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ABSTRACT

With the steady rise in the use of smartphones, specifically Android smartphones, there is an ongoing 
need to build strong intrusion detection systems to protect ourselves from malicious software attacks. 
This work focuses on a sub-group of android malware, scareware. The novelty of this work lies in 
being able to detect the various scareware families individually using a small number of network 
attributes, determined by a recursive feature elimination process based on information gain. No work 
has yet been done on analyzing the scareware families individually. Results of this work show that 
the number of bytes initially sent back and forth, packet size, amount of time between flows and 
flow duration are the most important attributes that would be needed to classify a scareware attack. 
Three classifiers, Decision Tree, Naïve Bayes, and OneR, were used for classification. The highest 
average classification accuracy (79.5%) was achieved by the Decision Tree classifier with a minimum 
of 44 attributes.
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1. INTRoDUCTIoN

Internet traffic on mobile devices has steadily increased over the last few years. In 2018, 85% of 
the mobile smartphone market share was held by android devices1. In 2019, 98% of the internet 
users were mobile users2. Google’s android operating system, currently leading the mobile market3 
(Alzaylaee, et al., 2020; Mutton & Badhani, 2019; Grampurohit, et al.,2014), is predicted to continue 
to have a dramatic increase in the market with around 1.5 billion android-based devices shipped by 
2021 (Alzaylaee, et al., 2020). This adoption and popularity of smartphones has greatly stimulated 
the spread of mobile malware, especially on popular android platforms. There was an average loss 
of $13.0 million due to malware or malware related attacks4 in 2018. Malware has seen an increase 
of +11% from 2018 to 20194. Worldwide mobile app downloads in 2017 were 197 billion and are 
expected to reach 352.9 billion in 20215. Being open source, Android faces additional challenges 
with malware infected apps (Alzaylaee et al., 2020). Hence malware detection has become one of 
the most important factors in the security of smartphones (Lashkari et al., 2018).
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Malware is any software maliciously designed to attack vulnerable services. Many vulnerable 
services allow malware to infect insecure accessible systems automatically (Priya et al., 2016). 
Other malicious attackers are able to lure victims into deliberately executing malicious code on their 
machines (Priya et al., 2016), giving away personal, financial, as well as healthcare data. There are 
many different types of malware: viruses, worms, trojans, spyware, ransomware, scareware, bots, and 
rootkits. This paper focuses on Scareware. Scareware is a form of malware which poses a perception 
of threat in order to manipulate users into buying or installing unwanted software. Mainly used to steal 
data, it displays frightening screens to show that your device is under attack and uses fake versions 
of system problem messages and virus alerts, claiming to be an antivirus solution3. A user is often 
tempted into installing malware without any awareness and the malware steals the users’ personal 
information. Thus, building intrusion detection systems for the detection of malware is critical to 
protecting smartphone users.

The novelty of this paper lies in developing a scareware detection system using network data from 
the android platform (Pendlebury et al., 2018). Several papers have looked at classifying malware data 
in general (Alzaylaee et al., 2020; Mutton & Bhadhani, 2017; Grampurohit et al., 2014; Lashkari et 
al., 2018; Wu et al., 2014; Li et al., 2016; Arshad et al., 2016; Chavan et al., 2019; Kapratwar et al., 
2017), but none have looked at scareware attacks in particular. Moreover, none of the works have 
analyzed each of the individual scareware families.

Machine learning (ML) has become a standard tool for malware detection in the academic security 
community, and is used to identify attacks with respectable accuracy. This paper uses three classifiers, 
Decision Tree, Naïve Bayes and OneR, to classify existing android scareware families using a minimal 
number of attributes. An Information Gain based recursive feature elimination process is used to 
determine the features used in classification. The novelty of this work lies in being able to detect the 
various scareware families using a smaller number of network attributes with respectable accuracy. 
The top ten attributes contributing to the classification of each scareware family are also presented.

The rest of this paper is organized as follows. Section two presents work related to malware and 
scareware classification; section three describes the dataset used in this work; section four presents the 
methodology used in this work; section five presents the results and section six presents the conclusion.

2. ReLATeD woRKS

There is a significant amount of work on malware classification using different approaches, but very 
few works have focused on scareware in particular.

2.1 Related work on Malware Classification
A study by Liu et al. (2020) presents a comprehensive review of Android malware detection approaches 
based on ML. Zhou and Jiang (2012) present a detailed description of the different kinds of malware, 
but unfortunately this paper is slightly dated, hence most of the malware families have changed. Mutton 
and Bhadhani (2017) is a more up-to-date work that lists the features extracted for the purpose of 
malware detection as well as various machine learning algorithms being used for malware detection.

The study by Kapratwar et al. (2017) applied ML techniques to analyze the effectiveness of 
particular static and dynamic features for detecting android malware. There are other works that 
looked at static features. The study by Grampurohit et al. (2014) used permissions and API level 
information from apps as the features to detect malicious applications. The study by Li et al. (2016) 
used a new feature vector extracted from the Android Manifest file, which combined permission and 
component information of an android application. The study by Li et al. (2016) used the Naive Bayes 
classifier. Chavan et al. (2019)’s work used permissions requested by an application for binary as 
well as multi classification using a wide variety of machine learning techniques, including Decision 
Trees, Random Forest, Support Vector Machines, Logistic model trees, AdaBoost, and Artificial 
Neural Networks. The study by Chavan et al. (2019) determined that permissions are a strong feature 
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and that by careful feature engineering, the number of features needed for highly accurate detection 
and classification can be reduced.

Other works looked at dynamic features. Alzaylaee et al. (2020) proposed DL-Droid, a deep 
learning system to detect malicious android applications through dynamic analysis using stateful 
input generation. This study achieved up to 97.8% detection rate with dynamic features only and 
99.6% detection rate with dynamic plus static features, outperforming many of the other machine 
learning studies.

Others took a historical perspective. Wu et al. (2014) performed malware detection using runtime 
logs of an android application. Arshad et al. (2016) analyzed the android malware’s penetration 
techniques.

Lashkari et al. (2018) proposed a systematic approach to generate android malware datasets using 
real smartphones instead of emulators and hence developed a new dataset, CICAndMal2017. Priya et 
al. (2016) performed binary malware detection, malware category classiðcation, and malware family 
characterization by building, training, and evaluating their model via three common ML algorithms, 
Random Forest, K Nearest Neighbor, and Decision Trees.

Souri and Hosseini (2018) also presented a very comprehensive overview of malware detection 
approaches for both behavioral as well as signature-based malware.

Gopalakrishnan et al. (2020) looked at models for malware detection using diverse data mining 
techniques including Decision Trees and Random Forest.

2.2 Related works on Scareware classification
Very few works have been directed to scareware classification in particular. Shahzad and Lavesson 
(2011) present a scareware detection method that learns patterns in extracted variable length opcode 
sequences derived from instruction sequences of binary files. Seifert et al. (2013) proposed an image-
based scareware detection technique to identify web-based scareware attacks.

3. THe DATASeT

Lashkari et al. (2018) evaluated several publicly available android malware datasets from 2012 to 2017 
and presented their shortcomings. These datasets lacked real-phone installation and user interaction 
scenarios, and contained insufficiently diverse categories and families and failed to balance the number 
of malware samples to benign samples (Lashkari et al., 2018). None of these datasets captured all 
the varieties of malware behavioral features, including continuous features (API calls, system calls, 
logs, network traffic) and discrete features (memory dump, permissions, memory usage, battery 
usage and network usage). In addition, the datasets did not balance the number of malware samples 
and the number of benign samples during evaluation. Extremely disbalanced datasets may not be a 
valid proof of work (He & Garcia, 2009; Bagui & Li, 2021). Liu et al. (2020) and the Crowdstrike 
2021 Global Threat Report6 mention that the normal distribution of benign and malware apps in the 
real world is 80% to 20% respectively. Hence Lashkari et al. (2018) developed CICAndMal2017.

The dataset used in this work, CICAndMal2017 (Lashkari et al., 2018), developed by the Canadian 
Institute for Cybersecurity (CIC)7, University of New Brunswick, Canada, addresses the limitations 
and shortcomings of previous datasets. There are 10,854 samples collected from android applications, 
of which 4,354 are malware samples and 6,500 are benign. CIC collected the benign applications 
from the Google Play store and the malware samples from VirusTotal service8 and Contagio security 
blogs9. CIC then installed these on real android smartphones to execute their experiments. They were 
able to successfully install around 5,000 benign applications and 429 malicious applications. This 
was considered a success, since the industry standard for analyzing malware is 80% benign and 20% 
malware. They then extracted the network data using the CICFlowMeter software (Sharafaldin et al., 
2018) in short bursts upon installation in the form of PCAP files. The data extracted from these tests 
contained 80 plus network attributes that consists of statistical features such as flow duration, number 
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of packets and network protocol. This work focuses on the CSV files that were an abstraction of the 
data extracted. The malware samples were divided into four main categories: Ransomware, Adware, 
Scareware and SMS Malware. This paper focuses only on Scareware and its sub categories or families.

The families that make up the scareware attack category are: Virus Shield, Android Spy, Penetho, 
AVforAndroid, FakeTaoBao, AVpass, FakeJobOffer, FakeApp, FakeAV, FakeAppAL. These families 
were the actual attacks that were present in the malware samples acquired by CIC7. Figure 1 shows 
the distribution of the families for the scareware attack category.

4. MeTHoDoLoGy

To address the issue of highly imbalanced data, the datasets used for experimentation were balanced 
by composing the datasets of roughly 50% benign samples and 50% scareware samples. Data 
preprocessing was the next necessary step for this dataset, before classification.

The hardware configurations were used in this study were: CPU: i7 8700, RAM: 16gb and 
SSD: 1Tb. And, a data mining software, Weka (Witten et al., 2016), was used for preprocessing and 
running the classifiers.

4.1 Preprocessing
For initial preprocessing, all attributes that were specific to the environment when running the samples 
were removed. These attributes included: Source IP, Destination IP, Flow ID, Source Port, Time 
stamp and Destination Port. The data was then discretized. The next step in preprocessing involved 
a recursive feature selection process, performed using Information Gain in Weka.

4.1.2 Feature Selection with Information Gain
Information Gain (IG), based on a measure of entropy, measures the relevance of a feature relative 
to a given class. Suppose there are m classes. Let S be a set of training samples where the class label 
is either benign or attack. Let S contain si samples of class Ci, where i = 1…m. The probability of 
an arbitrary sample belonging to class Ci is si/s, where s is the total number of samples in set S. For 
classifying a given sample, the expected information is (Han & Kamber, 2012):

Figure 1. Distribution of scareware families
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For the CICAndMal2017 dataset7, after removing the environmental variables, there were 78 
attributes. Information Gain was run on Weka using the remaining 78 attributes for each of the 
scareware attack families. Weka’s results rank the features by information gain and also present the 
information gain. In the next round, features with very low information gain were eliminated. That is, 
all attributes with Information Gain of 0.04 and below were eliminated. For most scareware families, 
this left 68 features, which were then used to run the classifiers.

4.2 Classifiers Used
For this study, two commonly used classifiers, Decision Tree (J48) and Naive Bayes, and one less 
commonly used classifier, OneR, was used. Each scareware family was run separately on a binary 
classifier. The distribution of data for each run was approximately fifty-fifty, meaning that each run 
had almost an equal amount of data from a scareware family as the amount of benign data.

4.2.1 Decision Tree
Decision tree classification has been used to detect malware by Gopalakrishnan et al. (2020). A decision 
tree is a tree structured representation where each node represents a feature and each link or branch 
represents a decision. The leaf represents the result. There are multiple decision tree algorithms. In this 
work, the J48 decision tree algorithm, which is a Java reimplementation of the C4.5 algorithm (Han 
& Kamber, 2012), was used. C4.5 is an extension of Quinlan’s earlier ID3 algorithm (Quinlan, 1993).

In the decision tree algorithm, Information Gain is used to decide the ordering of the features in 
the nodes, and the feature with the highest information gain is at the root of a decision tree. Information 
gain is re-calculated based on the branches, and the feature with the next highest information gain 
on every branch is chosen as the next root. This process occurs recursively until the tree reaches the 
leaf node or has one class, attack or benign. Hence, every node and branch prior to the leaf node is 
associated with a decision function.

The J48 decision tree algorithm was run using Weka using the following parameters: a pruned 
decision tree with subtreeRaising set to True, 10-fold cross-validation, confidence of 25, and 
MinNumObj set to 2. Pruning is very important to control overfitting. Weka’s J48 Algorithm uses 
backward pruning, that is, it builds the complete tree and then does the pruning. Backward pruning 
generally performs better than forward pruning. Confidence is used to control the pruning. Lower 
confidence values incur more pruning. The confidence in this experimentation was set to 25%. 
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MinNumObj controls the splitting of the nodes. If a node has few instances, it may not be worth 
splitting the node. In this case the MinNumObj was set to 2. With SubtreeRaising, the interior nodes 
of the tree can be pruned. This raises the sub-tree beneath the interior node up one level during 
pruning, but the tree is better pruned (Witten et al., 2016).

4.2.2 Naïve Bayes
Naive Bayes is a simple, yet effective and commonly-used, probabilistic machine learning classifier10. 
Based on the Bayes’ Theorem, this classifier predicts class membership probabilities, that is, the 
probability that a given tuple belongs to a particular class (Han & Kamber, 2012). The Naïve Bayes 
classifier assumes class conditional independence. This means that the effect of an attribute value 
on a given class is independent of the values of the other attributes. The Naïve Bayes classifier does 
not perform as well in the presence of irrelevant (Bermejo et al., 2014) or highly correlated attributes 
(Inza et al., 2000), hence feature selection is very important for the Naïve Bayes classifier.

4.2.3 OneR
OneR short for “One Rule”, is a not very commonly used simple classifier, but has shown to achieve 
surprisingly high accuracy in many datasets (Nevill-Manning et al., 1995; Holte, 1993). Based on 
a one-level decision tree11, it has one branch for each value where each branch assigns the most 
frequent class, and the error rate is determined by the proportion of instances that do not belong to 
the majority class and their corresponding branch and the attribute with the smallest error rate is 
chosen11, 12. An attack that is classified accurately by OneR depends very strongly on a single feature. 
For this experimentation, Weka’s default parameters were used to run the OneR.

5. ReSULTS 

5.1 evaluation Metrics Used
To evaluate the quality of the classification process, accuracy, precision, recall and the F-measure 
were used.

Accuracy is the ratio of a model’s correct data (TP + TN) to the total data, calculated by:

Accuracy = (TP+TN)/Total No. of Instances (1)

Precision is the positive predictive value, or the percent of attack instances that are truly classified 
as attacks. Precision is calculated by:

TP/(TP+FP) (2)

Recall or Attack Detection Rate (ADR) or sensitivity is the effectiveness of a model in identifying 
an attack. The objective is to get a higher ADR. Recall or ADR is calculated by:

TP/TP+FN (3)

F-measure is the harmonic mean of precision and recall. The higher the F-measure, the more 
robust the classification model. The F-measure is calculated by:

2*((Precision * Recall)/(Precision + Recall)) (4)

Where TP is true positive, FP is false positive, FN is false negative and TN is true negative.



Journal of Information Technology Research
Volume 15 • Issue 1

7

5.2 Comparing Results of the J48, Naïve Bayes, and OneR classifiers
The classification accuracy, precision, recall and F-measure were determined for 68 attributes down to 
10 attributes. A recursive attribute elimination process was used based on information gain. First, 68 
attributes for each of the scareware families were run on each of the three classifiers, J48, Naïve Bayes, 
and OneR, and the accuracy, precision, recall and F-measure recorded. Then, based on information 
gain, the attribute with lowest information gain was removed and this process was repeated for 67 
attributes, then 66 attributes, and so forth. At every point, information gain was used to remove the 
attribute with the lowest information gain.

Hence, the classifiers were run on each set of attributes for each scareware family after removing 
one attribute at a time, using an information gain based recursive feature elimination, until the target 
number of ten attributes. Figure 2 presents the classification accuracy of the average of eleven 
scareware attack families, run for different numbers of attributes, on each of the three classifiers. On 
the x-axis a selected number of attributes are shown in order to keep the graph readable. This graph 
shows the trend of each of the classifiers as well as the behavior of the number of attributes. Figure 
2 shows which classifier performed the best on the average, in terms of accuracy.

From Figure 2 it can be noted that J48 consistently had the highest classification accuracy, 
approximately between 79% to 75%, for 68 to 10 attributes respectively. With J48, as the number of 
attributes decreased, the classification accuracy also went down slightly, but by not very much. The 
best classification accuracy was at 44 attributes.

Naïve Bayes performed the second best, with a classification accuracy ranging from a little above 
68% to 72% for 68 to 10 attributes respectively. For Naïve Bayes, the highest classification accuracy 

Figure 2. Average Accuracy of Naïve Bayes, J48 and OneR for various number of attributes

Table 1. Average precision, recall and f-measure of algorithms

     Average Precision      Average Recall      Average F-Measure

J48 0.7576 0.7573 0.757

 Naive Bayes 0.7101 0.7094 0.7093

OneR 0.6272 0.6264 0.6257
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was with about 21 attributes to 37 attributes, but overall, the number of attributes did not have very 
much of an effect on the classification accuracy.

OneR had the lowest classification accuracy, around 61%, regardless of the number of attributes. 
Given the fact that OneR performs the best if there is one attribute that contributes highly to the 
classification, this shows that there is certainly more than one attribute contributing highly to the 
classification.

Table 1 presents the average precision, average recall and average F-measure of all three 
classifiers, J48, Naïve Bayes and OneR. This is the average of all eleven scareware families for all 
attributes, 68 to 10.

From Table 1, it can also be observed that J48 performed the best of the three classifiers, with 
an average precision of 75.76%, an average recall or attack detection rate of 75.73%, as well as an 
average F-measure of 75.7%. OneR had the lowest performance of the three classifiers with the 
average precision, average recall and average F-measure in the low 60%’s. Naïve Bayes performed 
quite a bit better than OneR, with average precision, average recall and average F-measure in the low 
70%’s, but not as well as the J48. Since J48 consistently performed the best of the three classifiers, 
only the results of J48 are presented moving forward.

Tables 2-11 present the top ten attributes and Information Gain (IG) of each of the scareware 
families by IG using the J48 classifier. From Table 2 it can be noted that most important attribute for 
the classification of AndroidDefender is Init_Win_bytes_forward, the second most important attribute 
is Init_Win_bytes_backward, the third most important attribute are Total_Length_of_Bwd_Packets 
and Subflow Bwd_Bytes (since the latter two attributes have the same information gain), and so forth. 
From the results of Tables 2-11, it can also be noted that some of attributes are common to more 
than one family.

Table 2. Top ten attributes of AndroidDefender

AndroidDefender

Attribute IG

Init_Win_bytes_forward 0.055

Init_Win_bytes_backward 0.043

Total Length of Bwd Packets 0.038

Subflow Bwd Bytes 0.038

Total Length of Fwd Packets 0.035

Subflow Fwd Bytes 0.035

Max Packet Length 0.033

Fwd Packet Length Max 0.032

Fwd Packet Length Max 0.032
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Table 12 presents average Information Gain (for the scareware families), the standard deviation of 
the Information Gain, and the number of times the attribute occurred within the top ten attributes in 
each of the scareware families (frequency). It can also be observed that Init_Win_bytes_forward was 
present in all 11 of the scareware families, and had the highest information gain in 7 of those families 
and had the second highest information gain in 2 of those families. Flow IAT Max, Flow Duration, 
and Max Packet Length were present in eight of the eleven scareware families. And, each of these 
attributes had only slight deviation from the mean in Information Gain. Init_Win_bytes_backward 
was present in seven of the eleven scareware families.

Init_Win_bytes_forward is the total number of bytes sent in the initial window in the forward 
direction. Transmission Control Protocol (TCP) uses a sliding window flow control protocol. In 
each TCP segment, the receiver specifies, in the receive window field, the amount of additionally 
received data (in bytes) that it is willing to buffer for the connection. The sending host can send only 
up to that amount of data before it must wait for an acknowledgment and window update from the 
receiving host (Lashkari et al., 2018). Hence, Init_Win_bytes_forward can be the most important 

Table 3. Top ten attributes of AndroidSpy

AndroidSpy

Attribute IG

Init_Win_bytes_forward 0.086

Init_Win_bytes_backward 0.06

Source Port 0.058

Flow IAT Max 0.057

Flow Duration 0.056

Flow IAT Min 0.053

Max Packet Length 0.047

Flow Packets/s 0.046

Flow IAT Mean 0.046

Table 4. Top ten attributes of AVforAndroid

AVforAndroid

Attribute IG

Init_Win_bytes_forward 0.074

Fwd Packet Length Max 0.06

Flow Duration 0.055

Init_Win_bytes_backward 0.054

Flow IAT Max 0.047

Flow IAT Mean 0.043

Max Packet Length 0.041

Flow IAT Min 0.041

Flow Packets/s 0.04



Journal of Information Technology Research
Volume 15 • Issue 1

10

Table 6. Top ten attributes of FakeApp

FakeApp

Attribute IG

Source Port 0.052

Init_Win_bytes_forward 0.05

Max Packet Length 0.033

Init_Win_bytes_backward 0.032

Subflow Fwd Bytes 0.026

Total Length of Fwd Packets 0.026

Fwd Packets/s 0.026

Fwd Packet Length Max 0.025

Flow Packets/s 0.025

Table 7. Top ten attributes of FakeAppAL

FakeAppAL

Attribute IG

Init_Win_bytes_forward 0.077

Init_Win_bytes_backward 0.057

Flow IAT Max 0.043

Flow Duration 0.043

Max Packet Length 0.041

Fwd IAT Total 0.037

Flow IAT Min 0.037

Fwd IAT Max 0.033

Average Packet Size 0.032

Table 5. Top ten attributes of AVpass

AVpass

Attribute IG

Fwd Packet Length Max 0.071

Flow Duration 0.069

Flow IAT Max 0.067

Flow IAT Min 0.064

Init_Win_bytes_forward 0.063

Flow Packets/s 0.06

Max Packet Length 0.053

Fwd IAT Min 0.053

Flow IAT Mean 0.052
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Table 8. Top ten attributes of FakeAV

FakeAV

Attribute IG

Init_Win_bytes_forward 0.067

Fwd Packet Length Max 0.065

Flow IAT Min 0.06

Flow IAT Max 0.057

Fwd IAT Min 0.057

Flow Duration 0.056

Fwd Packets/s 0.046

Flow Packets/s 0.046

Max Packet Length 0.044

Table 9. Top ten attributes of FakeJobOffer

FakeJobOffer

Attribute IG

Init_Win_bytes_forward 0.07

Init_Win_bytes_backward 0.049

Fwd Header Length2 0.035

Fwd Header Length 0.035

Source Port 0.035

Flow Duration 0.032

Subflow Fwd Bytes 0.03

Total Length of Fwd Packets 0.03

Flow IAT Max 0.029

Table 10. Top ten attributes of Penetho

Penetho

Attribute IG

Init_Win_bytes_forward 0.104

Flow IAT Min 0.081

Source Port 0.076

Flow IAT Max 0.073

Flow Duration 0.072

Fwd IAT Min 0.07

Fwd Packets/s 0.068

Flow Packets/s 0.061

Flow IAT Mean 0.058
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attribute. Much of the data being sent is using over the 65,535 bytes, an indication that many bytes 
can be received before an acknowledgement, and in return it receives another byte size to expect, 
which is init_win_bytes_backward. With this information it can be speculated that the malicious 
software is most likely going to request the largest size and it will receive the same response byte 
size every time. With it requesting the same size, it could be inferred that init_win_bytes_forward 
and init_win_bytes_backward can be used to detect malware because every time the max window 
bytes are requested, it expects the same window size.

Flow IAT Max is the maximum value of the inter-arrival time of the flow. This is the maximum 
amount of time between two packets sent in the flow (Lashkari et al., 2018).

Flow Duration is the duration of the flow or how long it took to complete (Lashkari et al., 2018).
Max Packet Length is the maximum length of the packets registered in the flow (both forward 

and backward directions) (Lashkari et al., 2018).
Figure 3 presents the classification accuracy for 68 to 10 attributes respectively for each of the 

scareware families using the J48 classifier. Overall, Android Defender had the highest accuracy, 
between 77% to 80%, and Penetho had the lowest accuracy, between 67% and 73%. FakeApp was 
also pretty close to Penetho, so FakeApp and Penetho can be considered the hardest to detect.

Table 11. Top ten attributes of VirusShield

VirusShield

Attribute IG

Flow IAT Max 0.086

Init_Win_bytes_forward 0.07

Source Port 0.068

Init_Win_bytes_backward 0.056

Flow Duration 0.055

Fwd Header Length 0.052

Fwd Header Length2 0.052

Fwd IAT Min 0.051

Bwd IAT Max 0.048

Table 12. Top ten attributes of the scareware families

Attribute Name Average Information Gain σ      Frequency

Init_Win_bytes_forward 0.072 0.015 11

Flow IAT Max 0.057 0.018 8

Flow Duration 0.055 0.013 8

Max Packet Length 0.042 0.007 8

Init_Win_bytes_backward 0.0501 0.01 7

Flow Packets/s 0.046 0.013 6

Flow IAT Min 0.056 0.016 6

Fwd Packet Length Max 0.0506 0.021 5

Source Port 0.0578 0.016 5
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6. CoNCLUSIoN

This paper used an information gain based recursive feature elimination process to determine the 
optimal number of attributes needed for classification for scareware families of attacks. Of the three 
classifiers used, J48 also had the highest average precision (75.7%), recall (75.7%) and F1 score 
(75.7%).

The results show that number of bytes initially sent back and forth, packet size, the amount of 
time between flows and flow duration are the most important attributes that would be needed to 
classify a scareware attack. Specifically, the Init_Win_bytes_forward attribute appeared to be the 
most important attribute, present within the top ten attributes for all the scareware attack families. 
Although the top ten attributes for each scareware attack family were presented, the best classification 
results appeared to be for 44 attributes for the J48 classifier at 79.5% (as can be seen in Figure 2). 
Reducing the attributes below 44, for the J48 algorithm, reduced the classification accuracy slightly, 
but not by very much.

From this study, it can also be generalized that scareware families are difficult to detect. Of 
the scareware families, Android Defender had the highest classification accuracy (79.5% with 44 
attributes) while Penetho had the lowest classification accuracy (the highest accuracy for Penetho 
was at 73% with 66 attributes), so the highest classification accuracies were between 79.5% and 73%. 
For our future plans, we aim to do more studies to see how these classification rates can be improved.
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