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ABSTRACT

Many businesses around the world are adopting AI with the hope of increasing their top-line and 
bottom-line numbers. The COVID-19 pandemic has further accelerated the journey. While AI 
technology promises to bring enormous benefits, the challenges come in similar proportions. In the 
current form, the requirements for transparency and trust are relatively low for AI systems. On the 
other hand, there is a lot of regulatory pressure for AI systems to be trustworthy and responsible. 
Challenges still exist both on the methods and theory side and how explanations are used in practice. 
The objective of this paper is to analyze Twitter data to extract sentiments and opinions in unstructured 
text. The authors attempted to use contextual text analytics to categorize the twitter data to understand 
the positive or negative sentiments and feelings for the AI ethical challenges and highlight the key 
concerns. Text clustering has also been performed on positive and negative sentiments to understand 
the key themes behind people’s concerns.
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1. INTRodUCTIoN

Humans are always in search of new tools and technologies to lead a better and productive life. Over 
the last three industrial revolutions, we have seen a massive shift from muscle power to mechanical 
power. The advancement in digitization, technology, and data analytics, focuses further on enhancing 
human capability by exploiting cognitive principles, otherwise known as Artificial Intelligence 
(AI), as a theme worldwide(Schwab, 2017). John McCarthy, the AI discipline founder, explains that 
Artificial Intelligence is the “science and engineering of making intelligent machines” (Walch, 2018).

Artificial Intelligence solutions are permeating into every walk of life. Some basic tasks like 
looking for information in the Google search engine, content writing, drawing to complex activities 
like seeking digital assistant and Robo advisor from a service provider are powered with AI algorithms. 
These algorithms are trained and validated based on available societal behavioral data with human 
ingenuity. While these automated decision-making systems bring enormous benefits to society, those 
can bring challenges, too, unless handling with utmost care.

There has been disagreement around the scientific definition of humans and their origin. However, 
the commonly accepted fact is that humans first appeared between 2-3 million years ago(Barras, 2016). 
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Despite evolving over millions of years, humans make irrational decisions and mistakes. Human 
decisions are colored by the amount of information they have, cognitive ability, the socio-economic 
condition they belong to, and many more possible dimensions. Similarly, the AI systems built by human 
endeavor and past societal behavior captured through data can be equally irrational and biased. These 
irrationalities or biases can appear in the form of infringement of privacy, discrimination, societal 
exclusion, accident, and rigging political systems(Cheatham, Javanmardian, and Samandari, 2019). 
After all, humans play a critical role in building these intelligent systems.

The global artificial intelligence market was valued at USD 62.35 billion in 2020 and is expected 
to grow at a compound annual growth rate (CAGR) of 40.2% from 2021 to 2028 (GrandViewResearch, 
2021). AI is supposed to bring 21% of incremental impact in GDP in the United States of America by 
2030(Bughin et al., 2018). Open databases have supported the rapid development of AI algorithms, 
which led to significant outcomes wherein different stakeholders have benefited to a greater extent. 
Ntoutsi et al.(2020) talk about the far-reaching AI impact on individuals and society, and their 
decisions might affect everyone, everywhere, and anytime, entailing concerns about potential human 
rights issues.

Artificial Intelligence systems can be a double-edged sword. While they bring substantial benefits 
into the decision-making process, any wrong decisions can lead to loss of life, reputational damage, 
revenue loss, societal unrest, regulatory backlash, criminal investigation, and diminished public trust 
(Cheatham, Javanmardian and Samandari, 2019). The problem gets magnified, especially when AI 
systems are built based on automated learning and deployed at scale principle. The AI mistakes can 
happen from the ideation of a problem through the design and deployment of the solution. Mistakes 
can be non-intentional to malicious intent, either exploit market conditions or defame and defeat 
economically and politically certain sections of society.

The series of recent AI mishaps have further ignited the debate. For example, the Correctional 
Offender Management Profiling for Alternative Sanctions (COMPAS) is a case management and 
decision support tool used by the US courts estimated risk of re-offending was found to predict higher 
risk values for black defendants (and lower for white ones) than their actual risk (Angwin et al., 
2016). In another instance, the Google Advt tracking tool showed significantly more advertisements 
to high-paid men than their female counterparts(Datta, Tschantz, and Datta, 2015).

While humans are accountable for their decision-making activities, the moot question is who 
will be responsible when an AI system produces incorrect societal action. Are we penalizing the 
machines, the machines’ creators, or the organization that promotes these machines? If stakeholders 
are many, how would the AI risk burden be shared? Since Artificial Intelligence is a relatively newer 
decision-making framework, we must discuss and debate possible consequences of an algorithm 
failure and its mitigation actions to minimize, if not eliminate, any unintended consequences of the 
system-based decisions.

The paper’s main objective is to summarize public concerns about responsible AI theme discussion 
in the Twitter forum. The study uses the Naïve Bayes principle to extract subjective emotions and 
feelings covering both Twitter messages’ positive and negative sentiments. Businesses often use it to 
detect social data sentiment, gauge brand reputation, and understand customers. Sentiment analysis 
models focus on polarity (positive, negative, neutral) but also on feelings and emotions (angry, 
happy, sad, etc.), urgency (urgent, not urgent), and even intentions (interested v. not interested). The 
paper aims to understand and analyze the public’s sentiments regarding AI ethics and trustworthy 
challenges. The idea is to know if most of the tweets have positive or negative feelings about the 
theme. At the same time, it would be essential to understand the key clusters and segments of positive 
and negative tweets.

The present study aims to address the following research questions:

a) What is the distribution of positive and negative sentiments emerging from public tweets in the 
context of AI Ethics and regulatory challenges?
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b) What are the key segmentations and clusters in the positive and negative sentiments?

2. MeTHodoLoGy

2.1 data Source
For the study, the data was extracted from Twitter, as it is one among the open data sources containing 
rich information on the large set of topics discussed by the public. Therefore, the people’s tweets 
regarding AI ethics, challenges, trustworthiness, associated risks, and related issues from February 
2021 to March 2021 were extracted. In addition, the 18,182 tweets from Twitter covering comments/
tweets from different parts of the World were extracted. The relevant tweets pertaining to AI were 
extracted with the most care by using the python program.

2.2 Analytical Procedure
The present study was carried out by adopting novel natural language processing techniques, namely 
1) Sentiment analysis and 2) Topic modeling. The detailed methodology followed as under

Firstly, the sentiment analysis refers to computational classification/categorization of 
sentiments in the piece of text, especially refers to people’s attitude on particular aspects of 
positive or negative or neutral. In the present context, the sentiment analysis was employed to classify 
people’s tweets are positive or negative or neutral in response to AI ethics, trustworthiness, risk in 
usage, applicability, accuracy, etc.

The accuracy and adaptability of the sentiment analysis outcomes always depended on the form 
or structure of text data used for sentiment analysis. The text data should be extensively cleaned 
before the sentiment polarity calculations. This step is needed for the text analysis to transform 

Figure 1. Flow chart of pre-processing steps of Twitter text data.
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human language into a machine-readable format for further processing and analysis. The selection 
and pre-processing steps were majorly dependent on the form or structure of text data. The detailed 
pre-processing steps followed in the present study were depicted in the flow chart below

In the pre-text processing of twitter text data, initially, duplicate rows were removed to avoid 
unbiased results. Subsequently, converted all the text into lower cases to prevent multiple copies 
of the same word. For example, (“Ai Ethics” ai ethics” will be considered as two different words). 
The punctuations are removed as they might add extra information or reduce the size of the training 
dataset while handling text. Also, eliminated stop words that are frequently occurring words in the 
text by using the text blob library in python. The tweets with many spelling mistakes or short words 
were observed in the Twitter data. Hence spelling correction steps are performed with the help of 
the text blob library.

After the above steps, tokenization was done to divide the text into a sequence of words or 
sentences, transforming our tweets into a blob and converting them into a series of words. Followed 
by Stemming refers to the removal of suffices, like “ing,” “ly,” “s,” etc., by a simple rule-based 
approach by using Porter Stemmer from the NLTK library of python. Some may use Lemmatization 
as a more practical option than stemming because it converts the word into its root word, rather than 
just stripping the suffices. It makes use of the vocabulary and does a morphological analysis to obtain 
the root word. Therefore, researchers usually prefer lemmatization over stemming.

After basic preprocessing steps of cleaning the text, extracted the features using the following 
natural language techniques. N-Grams identify the combination of multiple words used together. We 
have used N-grams, bigrams, and trigrams. Unigrams have not captured much information as compared 
to bigrams and trigrams. Hence, bigrams or trigrams were used to capture the language structure, like 
what letter or word was likely to follow the given one. Further, part-of-speech tagging mainly assigns 
speeches to each text word based on its context and definition (nouns, verbs, adjectives, and others).

Secondly, topic modeling is the process of extracting or obtaining required features from the 
bag of words. This is an important technique since each word present in the corpus is considered a 
natural language processing feature. This feature reduction will help us focus on the right content 
instead of going through the entire text in the training data. There are many methods used for topic 
modeling. Latent Dirichlet Allocation (LDA) is one method used to analyze the topic modeling in 
the present study.

LDA is a statistical and graphical model used to obtain relationships between multiple documents 
in a corpus. It is developed using the variation exception maximization (VEM) algorithm to get 
the maximum likelihood estimate from the whole text corpus. Traditionally, this can be solved by 
picking out the top few words in the bag of words. However, this completely lacks the semantics in 
the sentence. This model follows the concept that the probabilistic distribution of topics can describe 
each document, and words can explain each topic. Thus, it helps to get a much clearer vision of how 
the topics are connected. It considers all corpus of entire documents in the data. After preprocessing 
of the corpus, each bag of words consists of common words. Using the LDA model, the topics related 
to each document have been derived and can group all corpus into a particular group for further usage. 
The flow chart below details the process of topic modeling

3. CoNTRIBUTIoNS ANd VALUe Add

AI risk is an emerging topic. The study uses open-source, available Twitter data to understand the key 
emerging themes in the AI benefits and cost space to the society using a text mining framework. The 
study aims to bring the critical issues to the forefront and create awareness among the practitioners 
and regular users to address the key concerns while embarking on the AI implementation journey. 
Also, it contributes to text mining literature by providing a framework for analyzing public sentiments.
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4. LITeRATURe ReVIew

The literature has been reviewed under three broad themes: AI risk and ethical challenges, sentiment 
analysis using twitter data, and text clustering methods.

4.1 AI Risk and ethical Challenges
Dwijendra and Mahanty (2021), by leveraging the AI incident database, identified some key AI risk 
areas from known risk incidents from recent years. Hagendorff (2020) analyzed and compared 22 
ethical guidelines, highlighting overlaps but also omissions. Also, the study provides some interesting 
recommendations on how the effectiveness in the demands of AI ethics can be improved. Maas, (2018) 
suggests that large-scale, cascading errors in AI systems are inevitable. Box and Snavely, (2019) 
discussed the human bias in machine learning. Martinho, Kroesen and Chorus, (2020) integrated both 
theoretical and empirical lines of thought to address the matters of moral reasoning in AI Systems. 
Tamboli (2019), shared challenges that change in data over time brings and hence affects statically 
programmed (or assumed) relationships, more commonly known as “concept drift”. Thomas(2021), 
shared concerns and the technical issues raised when humans are replaced by artificial intelligence 
(AI). Holzinger, Haibe-Kains and Jurisica (2019), explains sufficient, and quality data is needed 
to solve critical challenges in medicine. He mentions effectively and efficiently integrating diverse 
clinical, imaging, and molecular profile data is necessary to understand complex diseases.

4.2 Sentiment Analytics Using Twitter
Asghar et al.(2018), analyzed consumers’ views for major automobile Brands Using Twitter Data. They 
found that Audi has 87% of the positive tweets compared to 74% for BMW, 84% for Honda, 70% for 

Figure 2. Process flow for topic modeling
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Toyota, and 81% for Mercedes. Godea et al.(2015), explored the general sentiments and information 
dissemination concerning electronic cigarettes or e-cigs using Twitter and found that Twitter users 
are mainly concerned with sharing information (33%) and promoting e-cigs(22%). Olorunnimbe 
and Viktor (2015) study captured individuals’ sentiments as they evolve while exploring political 
sentiments on Twitter for opinion mining. Dinkić et al.(2016), used Twitter data to determine the 
popularity of city locations of interest and public spaces in general. Esiyok and Albayrak (2015), 
compared the performance of the Naïve Bayes and Maximum Entropy classification methods for 
predicting marketing trends. Choi and Kim (2013), performed sentiment analysis for tracking breaking 
events and found that his study offers diverse evidence to prove that Twitter has valuable information 
for monitoring breaking news worldwide. Rao and Srivastava(2014), evaluated public opinion tweets 
in driving investment decisions. Steede et al.(2018), analyzed the sentiment and content analysis of 
Twitter content regarding antibiotics’ use in livestock.

4.3 Text Clustering Methods
There have been challenges around managing the explosion of electronic document archives. Sharper 
and new tools and techniques are required to organize, search, index, and review extensive data 
collections in a time-efficient manner (Alghamdi and Alfalqi, 2015). As a generalization, there are two 
broad approaches to process text- natural language processing (NLP) and statistical-based programs 
like topic modeling (Hofmann, 2001). Unlike NLP methods that tag parts-of-speech and grammatical 
structure, statistical-based models like topic models are based mainly on the ‘bag-of-words (BoW) 
assumption. In BoW models, the collection of text documents is quantified into a document-term 
matrix (DTM) that counts the occurrence of each word (columns) for each document (rows). In most 
topic models like LDA, the DTM is one of two model inputs and the number of topics(Wesslen, 2018). 
Deerwester et al.(1990), presented one of the first topic models using latent semantic analysis (LSA) 
and singular value decomposition (SVD), in which a large DTM is decomposed into a set of about 
100 orthogonal factors from which the original matrix can be approximated by linear combination. 
They assumed some underlying latent semantic structure and used statistical techniques to estimate 
this latent structure.

Asmussen and Møller (2019), presented a framework to leverage the topic modeling technique 
for performing an exploratory literature review on an extensive collection of papers. The framework 
they propose enables a large volume of documents to be reviewed in a transparent, efficient, and 
reproducible way using the LDA method. In general, there are two methods for automatically 
processing documents- supervised learning and unsupervised learning. Supervised learning includes 
manually coding a collection of documents before conducting an analysis, which involves a high 
amount of time to achieve the result. On the other hand, unsupervised learning methods, such as topic 
modeling, do not have the pre-requisite to manually code the documents, saving a lot of time for an 
exploratory review of the extensive collection of papers. Gottipati, Shankararaman and Lin(2018), 
leveraged topic modeling and data visualization methods to analyze student feedback comments from 
seven undergraduate courses taught at Singapore Management University. They assessed rule-based 
methods and statistical classifiers for extracting the topics. Al-Obeidat, Kafeza and Spencer(2017), 
further proposed an opinions sandbox for topic extraction, sentiment analysis for pulling issues and 
their associated sentiments from a database. They used LDA for topic extraction and the “bag-of-
words” sentiment analysis algorithm, where polarity is determined based on the frequency of positive/
negative words in a document. Benedetto and Tedeschi, (2016), highlight the standard approaches of 
sentiment analysis in social media streams and related cloud computing issues. Big data is divided 
into four features, namely four V’s of big data- volume, velocity, variety, and Veracity. Volume is the 
most considerable amount of data that should be stored and processed. Velocity is the frequency of 
the incoming data. At the same time, variety describes different data types, whereas veracity refers 
to the trustworthiness and accuracy of the data available.
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5. ReSULTS & dISCUSSIoNS

The present study can be viewed broadly under two headings, sentiment analysis, and topic modeling. 
Firstly, sentiment analysis classifies twitter text data into positive, positive, negative, and neutral 
sentiments. In the process, the text blog library of python was used to assess a sentence’s polarity, 
which uses naive Bayes (probabilistic algorithms that use Bayes’s Theorem to predict a text’s 
category). As a result, it generates a score ranging between -1 to +1, which is strongly negative to 
strongly positive sentiments.

Secondly, topic modeling, the key topics were extracted, which discovers keywords in the 
sentiments that capture the recurring text theme and is widely used to analyze the large sets of 
sentiments to identify the most common topics more quickly and efficiently. Finally, we have applied 
latent semantic analysis and singular value decomposition for text clustering in terms of methodology. 
In the present context of text mining, clustering divides tweets into various groups based on the 
presence of similar themes, where it describes which topic of AI is in most debate/dialog.

5.1 Sentiment Analysis
Sentiment analysis for free-flowing text like Twitter data can effectively combine natural language 
processing (NLP) and machine learning algorithms to reduce sentiment scores to a sentence or phrase. 
Sentiment analysis can give an idea about public opinion, brand reputation, key concerns, customer 
experience, customer perception, and an overall index of how optimistic the common public is about 
a topic of interest, the people’s attitude towards AI. Figure 3 represents the word cloud extracted from 
the Twitter data before sentiment analysis and topic modeling. It may not be possible to identify the 
positive /negatives /neutral opinions from this word cloud. However, it shows the popular/ repeated 
words used in the discussion in relation to the topic of interest.

Figure 3. Word cloud before sentiment analysis and topic modeling
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As discussed in the methodology, four layers of sentiment analysis are currently followed in the 
study of the Twitter text data. The first is to break down the raw Twitter text into a list of different 
components sometimes referred to as tokens that reflect the person’s emotions towards AI ethics, 
trustworthiness, credibility, risk association, and accuracy of AI models. Secondly, isolated the tokens 
with sentiments and ignored the rest. In the third step, assigned polarity scores to each component 
of the tokens. Finally, in fourth assigned sentiments such as very positive, positive, neutral, very 
negative, or negative based on the polarity scores. Table 1depicts the distribution of sentiments on 
AI ethics and associated parameters considered with respect to the AI. The results found that around 
44% (8018 tweets) were neutral, followed by 39% positive (positive 25% & very positive 14%, in 
total 7018 tweets), and the rest showed negative sentiments on AI. The positive tweets of 39% on AI 
infers that these segments of populations have more trust and favor AI. On the other hand, around 
17% may disagree with AI, and the rest of the population neither supported nor favored AI.

The positive and negative sentiments derived from the sentiment analysis were shown in fig. 4 & 
5 wherein most frequent/key positive/negative words are shown in bigger. As the frequency decreases, 
words will be shown in smaller sizes.

5.2 Topic Modeling
Topic models play an essential role in exploring text data, especially with a large volume of text 
data, to understand the structures and groups of interest. The LDA was used for the topic modeling 
wherein the key topics were extracted from the bag of words. As the model follows the concept of 
the probabilistic distribution of topics that describes each document, the probabilistic distribution of 
words can explain each topic to get a clearer vision of how the topics are connected.

The resulted cluster of LDA were depicted in the table 2 & 3, the table 2 represents the negative 
sentiments towards AI which means these segments of population are not in favour of AI. The 
key negative sentiments expressed are AI is risk to human intelligence, not accurately project the 
probabilities and not trustworthy to be used as solution. However, AI is developing rapidly and 
unpredictable, extremely irresponsible and shows the risk of negative consequences. The public 
discusses on implementation of the artificial intelligence models in government sector. The concerns 
raised in politics on information derived from AI etc. and reflect the ethical concerns of the future.

Table 1. Sentiment segmentations of Twitter data

  Sentiments   Counts   Distribution (%)

  Neutral   8,018   44

  Positive   4,554   25

  Very positive   2,464   14

  Negative   2,176   12

  Very negative   970   5

  Total   18,182
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Figure 4. Word cloud for positive sentiments

Figure 5. Word cloud for negative sentiments
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Model Performance
The model performance was checked using perplexity. The measure traditionally used for topic models 
is the \textit{perplexity} of held-out documents wd defined as

perplexity(test set w)=exp{−L(w)/count of tokens}
which is a decreasing function of the log-likelihood L(w) of the unseen documents wd; the 

lower the perplexity, the better the model. We have got a very low confusion and Coherence score.
Perplexity: -11.535942740878582
Coherence Score: 0.502168380482148
Machine Learning and Artificial Intelligence systems are shaping up to our society – for better 

and worse (Helbing et al., 2019). One of the dominant themes that emerge from the analysis is these 
tools have the ability to decide the way to think and act and got the potential to destabilize democracy. 
In 2016, the Data Science firm Cambridge Analytica used the tool to manipulated American voters 
and influenced their political decision-making process. This is a classic example of sinister motives 
that created a massive scandal all over the World. Racism and sexism are other areas of concerns for 
people around the World. In 2015, a study by the University of Washington showed that a simple 
image search in the USA for “CEO” shows only 11 per cent female, whereas, in reality, 27 per cent of 
the CEOs are female in the country. With improvements in computer vision, both digital and physical 
surveillance is becoming a key concern for society.

5.2.1 Key Negative Topics Derived From LDA
An artificial intelligence model shows more risk than human intelligence and insufficient expertise and 
completely biased tools. Risk amplification & data discrimination, bias algorithms may lead negative 
impacts hence raises the question of trustworthiness. Political news automatic racism harms the people.

The table 2 represents the positive sentiment segmentation wherein these segment of population 
are in favor of AI. The topics identified from the analysis will help to improve the AI ethics, emphasize 
in understanding and inclusiveness of AI. The analysis also showed the public sectors and political 
systems are excited to use the AI system as these will help in taking the good decisions and to create 
policies in the government sector. AI is responsible for developing better machine learning models 
globally with legal and trustworthy.

Table 2. Cluster- Negative Sentiments Segmentations

  Segments   Topic Modeling: Negative Sentiments

  0   “show_risk,+yldixdrui,+model,+artificialintelligence,+human”,

  1   “germany,+humble,+beginning,+sinister,+scandal”,

  2   “politic,+common,+upside,+digi,+many”,

  3   “insufficient,+tool_completely,+expert,+facebook,+bias”,

  4   “artificialintelligence,+algorithm,+datum,+digital,+watch”,

  5   “risk_amplify,+data,+discrimination,+forward,+bias”,

  6   “automating_racism,+fail_everyone,+equally,+jrcwbrvbdw,+politic”,

  7   “ethic,+alg,+critical,+wilson,+access”,

  8   “artificialintelligence,+bias,+behind_assistant,+accent,+algorithm”,

  9   “politic,+news,+harm,+biden,+warn”
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5.2.2 Key Positive Topics Derived From LDA
Artificial Intelligence implementation is growing lot faster than many of us anticipated. Numerous 
positive themes are emerging from the public discourse. One of the significant potentials of AI 
technology is to build automation of repetitive work. Identification of defective assets having an 
automated virtual chatbot to respond to customer queries are kinds of stuff delegated to Artificial 
Intelligence agents(Thomas, 2021). Health is another area where AI systems have started playing a 
critical role.

Model Performance Checking Using Perplexity:
Perplexity: -12.63675039019591

Coherence Score: 0.5301629075500442
The health care industry is one of the most challenging industry and score for AI is increasing. 

Image analysis to drug discoveries is performed by AI on a regular basis (Delijewski and Haneczok, 
2021). Forest and agriculture are other areas where AI started showing tremendous benefits. Be it 
checking moisture quality, the content of the soil, pest management, weather, to auto watering plants 
are handled through AI algorithms(Columbo et al., 2021). Using AI for managing cybersecurity, 
fraud and credit management are other fertile ground for AI implementation.

AI systems have to be more explainable, transparent, interpretable, built on unbiased data. It should 
be designed on human-first and common-sense principles. Governments have to play an active role 
in creating awareness of AI technologies, legal aspects around them. Since AI is growing drastically 
public sector, governments, business sectors should bring the code of ethics into the AI discussions. 
From the above positive topics, general thinking about the AI principles should be responsible, 
accountability, reliability, safety, fairness, transparency, and integrity. Also, the Netflix uses the AI to 
recommend movies to users based on the history and top pics from overall users and highest-ranked 
movies. So it’s a clear indication of how accurate AI recommendations are, and its shows how ethical 
or responsible these AI systems are. In recent years, greater AI transparency into all working models 
will help mitigate fairness, discrimination, and trust. All these have increased the attention.

Table 3. Cluster 2- Positive sentiments segmentations

  Segments   Topic Modeling: Positive Sentiments

  0   “importance,+make,+lnbfch,+understandable_theshiftfi, + inclusive”,

  1   “excited,+politic, +biden,+trump,+project”,

  2   “discuss,+collaboration,+codedbiaspb,+bannister,+outstanding”,

  3
  “principles_responsible,+accountability_inclusiveness,+reliability_safety,+fairness_
transpare,+integrity”,

  4   “artificialintelligence,+algorithm,+datum,+digital,+tech”,

  5   “responsibleai,+do,+machinelearne,+algorithmic,+global”,

  6   “legal,+trust,+framework_europe,+cozibdy,+poll”,

  7   “techethic,+come,+month,+march,+wrap”,

  8   “think,+transparency,+lead,+discrimination,+class”,

  9   “film,+surgery,+investigate,+netflix,+intelligence”
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6. CoNCLUSIoN

Artificial Intelligence technology started dominating every aspect of life. Social media, health, 
airline, oil exploration, banking and payment, cyber surveillance and many other industries are 
rapidly adopting these new technologies. With the rise in digitization, better storage and computing 
power, autonomous algorithmic decisions are expressive of scope for AI in the future as these bear 
enormous speed and are cost-efficient.

These autonomous decision-making systems are built based on data captured through our day-
to-day behavior and reflect on societal actions to a large extent. But, of course, not every action taken 
in the past is unbiased. These unjust or biased data points, along with any defect in the AI design and 
delivery process, will have the potency of accentuating and magnifying the problem.

Our in-depth analysis of public sentiments from the Twitter feeds certainly not only looking at the 
merits of Artificial Intelligence implication but cluster out some of the key issues and challenges these 
new technologies bring to the society. Given the rapid pace of AI implementations, these challenges 
may get magnified and rise to social tension unless handled with the proper framework and policies. 
Therefore, we must build adequate social coherence and the ethical principle so that AI technology 
will be an enabler of society and not a disabler.
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