018a. The dataset 
contains Landsat 8 Operational Land Imager (OLI) with bands 4, 5, and 6. The images contain 1% to 
50% of cloud contamination. It is located in South Dakota, USA which contains ground information. 
All the Landsat-8 OLI images used in our experiments are Landsat- 8 natural-look products that are 
compressed and stretched to create an optimization for image selection and visual interpretation. It 
is a day indicator. The images are collected with Path, 142 and Row Number 52 at USGS. (https://
Landsat.usgs.gov). The experimental results of the proposed system are analyzed using the evaluation 
parameters namely, Peak Signal to Noise Ratio (PSNR) and the Root Mean Square Error (RMSE). 

Peak Signal to Noise Ratio
PSNR is an expression for the ratio between the maximum possible value of a signal and the power 
of distorting noise that affects the quality of its representation. The PSNR is the ratio between a 
signal’s maximum power and the power of the signal’s noise. PSNR is used to measure the quality of 
reconstructed images that have been compressed. Each picture element or pixel has a color value that 
can change when an image is compressed and then uncompressed. Signals can have a wide dynamic 
range, so PSNR is usually expressed in decibels, which is a logarithmic scale.

Figure 6. Intermediate results
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Root Mean Squared Error
This metric computes the root of the expected squared error between the predicted time values and the 
ground truth. Among the two monochromatic images, one image is considered to be an approximation 
of the other. The MSE can be described as the mean of the square of the differences in the pixel values 
between the corresponding pixels of the two images.

RMSE
N

t t
i

N

i i
= −( )

=
∑
1

1

^ 	 (4)

Table 1. Results for various Test Samples
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PSNR log
R

MSE
=











10
10

2

�
	 (5)

The equations 4 and 5 presents the metrics used to analyze the reconstructed satellite images, 
the plots for both PSNR and RMSE values are generated. The results are plotted for Red, Green and 
Blue (RGB) colors. The results show that the PSNR values are high and RMSE values are low. The 
Table 2 tabulates the values for Landsat 8 reconstructed images and their PSNR and RMSE values. 
The results show that PSNR values are high and RMSE values are low, which is a good indicator.

The Table 3 tabulates the real satellite images and their PSNR and RMSE values. The results 
are plotted for Red, Green and Blue (RGB) colors. The results show that the PSNR values are low 
and RMSE values are high.

The figure 7 plots that the graph of PSNR values obtained with various real images and the 
corresponding reconstructed images. The result shows that the PSNR values are high for reconstructed 
images compared to real images of Landsat 8 satellite images. Figure 7 shows that all PSNR values 
of reconstructed Landsat 8 images are above 50 whereas all PSNR values of real Landsat 7 images 
are lower than 40, which clearly indicates the improvement brought in by the reconstruction of the 
images. Further on an average, PSNR values of reconstructed Landsat 8 images are above 75, which 

Table 2. Values for Landsat 8 reconstructed images
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Table 3. Values for Landsat 7 real images

Figure 7. Graph for PSNR values
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marks great improvement and paves way for more accurate, relevant information extraction to take 
up various research initiatives.

The figure 8 plots that the graph of RMSE values obtained with various real images and the 
corresponding reconstructed images. The result shows that the RMSE values are low for reconstructed 
images compared to real images of Landsat 8 satellite images. Figure 8 shows that all RMSE values 
of reconstructed Landsat 8 images are above 170 whereas all RMSE values of real Landsat 7 images 
are lower than 10, which clearly indicates the improvement brought in by the reconstruction of the 
images. Further on an average, RMSE values of reconstructed Landsat 8 images are above 175, which 
marks great improvement and paves way for more accurate, relevant information extraction to take 
up various research initiatives from these Landsat 7, 8 images available publicly.

5. CONCLUSION

Clouds present in the satellite images degrade the observations that can be made. Thus the removal 
of the clouds is of a great importance. The method proposed in this work takes spatial coherence 
into consideration and adopts superpixels to cluster object pixels. Group sparsity constrained RPCA 
is proposed to detect initial cloud region. Specifically, we apply non-overlapping groups and design 
group wise weights to facilitate segmentation between cloud and cloud-free groups. The removal 
of the clouds is performed using DRPCA. The values for PSNR are varying from 25 in Landsat 7 
real images to 90 in Landsat 8 reconstructed real images in Green channel and RMSE has changed 
from 175 in Landsat 7 real images to 3 in Landsat 8 reconstructed real images in Red channel. This 
indicates that Landsat 8 reconstructed real images have greater quality and error rate in less. The 
limitation in this work is we have compared reconstructed real images with Landsat 7 real images, 
experiments can be conducted for wider experimental analysis for more generalized inferences. In 
the future, based on 2-D transformation, it is worth extending the method to process images from 
different optical sensors with similar resolution.

FUNDING AGENCY

Publisher has waived the Open Access publishing fee.

Figure 8. Graph for RMSE Values



International Journal of Information Retrieval Research
Volume 12 • Issue 1

16

REFERENCES

Achanta, Shaji, Smith, Lucchi, Fua, , & Susstrunk. (2011). SLIC Super Pixels Compared to State-of-the-art 
Super Pixel Methods. Journal of Latex Class Files, 34(11), 2274-2282.

Gao, Cheong, & Wang. (2019). Block-Sparse RPCA for Salient Motion Detection. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 57(30), 1957-1987.

Ghassemi & Fiandrotti. (2019). Learning and Adapting Robust Features for Satellite Image Segmentation on 
Heterogeneous Data Sets. GSRL, 57(9), 6517-6529.

Haitao, Wang, & Yang. (2019). Modeling of Thin-Cloud TOA Reflectance Using Empirical Relationships and 
Two Landsat-8 Visible Band Data. GRSL, 57(2), 839-850.

Hemalatha, S., & Anouncia, S. M. (2017). Unsupervised segmentation of remote sensing images using FD 
based texture analysis model and ISODATA. International Journal of Ambient Computing and Intelligence, 
8(3), 58–75. doi:10.4018/IJACI.2017070104

Li, W., Zou, Z., & Shi, Z. (2020). Deep Matting for Cloud Detection in Remote Sensing Images. GRSL. 
doi:10.1109/TGRS.2020.2988265

Li, Peng, Chen, & Jiao. (2019). A Deep Learning Method for Change Detection in Synthetic Aperture Radar 
Images. GRSL, 57(8), 5751-5763.

Lin. (2019). Cloud Removal from Multitemporal Satellite Images Using Information Cloning. GRSL.

Liu, Zhao, Yao, & Qi. (2015). Background subtraction based on low rank and structured sparse decomposition. 
IEEE Transaction on Image Processing, 24(8), 2502-2514.

Lorenzi, L. (2019). Inpainting Strategies for Reconstruction of Missing Data in VHR Images. GRSL.

Lv, Wang, & Shen. (2016). An empirical and radiative transfer model based algorithm to remove thin clouds in 
visible bands. GRSL, 179(341), 183–195.

Meng, Shen, Yuan, Li, & Zhang. (2018). Pan sharpening for Cloud-Contaminated Very High- Resolution Remote 
Sensing Images. GRSL, 57(9), 2840-2854.

Miao, Zhou, Huang, Zhang, & Zhou. (2019). A Novel Inpainting Algorithm for Recovering Landsat-7 ETM+ 
SLC-OFF Images Based on the Low-Rank Approximate Regularization Method of Dictionary Learning With 
Nonlocal and Nonconvex Models. GRSL, 57(9), 6741-6754.

Peng, Ganesh, Wright, Xu, & Ma. (2012). RASL: Robust Alignment by sparse and low rank decomposition for 
Linearly Correlated images. IEEE Transaction on Pattern Analysis and Machine Intelligence, 34(11), 2232-2246.

Qing, Trepte, Minnis, & Sun-Mack. (2019). Global Cloud Detection for CERES Edition 4 Using Terra and Aqua 
MODIS Data. GRSL, 57(11), 9410-9449.

Qiu, He, Zhu, Liao, & Quan. (2017). Improving Fmask cloud and cloud shadow detection in mountainous area 
for Landsat 4–8 images. GRSL, 199(78), 107–119.

Shao, Pan, & Diao. (2019). Cloud Detection in Remote Sensing Images Based on Multiscale Features-
Convolutional Neural Network. GRSL, 57(6), 4062-4076.

Shao, Pan, Diao, & Cai. (2019). Cloud Detection in Remote Sensing Images Based on Multiscale Features-
Convolutional Neural Network. GRSL, 57(6), 4062-4076.

Song, Huang, & Zhang. (2018). Shadow Detection and Reconstruction in High-Resolution Satellite Images via 
Morphological Filtering and Example-Based Learning. GRSL.

Tracewski, Bastin, & Fonte. (2017). Repurposing a deep learning network to filter and classify volunteered 
photographs for land cover and land use characterization. GRSL, 20(3), 252–268.

Wen, Zhang, Gao, & Ling. (2018). Two-Pass Robust Component Analysis for Cloud Removal in Satellite Image 
Sequence. GRSL, 15(7), 1090-1094.

http://dx.doi.org/10.4018/IJACI.2017070104
http://dx.doi.org/10.1109/TGRS.2020.2988265


International Journal of Information Retrieval Research
Volume 12 • Issue 1

17

Yan, Fan, Liu, Huo, Xiang, & Pan. (2019). Triplet Adversarial Domain Adaptation for Pixel-Level Classification 
of VHR Remote Sensing Images. GRSL, 58(5), 3558-3573.

Yang & Guo. (2019). CDnet: CNN-Based Cloud Detection for Remote Sensing Imagery. GRSL, 57(8), 6195-6211.

Zhang, Yuan, Zeng, & Li. (2018). Missing Data Reconstruction in Remote Sensing Image with a Unified 
Spatial–Temporal– Spectral Deep Convolutional Neural Network. GRSL, 56(8), 4274-4288.

Zhang, Wen, Gao, & Ling. (2019). A Course to Fine Framework for Cloud Removal in Remote Sensing Image 
Sequence. GRSL, 57(8), 5963-5974.

Vaishnavi P. S. is a post graduate student of the Department of Computer Science and Engineering, Anna University, 
Chennai. Her research interests include image processing, and information retrieval. 

Angelin Gladston is working as Associate Professor at the Department of Computer Science and Engineering, 
Anna University, Chennai. Her research interests include software engineering, software testing, image processing, 
social network analysis, and data mining.


