
DOI: 10.4018/IJISMD.297630

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Efficient Cloudlet Allocation
to Virtual Machine to Impact
Cloud System Performance
Lizia Sahkhar, National Institute of Technology Meghalaya, India*

Bunil Kumar Balabantaray, National Institute of Technology Meghalaya, India

 https://orcid.org/0000-0002-2769-7122

Satyendra Singh Yadav, National Institute of Technology Meghalaya, India

 https://orcid.org/0000-0002-7891-6997

ABSTRACT

Performance is an essential characteristic of any cloud computing system. It can be enhanced
through parallel computing, scheduling, and load balancing. This work evaluates the connection
between the response time (RT) and virtual machine’s (VM’s) CPU utilization when cloudlets are
allocated from the datacenter broker to VM. To accentuate the RT and VM’s CPU utilization, a set
of 100 and 500 heterogeneous cloudlets are analyzed under hybridized provisioning, scheduling, and
allocation algorithm using CloudSim simulator. These include space shared (SS) and time shared
(TS) provisioning policy, shortest job first (SJF), first come first search (FCFS), round robin (RR),
and a novel length-wise allocation (LwA) algorithm. The experimental analysis shows that the RT
is the least when SJF is combined with RR allocation at 40.665 seconds, and VM’s CPU utilization
is the least when SJF is combined with LwA policy at 12.48 in all combinations of SS and TS
provisioning policy.

KEywoRDS
Cloud Computing, CloudSim Simulator, First Come First Search, Resource Allocation, Response Time, Round
Robin, Shortest Job First, Time Shared and Space Shared Scheduling Policy, VM’s CPU Utilization

INTRoDUCTIoN

Cloud computing paradigm is an internet-based model composed of an extensible and scalable
computing entity which requires minimal management effort and service provider interaction (Mell
& Grance, 2011). Cloud computing promotes availability, scalability, reliability and portability in
a computing system (Siegel & Perdue, 2012). The anytime-anywhere access policy of resources
provided by cloud computing environment combined with offered storage capacity has improved
the quality of service for the end-users to a great extend (Khaire, 2017). Likewise, cloud computing

https://orcid.org/0000-0002-2769-7122
https://orcid.org/0000-0002-7891-6997

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

2

improves market and enterprises by reducing initial investment and capital expenditure promoting
industrial specialization and resource utilization (Khaire, 2017).

Cloud computing makes the notion of “pay for what you use” or “infinite availability” that is
use as much as you want. Such kind of a service is applicable only when the backend of a system
is robust, proficient and flexible. One of the factors that drive the efficiency of a cloud computing
backend system can be seen in its virtualized environment (Kumar & Charu, 2015). The virtualized
infrastructure of cloud computing offers a virtual version of operating system, server, storage and
network resources to the cloud users thereby increases efficiency, throughput and overall cost-effective
(Vaezi & Zhang, 2017). Microsoft Azure and Amazon web services (AWS) are the most popular and
scalable cloud computing services (Kotas et al., 2018) offers to cloud users. Therefore, even though
different, cloud computing and virtualization share a close connection and a common bond. To sustain
service to cloud users, cloud service provider has to maintain the standard of quality service without
fail. For efficient performance, the main concern of any cloud computing system is balancing the
workload shared among its virtualized component. Proper scheduling and load balancing improves
response time, processing time, resource utilization, overall execution time, throughput, scalability
and associated overheads (Deepa & Cheelu, 2017). Enhancing scheduling and balancing technique
improves quality of cloud service and is an area which attracts the attention of many development
and research work throughout the globe.

Performance is an essential property of any cloud computing system. It determines the functional
efficacy and necessary improvements to harness the system performance (Jacob & Raj, 2019). Cloud
performance can be achieved through parallel computing, load balancing and job scheduling (Khaire,
2017) and should be should be complete, efficient and guaranteed. This paper delves into the ambit
of scheduling, load allocation and balancing techniques. Scheduling in cloud computing is a set of
policies to regulate which task of the computer system would be taken up. Load balancing technique,
on the other hand, is a process in which no node of a system remains in idle state while others are
over utilized. Load balancing can be static and dynamic in nature. In static load balancing, prior
knowledge about the node’s specification such as memory, bandwidth or processing elements, is
required, and using this information, the load distribution is distributed accordingly at compile time
(Deepa & Cheelu, 2017). Whereas, in dynamic load balancing, the load distribution happens at run
time and in this case, decisions to distribute the load between the heavy and a lighter node happen
dynamically (Deepa & Cheelu, 2017). Load balancing properties help to achieved prioritization and
efficient allocation of resources thereby contribute to cloud service and performance.

This paper assessed the performance of a cloud computing system with respect to response time
(RT) and VM’s CPU utilization. The analysis is done on a set of one hundred (100) and five hundred
(500) heterogeneous cloudlets when the cloudlets are allocated from the data centre to the virtual
machine using CloudSim simulator. The performance is evaluated by incorporating a hybridization of
scheduling, allocation and load balancing algorithm under various environmental setups. The major
contributions of this work are as follows:

1. To appraise a connection between RT and VM’s CPU utilization by each task request or cloudlet
when the length or the instruction size of the cloudlet are arranged in ascending order of its
length or when they are allocate in first come first serve basis.

2. Evaluate latency and utilization through RT and VM’s CPU utilization by each cloudlet under
various environmental combinations of scheduling, load balancing and allocation technique. These
includes space-shared (SS) and time-shared (TS) provisioning policy, first come first serve (FCFS),
shortest job first (SJF), round robin (RR) and a novel length-wise allocation (LwA) algorithm.

3. Hybridized the evaluation technique such that each techniques takes into account the combination
of SS and TS provisioning policy at the cloudlet and host level, FCFS or SJF algorithm to schedule
the workload and finally with RR or LwA policy to allocate the cloudlets from the datacenter
broker to the VM.

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

3

Following this introduction, the rest of this paper is organized as follow. Section 2 reviewed the
related works and development in the subject. The scheduling policy of the CloudSim simulator is
described in section 3. Section 4, present the objectives of this work, methodology and algorithm
of the cloudlet allocation policy. The simulation setup and experimental evaluation of the proposed
algorithms is presented under section 5 and finally section 6 concludes this paper.

BACKGRoUND

The flexible nature of cloud computing has increase the demand for its service tremendously. This
lead to the mushrooming of Cloud service providers (CSP) which place cloud users in dilemma to
choose CSP that satisfy the quality of service without fail. Saha et al. (2021) introduces a hybrid
multi-criteria decision-making (HMCDM) model which helps cloud users to avoid such conflict
by improving decision making and select the best CSP or alternative. HMCDM uses both analytic
network process (ANP) and VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) to
improve best decision making model among cloud users.

Hlaing and Yee (2019) uses CloudSim toolkit to allocate the incoming task requests from the
data center broker to the VM in a cloud computing environment using a static independent task
scheduling on virtualized servers. The allocation is based on resource availability such as processing
power, processing elements and cost among others. The simulation minimizes execution cost and
maximizes total execution time as compare to SJF and FCFS algorithm.

Shi et al. (2021) uses Bsufferage algorithm to analyze the performance of cloud task scheduling
using CloudSim package. Bsufferage demonstrate improvememt in their completion time, throughput
and load balancing of resources as compared to classical uffrage problem.

Roy et al. (2017) focus on finding the best cloudlet allocation technique to VM. They proposed a
three-phase cloudlet allocation algorithm known as range wise busy checking 2-way balanced (RB2B).
In this case, the advanced datacentre broker (ADCB) select a type of virtual machine for the cloudlet
based on the cloudlet length and the range accepted by the VM. If no suitable VM is found, the ADCB
will allocate the cloudlet to a local queue of the VM with the earliest finish time that satisfies local
queue length limitation and balance threshold. On analysis, this scheme outperform state-of-the-art
scheduling in term of waiting time and turnaround time besides other parameters.

Chien et al. in (2016) evaluate the average RT and processing time in TS and SS scheduling
cases. The RT is based on the capacity, which is defined as the average processing power of the core
elements of the VM, and the execution finish time. Upon evaluation, this work finds that the average
RT and processing time is at its best when the cloudlet scheduler is TS and worst when it is SS.

Sujana et al. in (2020) work on minimizing the makespan of the schedule to achieve optimal
scheduling techniques. This technique introduces a cost prediction based optimal secured scheduling
algorithm to allocate the tasks to the most likely VM with security coverage. The algorithm combines
heuristic cost prediction matrix and the fuzzy-based decision model to decide on the VM selection.
WorkflowSim toolkit, an extension of CloudSim, is used to simulate the experiment and the result
thus found yields efficient VM secured scheduling with comparable time complexity.

Kumar and Silambarasan (2019) uses MATLAB and Cloudsim to enhance the performance of
cloud parameters such as CPU utilization, execution of user’s request and remote storage of patient’s
digital information in an IOT healthcare setup. This is done by optimizing the resources of the VMs
in cloud environment through optimization techniques such as particle swarm optimization, artificial
bee colony optimization and cuckoo search algorithm. Using these techniques, the execution time
has improved and become more efficient to process and handle real-time requests for the benefit of
healthcare in the future.

Himthani and Dubey (2019) analyze the performance of various cloud parameters in TS and SS
provisioning policy at the host and VM level. In their observation, waiting time is more in TS rather
than SS scheduling policy. This is because in SS scheduling, if a cloudlet is assigned to a VM for

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

4

execution, VM will dispatch that cloudlet only after executing it completely whereas in case of TS
scheduling multiple cloudlets execute over a single VM and hence waiting time is more. They also
encounter that the datacentre debt is less in SS and higher side in TS environments. This is because
in case of SS’s VM scheduling, the numbers of VM initialized are less in number and the resources
are inadequate comparatively. While in case of TS’s VM scheduling, numbers of VM initialized are
more as compared to SS scheduling and hence the datacentre debt is higher because more utilization
of resources has been made by the executing VM.

Executing cloudlets on VM require high computational resource and hence cannot scale well.
Recent advances in serverless computing make them appropriate for executing workloads on cloudlet.
Nithya et al. (2020) introduces a software-defined cyber foraging framework (SDCF) for executing
workloads on cloudlets by designing a light-weight wasm runtime for enabling serverless functions
on Web-assembly that can be executed at multiple points or almost anywhere. Base on this study,
resource allocation and scheduling using SDCF reduce latency and exhibit better performance in
term of cost, energy and mobility pattern for computing resources.

Potluri et al. (2020) aims to improves data analytics and processing by bringing automation
controller of IOT healthcare devices at fog network. This can be implemented by incorporating
efficient task scheduling model and resource allocation policies in fog computing such that tasks can
be scheduled efficiently and reducing processing time and cost. Current research work by Barik et al.
(2021) introduces GeoBD2 to handles unnecessary storage of big data produced by IoT devices. This
is done so by applying geospatial de-duplication scheme on fog assisted cloud computing framework
where processing and storage of real time geospatial data are efficiently handled.

Pande et al. (2020) focuses on deploying VM with migration technique in vehicular clouds (VCs)
to schedule and load balance the underutilized resources of smart vehicles when they sit idle in parking
lot, driveways, roadways and streets. A smart cloud service management (SCSM) system is propose
to migrate VCs services from hosted VMs of idle smart vehicle to other potential vehicles. To test
the efficiency of SCSM system, round-robin (RR) and deficit weighted RR (DWRR) are applied and
SCSM perform more efficiently as compared to its counter-part.

To address average resource utilization in vehicular network, Bhoi et al. (2019) focus on issues
related to storage as a service (StaaS) in vehicular network by introducing a novel task scheduling
policy for heterogeneous vehicular cloud environment (TSP-HVC). TSP-HVC reduces the makespan
and maximizes the average resource utilization. Results show that TSP-HVC performs better than
min– min and max–min. On the other hand, a large number of VM migrations can lead to wastage of
energy and time, which ultimately degrades the performance of the VMs. Pande et al. (2021) introduces
resource utilization-aware VM migration (RU-VMM) algorithm to minimize the consumption of
energy by efficiently managing the VM resources. The algorithm uses number of metrics to assess the
performance. RU-VMM is found to be more efficient than threshold-based algorithm and cumulative
sum (CUSUM).

CLoUDSIM SCHEDULING PoLICy

Cloud computing is a thriving research area as it enhances the quality of service (QoS), better
performance and ensure continued services. Cloud computing research requires elaborate and detailed
process, and experiments are subjected to repetition a few many times. Not only that, the experiments
may depend on some other external sources and may need to scale up to meet the demand of the
research. Such a demand may shoot up the budget and is cost-ineffective. The best option for such
situation is to opt for a good simulator. Nowadays, there are strong and robust simulators that can
simulate a real cloud environment portraying networks, storage, hosts, VMs, task requests, servers,
various applications and services. They run in a controlled environment where experiments can be
conducted and easily repeated (Buyya et al., 2009). Simulated readings, results and analysis are also
generated on the spot. Cloudsim, an event driven simulator (Suryateja, 2016), is one such simulators

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

5

where one can channels cloud computing research. The simulated data such as execution time, CPU
utilization, response time and other parameters can be extracted facilitating more scope for strong
analysis and evaluation (Buyya et al., 2009; Suryateja, 2016).

CloudSim provisions two scheduling policy by default. One is the VM scheduling policy at the
host level and the other is cloudlet scheduling policy at the VM level (Calheiros et al., 2009, 2011).
The VM and the cloudlet’s scheduling policy can be classified in terms of space shared (SS) and time
shared (TS) provisioning policy as under:

1. VM’s space shared (SS) scheduling: It is a VM’s allocation policy that allocates one or more
processing elements (Pes) to a VM and does not allow sharing of Pes. If the PE is allocated to
a VM, it cannot be accessed by other VM until the current VM releases it (Cloudsim.org, 2013;
Himthani & Dubey, 2019).

2. M’s time shared (TS) scheduling: It is a VM’s allocation policy that allocates one or more PE
to a VM and allows sharing of Pes by multiple VMs (Cloudsim.org, 2013). If a PE can fulfil the
requirements of multiple VMs simultaneously then multiple VMs will execute in parallel over
the same PE or set of Pes (Himthani & Dubey, 2019).

3. Cloudlet’s space shared (SS) scheduling: The VM in cloudlet’s SS scheduling policy takes into
consideration that there will be only one cloudlet per VM (Cloudsim.org, 2013). If a cloudlet is
assigned to a VM for execution, other cloudlets will be in a waiting list and no other cloudlet will
be executed by that VM until the current cloudlet is not dispatched by the VM. Multiple cloudlets
cannot execute in parallel over a VM, even if the VM is capable enough to do so (Himthani &
Dubey, 2019).

4. Cloudlet’s Time Shared (TS) Scheduling: In cloudlet’s TS scheduling policy the VM executes
the cloudlets in a time-shared manner. In this case, multiple cloudlets can execute in parallel over
a single VM. This will be possible, if the VM has computing capabilities large enough that it can
execute multiple cloudlets in parallel over it (Cloudsim.org, 2013; Himthani & Dubey, 2019).

For implementing the scheduling policy, VM and cloudlet scheduler operate together in the
following combination (Chien et al., 2016; Calheiros et al., 2011):

1. SS-SS: That is VM is SS at the host level and cloudlet is SS at the VM level respectively.
2. SS-TS: That is VM is SS at the host level and cloudlet is TS at the VM level respectively.
3. TS-SS: That is VM is TS at the host level and cloudlet is SS at the VM level respectively.
4. TS-TS: That is VM is TS at the host level and cloudlet is TS at the VM level respectively.

Effect of SS and TS Scheduling Policy
To explain the effect of SS and TS scheduling policy, let us take into consideration a dual core host
machine. Each core represents a processing element, therefore a dual core machines has two PE. This
host machine hosted two VMs, VM1 and VM2 of two cores each. Each VM hosted four tasks units
which demand one core each. As each VM requires two PE and each cloudlet demand one PE, the
first virtual VM1 hosted tasks t1 to t4 and VM2 hosted tasks t5 to t8 respectively:

1. Effect of SS-SS Scheduling Policy: When the scheduling policy for VM and cloudlet is SS, then
assignment of the cores and execution of the cloudlets is carried out in a SS manner. When VM
is SS, the space is given and possess by the first VM and the VM2 will get its turn only if VM1
completes its execution. In this example, VM1 got activated first and hence the core is assigned
to it first. VM2 will get activated only after VM1 finishes the execution of the cloudlets. Since
the cloudlet is also provisioned in SS policy, at a time, two cloudlets can run simultaneously in
the VM as each cloudlet requires only one core, the remaining cloudlet wait in execution queue

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

6

for their turn (Calheiros et al., 2011). Figure 1 illustrates the effects of VMs and cloudlets SS
Scheduling Policy.

2. Effect of TS-SS Scheduling Policy: In this case, the assignment of the cores to the VM happen
on TS and execution of the cloudlets on SS. That is each VM’s processing core receives a certain
amount of time slice and during that time frame, the cloudlet inside each VM is distributed in a
space-shared manner. The VMs are switched between each other as per the time slice assigned.
However, next task will be processed only if the previous task is completed. As the cloudlet
scheduler is SS, at a time only one task is actively using the processing core. Since, the cores
are shared, the amount of processing power available to a VM is determined by calculating VMs
that are active on a host (Calheiros et al., 2011) as can be seen in Figure 2.

3. Effect of SS-TS Scheduling Policy: When the VM scheduling policy is SS and cloudlet
scheduling policy is TS, then space priority is given to current VM and the next VM will get
activated only after current VM finishes the execution of the task unit. However, during a VM
lifetime, all the tasks assigned to it are dynamically context switched during their life cycle
(Calheiros et al., 2011) as can be seen in Figure 3.

4. Effect of TS-TS Scheduling Policy: When the VM and cloudlet scheduling policy is TS, a time
slice is assigned to the VMs and the processing power is concurrently shared by the VMs. In
turn, the cloudlet in the VM distributed this VM’s allotted time among themselves and execute
in parallel over a single VM accordingly as can be seen in Figure 4. In this case, there are no
queuing delays associated with task units (Calheiros et al., 2011).

Figure 1. Effect of VM’s and Cloudlet’s SS Scheduling Policy

Figure 2. Effect of VM’s TS and cloudlet’s SS Provisioning Policy

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

7

oBJECTIVES AND METHoDoLoGy oF THE PRoPoSED woRK

The main aim of this work is to assess and compare the performance of the response time (RT) and
VM’s CPU utilization in a cloud computing environment using CloudSim simulator.

objectives
The main objectives of this work are:

1. To distribute the workload which comprises of a set of 100 and 500 heterogeneous cloudlets from
the datacenter broker to VM using a hybrid provisioning, scheduling and allocation technique
as can be seen in Table 1 and Figure 5.

2. To assessed and analyzed the performance of a cloud computing system with respect to response
time and VM’s CPU utilization by each cloudlet in all these hybrid environmental setup as seen
in Table 1.

Cloudlet, in this study, represents a task unit or application service (Suryateja, 2016; Calheiros
et al., 2009, 2011).

Figure 3. Effect of VM’s SS and cloudlet’s TS Provisioning Policy

Figure 4. Effect of VM’s and cloudlet’s TS Scheduling Policy

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

8

METHoDoLoGy AND ALGoRITHM oF THE CLoUDLET ALLoCATIoN PoLICy

Round Robin Allocation Policy
In RR allocation technique, all cloudlets are allocated to available VM in a cyclical fashion (Roy et
al., 2017) as seen in Table 2. Algorithm 1 illustrates the allocation scheme for 500 cloudlets which is
implemented in the submitCloudlets() function of the datacentre broker in the Cloudsim simulator.

Table 1. Experimental conditions to assess the response time and VM’s CPU utilization

Cases VM Scheduling Policy Cloudlet Scheduling
Policy Cloudlet Allocation Technique

Case 1 SS SS
FCFS & RR; FCFS & LwA

SJF & RR; SJF & LwA

Case 2 SS TS
FCFS & RR; FCFS & LwA

SJF & RR; SJF & LwA

Case 3 TS SS
FCFS & RR; FCFS & LwA

SJF & RR; SJF & LwA

Case 4 SS SS
FCFS & RR; FCFS & LwA

SJF & RR; SJF & LwA

Figure 5. The allocation of cloudlet from the datacentre to the VM under various scheduling and allocation algorithm

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

9

Algorithm 1. submitCloudlets() for RR Allocation

Input: Cloudlet list
Output: Cloudlet submitted in RR fashion
BEGIN
 INITIALISATION
 SET vmIndex = 0
 SET VM = vm
 END INITIALISATION
 READ CloudletList
 READ VMList
 FOR Cloudlet =1 TO n
 IF Cloudlet != vm THEN
 Generate vmIndex from VMCreatedList
 ELSE
 Get VMId assign to the Cloudlet
 END IF
 SET Cloudlet = VMId
 SUBMIT VMId
 //Set the integrity of the RR Cloudlet Allocation
 //by updating next vmIndex
 vmIndex=(vmIndex+1)%sizeofVMList
 UPDATE CloudletSubmittedList
 END FOR
END

Length-wise Allocation Policy
LwA policy, is a novel algorithm, in which cloudlet length are categorized and designed for each
VM as can be seen on Table 3. The incoming cloudlets are allocated to the VM base on the cloudlet
length slab that has been designed for it. Algorithm 2 illustrates LwA policy and is implemented in
the submitCloudlets() function of the datacentre broker in CloudSim simulator.

Table 2. Round robin allocation scheme for 500 cloudlets

Hosts VM Cloudlet

H1
VM0 C={0,10,20,30,40, 50……N}, such that N ={10–x - 1) | x ∈ ℕ and 1 ≤ x ≤ 50}

VM5 C ={5,15,25,35,45, 55…...N}, such that N={5(–x - 1) | x ∈ ℕ and 1 ≤ x ≤ 50}

H2
VM1 C ={1,11,21,31,41, 51…...N}, such that N={10–x - 1) + 1 | x ∈ ℕ and 1 ≤ x ≤ 50}

VM6 C ={6,16,26,36,46, 56…...N}, such that N={5(–x - 1) + 1| x ∈ ℕ and 1 ≤ x ≤ 50}

H3
VM2 C={2,12,22,32,42 …...N}, such that N={10–x - 1)+2 | x ∈ ℕ and 1 ≤ x ≤ 50}

VM7 C={7,17,27,37,47, 57…...N}, such that N={5(–x - 1) + 2 | x ∈ ℕ and 1 ≤ x ≤ 50}

H4
VM3 C ={3,13,23,33,43, 53…...N}, such that N={10–x - 1) + 3 | x ∈ ℕ and 1 ≤ x ≤ 50}

VM8 C ={8,18,28,38,48, 58…...N}, such that N={5(–x - 1) + 3 | x ∈ ℕ and 1 ≤ x ≤ 50}

H5
VM4 C ={4,14,24,34,44, 54…...N}, such that N={10–x - 1) + 4| x ∈ ℕ and 1 ≤ x ≤ 50}

VM9 C ={9,19,29,39,49, 59…...N}, such that N={5(–x - 1) + 4| x ∈ ℕ and 1 ≤ x ≤ 50}

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

10

Algorithm 2. submitCloudlets() for Length-wise Allocation Policy

Input: Cloudlet list, vm list
Output: Cloudlet submitted list in LwA
BEGIN
 INITIALISATION
 SET vmIndex = 0
 SET VM as vm
 END INITIALISATION
 FOR Cloudlet = 1 TO n
 IF cloudletLength >=10000 && cloudletLength <=10200
 vmIndex=0;
 ELSE IF cloudletLength >=10200 && cloudletLength <=10400
 vmIndex=1;
 ELSE IF cloudletLength >=10400 && cloudletLength <=10600
 vmIndex=2;
 ELSE IF cloudletLength >=10600 && cloudletLength <=10800
 vmIndex=3;
 ELSE IF cloudletLength >=10800 && cloudletLength <=11000
 vmIndex=4;
 ELSE IF cloudletLength >=11000 && cloudletLength <=12000
 vmIndex=5;
 ELSE IF cloudletLength >=12000 && cloudletLength <=14000
 vmIndex=6;
 ELSE IF cloudletLength >=14000 && cloudletLength <=16000
 vmIndex=7;
 ELSE IF cloudletLength >=16000 && cloudletLength <=18000
 vmIndex=8;
 ELSE IF cloudletLength >=18000 && cloudletLength <=12000
 vmIndex=9;
 // if user didn’t bind this cloudlet and it has not been executed yet
 IF CloudletVMID == -1 THEN

Table 3. Cloudlet length slabs assign to VM

Hosts VM Cloudlet Length (10000-12000)

H1
VM0 10000 – 10200

VM5 11001 - 11200

H2
VM1 10201 – 10400

VM6 11201 - 11400

H3
VM2 10401 – 10600

VM7 11401 - 11600

H4
VM3 10601 – 10800

VM8 11601 - 11800

H5
VM4 10801 – 11000

VM9 11801 - 12000

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

11

 Generate vmIndex from VMCreatedList
 ELSE
 Submit cloudlet to specific VMId
 IF vm ==NULL
 VM was not created, print error message
 END IF
 END IF
 END IF
 UPDATE CloudletSubmittedList
 END FOR
END

VM’s CPU Utilization
Load balancing is measured in term of load and load performance. Load is assessed by the CPU queue
index and CPU utilization while performance is assessed in term of the average response time of
(Chien et al., 2016). In this study, performance of virtual machine is measured by the consumption of
VM’s CPU by each cloudlets at that current time (Ahmad & Khan, 2019; Cloudsim.org, 2013). It is
calculated using Equation 1 and measured in percentage. Algorithm 3 highlights the various steps of
VM’s CPU utilization which is implemented in the submitCloudlets() function of the datacenter broker:

currentCPU vm getTotalUtilizationOfCpu CloudSim clock= ⋅ ⋅(()) (1)

Algorithm 3. Vms_Cpu_Utilization()

Input: VM’s CPU utilization by each cloudlet
Output: Total VM’s CPU usage in percentage at a current time (t)
BEGIN
 INITIALISATION
 SET Vm = vm
 SET currentCPU=0
 SET currentCPUusage = 0
 END INITIALISATION
 IF vm != null
 UPDATE vm Processing Time
 currentCPU =
 vm.getTotalUtilizationOfCpu(CloudSim.clock());
 currentCPUusage=currentCPU * 100
 PRINT currentCPUUsage
 END IF
END

Response Time
Response time is the summation of the processing time and the cost of the task transmission time,
queued through the network nodes (Chien et al., 2016). According to (Chien et al., 2016), the response
time is calculated as:

ResponseTime FT AT TD= − + (2)

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

12

where, FT represents the finish time of tasks, AT is the arrival time of the tasks and TD is the
transmission delay.

If the scheduling policy is SS-SS or TS-SS, according to (Calheiros et al., 2011), FT is calculated as:

FT est p
rl

Capacity cores p
= +()

* ()
 (3)

where est(p) is the estimated start time of the cloudlet p; rl is the total number of instructions of the
task p; core(p) is the number of core or processing elements required by the cloudlet p and Capacity
is the average processing power of a core for a cloudlet p.

If the scheduling policy is SS-SS, then according to (Calheiros et al., 2011), capacity is calculated as:

Capacity
Cap i

npi

np
=

=∑
()

1
 (4)

where Cap(i) is the processing power of the core ‘i’, np is the actual number of core ‘i’ that the host
is considered.

If the scheduling policy is TS-SS, then according to (Chien et al., 2016), capacity is calculated as:

Capacity
Cap i

Max cores j np

i

np

jk

= =

==

∑
∑∑

()

((),)

1

11

γβ
 (5)

where β is the number of VM in the current host, γ is the number of cloudlets running simultaneously
in VMk; core(j) is the number of core that cloudlet j needs.

If the scheduling policy is SS-TS or TS-TS, according to (Calheiros et al., 2011), FT is calculated as:

FT ct
rl

Capacity cores p
= +

* ()
 (6)

where ct represents the current simulation time.
If the scheduling policy is SS-TS, according to (Calheiros et al., 2011), capacity is calculated as:

Capacity
Cap i

Max cores j np

i

np

j

= =

=

∑
∑

()

((),)

1

1

α
 (7)

where α is the total number of cloudlets in VM that contain the cloudlet; core(j) is the number of
core that cloudlet j needs.

If the scheduling policy is TS-TS, then according to (Chien et al., 2016), capacity is calculated as:

Capacity
Cap i

Max cores j np

i

np

j

= =

=

∑
∑

()

((),)

1

1

δ
 (8)

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

13

where δ is the total cloudlet of the considered host.

Cloud Parameters
The simulation is conducted in CloudSim simulator and algorithms are programmed in Java language
using CloudSim library (Buyya et al., 2009; Calheiros et al., 2011; Ahmad & Khan, 2019). The
simulations include one datacentre, five hosts, two VMs for each host, a total of ten VMs in all. The
dataset for the experiment includes one hundred (100) and five hundred (500) heterogeneous cloudlets.
The response time and VM’s CPU utilization are evaluated on these heterogeneous cloudlet dataset.
The cloud parameters are highlighted in the Table 4.

SIMULATED EXPERIMENTAL ANALySIS AND RESULTS

Experimental Analysis and Graphical Representation of Simulated obtained Result
See Figures 6-15.

DISCUSSIoN

The main advantage of this proposed work is that through the hybridisation of the provisioning,
scheduling and allocation algorithm while allocating the cloudlet from the datacenter broker to
the VM, we are able to present detailed analysis and findings from different angle that support for
efficient cloudlet allocation, which have not seen in existing work. The thorough discussion of the
analysis can be seen below.

Base on the analysis, the values generated in various environmental setup did not much difference
in term of response time and VM’s CPU utilization. This can be seen for both cases of one hundred

Table 4. Cloud parameters

Entity Cloud Parameter Value

Datacenter Number of datacenter 1

Host

Number of host 5

Number of PE on host 4

MIPS of PE 10000

RAM (in MB) 4096

Storage (in MB) 1000000

Bandwidth (BW) (in Gbps) 10000

VM

Number of VM 10 (2 per Host)

Number of PE on VM 1

MIPS (Million Instruction Per Second) of PE 10000

RAM (in MB) 1024

Bandwidth 1024

Cloudlet/Task

Number of cloudlet 100, 500

Length of cloudlet (in MI) 10000-12000 MI

No of PE requirement 1

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

14

Figure 6. RT and CPU Utilization in all cases of cloudlet’s and VM’s SS and TS provisioning policy for 100 and 500 heterogeneous
number of cloudlets

Figure 7. The simulated allocation of cloudlet to VM representing in FCFS & RR allocation algorithm under SSSS scheduling policy

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

15

Figure 8. The simulated allocation of cloudlet to VM representing in FCFS & LwA allocation algorithm under SSSS scheduling policy

Figure 9. The simulated allocation of cloudlet to VM representing in SJF & RR allocation algorithm under SSSS scheduling policy

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

16

(100) and five hundred (500) cloudlets. However minimal the case maybe, following are the discussions
on the why the response time and VM’s CPU utilization behave the way they are:

1. General performance as compare to SS and TS scheduling policy:
a. The analysis shows better performance and cost benefit when SS scheduling policy is assigned

to the cloudlet at the VM level rather than when TS scheduling policy is assigned to the
VM at the host level (Himthani et al., 2019). As seen in Figure 13, the average response
time varies from 28.94 secs in SSSS, to 28.99 in TSSS, to 54.36 in TSTS to 54.67 secs in

Figure 10. The simulated allocation of cloudlet to VM representing in SJF & LwA allocation algorithm under SSSS scheduling policy

Figure 11. The effect of the response time when 100 and 500 cloudlets are scheduled in all cases of VM’s and cloudlet’s SS and
TS Provisioning Policy and other allocation technique

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

17

Figure 12. The effect of the VM’s CPU Utilization when 100 and 500 cloudlets are scheduled in all cases of VM’s and cloudlet’s
SS and TS Provisioning Policy and other allocation technique

Figure 13. Overall comparison of the average RT and VM’s CPU Utilization in all cases of SS and TS provisioning policy

Figure 14. Overall comparison of the average response time when 500 cloudlets are scheduled using SJF & RR, FCFS & RR,
FCFS & LwA and SJF & LwA techniques

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

18

SSTS. Whereas, each cloudlet utilizes the VM’s CPU by 0.97% in SSSS, to 0.98% in TSSS,
to 24.36% in TSTS and 24.52% in SSTS.

b. SSSS and TSSS provisioning policy shows least RT with an increase of 46.87% as compare
to TSTS and SSTS. This is because when the cloudlets are assigned in a SS manner, the
processing elements (PEs) in the VM are not shared and the VM will dispatch that cloudlet
only after executing it completely. Because of this behaviour, VM consume less CPU
resources of about 96.01% lesser in SSSS and TSSS as compare to TSTS and SSTS as can
be seen in Figure 11, 12 and 13.

c. SSTS and TSTS provisioning policy shows more RT. This is because when the cloudlets are
assigned to VM in a TS manner, PEs in the VM are shared and multiple cloudlets are executing
over a single VM, hence the waiting time is more which increases the RT. For the same reason,
utilization of CPU resources by the VM is more as compare to SSSS and TSTS.

2. Performance as compare to various allocation policy implemented:
a. The average RT and VM’s CPU Utilization behave differently in different environmental

conditions. Arranging in ascending order of performance SJF and RR exhibit good performance
at 40.665 secs followed by FCFS & RR and FCFS & LwA at 41.2 and 42.475 secs. The least
performance is given by SJF & LwA at 42.6275 secs. Comparing between the least and best,
SJF with RR is 4.6% faster as compare to SJF & LwA as seen in Figure 14.

b. The cost benefit factor can be quantified based on utilization of resources. Increase CPU
utilization increases risk of latency. In this work, VM’s CPU Utilization is affected in different
environmental setup. Percentage-wise SJF with LwA utilizes least resources at 12.48%
followed by SJF & RR and FCFS & RR both at 12.74%. The highest usage can be seen in
FCFS with LwA at 12.9%. Comparing between the least and the highest usage, there is an
increase of about 3.26% of VM’s CPU Utilization between SJF with LwA and FCFS with
LwA as seen in Figure 15.

CoNCLUSIoN

The analysis of this work concludes that the length of the cloudlet and how they are scheduled and
allocate to the virtual machine play a major role in determining cost involved and performance. As can
be seen, the system exude better performance when SS scheduling policy is assigned to the cloudlet
at the VM level rather than when TS scheduling policy is assigned to the VM at the host level. Also,

Figure 15. Overall comparison of the average VM’s CPU Utilization when 500 cloudlets are scheduled using SJF & RR, FCFS &
RR, FCFS & LwA and SJF & LwA techniques

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

19

the SJF along with RR allocation policy shows least RT in all cases of SS and TS provisioning policy
for any number of cloudlet. This is because the length of the cloudlet is arranged in ascending order
before allocating them to the VM in cyclical RR fashion. However, the performance in FCFS along
with RR allocation policy drags down a bit as the length of the cloudlet is not considered even though
the cloudlets are allocated to VM in a cyclical RR fashion. In LwA policy, the VM are programmed
to take the incoming cloudlet request base on the slab designed for it. Even though the cloudlet is
allocated to VM in FCFS or SJF basis, its length and the slab that it belongs to has to be considered
before allocating it to VM. Hence more waiting time involves, making this environmental setup
slower as compare to the other arrangement. One prominent analysis can be seen in the case of SJF
with LwA. SJF with LwA utilizes least VM’s CPU, hence very cost effective, but however, shows
highest RT which causes more delay. This is the mainly because of the impact of LwA policy. When
the cloudlet are assigned from the data center to the VM in SJF with LwA policy, the ready time and
processor queuing in the VM decreases, which leads to minimum usage of CPU by each cloudlet in
the VM. This analysis contradicts each other in terms of cost and performance. A balance has to be
created between utilization and latency which is one of the future scope in this work. Further, we can
enhance this work by focussing on contemporary technique, resource migration and green computing
which is a demand at present.

ACKNowLEDGMENT

The publisher has waived the Open Access Processing fee for this article.

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

20

REFERENCES

Ahmad, M. O., & Khan, R. Z. (2019). Cloud computing modeling and simulation using CloudSim environment.
International Journal of Recent Technology and Engineering, 8(2)

Angela Jennifa Sujana, J., Revathi, T., & Joshua Rajanayagam, S. (2020). Fuzzy-based security-driven
optimistic scheduling of scientific workflows in cloud computing. Journal of the Institution of Electronics and
Telecommunication Engineers, 66(2), 224–241. doi:10.1080/03772063.2018.1486740

Barik, R. K., Patra, S. S., Patro, R., Mohanty, S. N., & Hamad, A. A. (2021, March). GeoBD2: Geospatial Big
Data Deduplication Scheme in Fog Assisted Cloud Computing Environment. In 8th International Conference
on Computing for Sustainable Global Development (INDIACom) (pp. 35-41). IEEE.

Bhoi, S. K., Panda, S. K., Ray, S. R., Sethy, R. K., Sahoo, V. K., Sahu, B. P., Nayak, S. K., Panigrahi, S., Moharana,
R. K., & Khilar, P. M. (2019). TSP-HVC: A novel task scheduling policy for heterogeneous vehicular cloud
environment. International Journal of Information Technology, 11(4), 853–858. doi:10.1007/s41870-018-0148-6

Buyya, R., Ranjan, R., & Calheiros, R. N. (2009, June). Modeling and simulation of scalable Cloud computing
environments and the CloudSim toolkit: Challenges and opportunities. In 2009 international conference on high
performance computing & simulation. IEEE.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011). CloudSim: A toolkit for
modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Software, Practice & Experience, 41(1), 23–50. doi:10.1002/spe.995

Calheiros, R. N., Ranjan, R., De Rose, C. A., & Buyya, R. (2009). Cloudsim: A novel framework for modeling
and simulation of cloud computing infrastructures and services. arXiv preprint arXiv:0903.2525.

Chien, N. K., Son, N. H., & Loc, H. D. (2016, January). Load balancing algorithm based on estimating finish
time of services in cloud computing. In 18th International Conference on Advanced Communication Technology
(ICACT) (pp. 228-233). IEEE.

CloudSim 3.0 API. (2013). The Cloud Computing and Distributed Systems (CLOUDS) Laboratory, The University
of Melbourne. http://www.cloudbus.org/cloudsim/doc/api/index.html

Deepa, T., & Cheelu, D. (2017, August). A comparative study of static and dynamic load balancing algorithms in
cloud computing. In International Conference on Energy, Communication, Data Analytics and Soft Computing
(ICECDS) (pp. 3375-3378). IEEE. doi:10.1109/ICECDS.2017.8390086

Himthani, P., & Dubey, G. P. (2019). Performance Analysis of Space Shared Scheduling and Time Shared
Scheduling in CloudSim. International Journal of Recent Development in Engineering and Technology, 8.

Hlaing, Y. T. H., & Yee, T. T. (2019, November). Static independent task scheduling on virtualized servers in
cloud computing environment. In International Conference on Advanced Information Technologies (ICAIT) (pp.
55-59). IEEE. doi:10.1109/AITC.2019.8920865

Jacob, A., & Raj, C. (2019). Testing Methodologies for Cloud Performance. International Journal of Innovative
Technology and Exploring Engineering, 8.

Khaire, G. P. (2017). Introduction to Cloud Computing. https://www.slideshare.net/prakashgkhaire/chapeter-2-
introduction-to-cloud-computing-79674472

Kotas, C., Naughton, T., & Imam, N. (2018, January). A comparison of Amazon Web Services and Microsoft
Azure cloud platforms for high performance computing. In IEEE International Conference on Consumer
Electronics (ICCE) (pp. 1-4). IEEE. doi:10.1109/ICCE.2018.8326349

Kumar, P., & Silambarasan, K. (2019). Enhancing the performance of healthcare service in IoT and cloud using
optimized techniques. Journal of the Institution of Electronics and Telecommunication Engineers, 1–10. doi:1
0.1080/03772063.2019.1654934

Kumar, R., & Charu, S. (2015). An importance of using virtualization technology in cloud computing. Global
Journal of Computers & Technology, 1(2).

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. Academic Press.

http://dx.doi.org/10.1080/03772063.2018.1486740
http://dx.doi.org/10.1007/s41870-018-0148-6
http://dx.doi.org/10.1002/spe.995
http://www.cloudbus.org/cloudsim/doc/api/index.html
http://dx.doi.org/10.1109/ICECDS.2017.8390086
http://dx.doi.org/10.1109/AITC.2019.8920865
https://www.slideshare.net/prakashgkhaire/chapeter-2-introduction-to-cloud-computing-79674472
https://www.slideshare.net/prakashgkhaire/chapeter-2-introduction-to-cloud-computing-79674472
http://dx.doi.org/10.1109/ICCE.2018.8326349
http://dx.doi.org/10.1080/03772063.2019.1654934
http://dx.doi.org/10.1080/03772063.2019.1654934

International Journal of Information System Modeling and Design
Volume 13 • Issue 6

21

Lizia Sahkhar is currently a research scholar in the department of Computer Science & Engineering at National
Institute of Technology, Meghalaya (India), where she is working towards her PhD degree. She is also serving
as an Assistant Professor at Lady Keane College, Shillong. She received her Masters degree in Information
Technology from Sikkim Manipal University, Sikkim, in 2009. Her research interest includes Cloud Computing,
Edge Computing and Internet of Things.

Bunil Kumar Balabantaray has received his B. Tech. in Information Technology and M.Tech. in Computer Science
and Engineering from BPUT, India in the year of 2005 and 2010 respectively. He has completed his PhD from
National Institute of Technology Rourkela, India in the year of 2017. Currently he is working as an Assistant
Professor in the department of Computer Science and Engineering, National Institute of Technology, Meghalaya.
He has 15 years of teaching and research experience. He is serving as reviewer of many journals of national and
international repute. His area of research includes IoT, Cloud Computing, Computer Vision, Robotic Vision and
Biomedical Image Processing.

Satyendra Singh Yadav received his Bachelor of Engineering in Electronics and Communication from Rajiv Gandhi
Proudyogiki Vishwavidyalaya (RGPV) a State University of Madhya Pradesh (India), in 2012. In 2018 he received
his PhD from National Institute of Technology, Rourkela (India). He was with Institutode Engenhariade Sistemase
Computadores Investigação e Desenvolvimento (INESC-ID), Instituto Superior Técnico Lisbon, Portugal under
India-EU NAMASTE mobility project during 2015 to 2016. He is currently working as an Assistant Professor in
the department of ECE at National Institute of Technology Meghalaya (India). Prior to joining NIT Meghalaya
in Oct. 2019, he has worked as a full-time faculty member at IIITDM Kurnool and IIIT Vadodara. He is actively
serving as a reviewer for many IEEE, Springer journals and conferences. His research interests include wireless
communication, Resource allocation, Parallel computing, Machine learning, as well as GPU acceleration for 5G
and beyond wireless systems. Since 2014, he has been a member of IEEE.

Nithya, S., Sangeetha, M., Prethi, K. A., Sahoo, K. S., Panda, S. K., & Gandomi, A. H. (2020). SDCF: A
software-defined cyber foraging framework for cloudlet environment. IEEE eTransactions on Network and
Service Management, 17(4), 2423–2435. doi:10.1109/TNSM.2020.3015657

Pande, S. K., Panda, S. K., Das, S., Alazab, M., Sahoo, K. S., Luhach, A. K., & Nayyar, A. (2020). A smart cloud
service management algorithm for vehicular clouds. IEEE Transactions on Intelligent Transportation Systems.

Pande, S. K., Panda, S. K., Das, S., Sahoo, K. S., Luhach, A. K., Jhanjhi, N. Z., & Sivanesan, S. et al. (2021).
A resource management algorithm for virtual machine migration in vehicular cloud computing. Computers.
Materials & Continua, 67(2), 2647–2663. doi:10.32604/cmc.2021.015026

Potluri, S., Sarkar, A., Yasin, E. T., & Mohanty, S. N. (2020). IoT enabled cloud based healthcare system using
Fog Computing: A Case Study. Journal of Critical Reviews, 7(6).

Roy, S., Banerjee, S., Chowdhury, K. R., & Biswas, U. (2017). Development and analysis of a three phase
cloudlet allocation algorithm. Journal of King Saud University-Computer and Information Sciences, 29(4),
473–483. doi:10.1016/j.jksuci.2016.01.003

Saha, M., Panda, S. K., & Panigrahi, S. (2021). A hybrid multi-criteria decision making algorithm for cloud
service selection. International Journal of Information Technology, 1-6.

Shi, Y., Suo, K., Hodge, J., Mohandoss, D. P., & Kemp, S. (2021, January). Towards Optimizing Task Scheduling
Process in Cloud Environment. In IEEE 11th Annual Computing and Communication Workshop and Conference
(CCWC) (pp. 81-87). IEEE. doi:10.1109/CCWC51732.2021.9376146

Siegel, J., & Perdue, J. (2012, July). Cloud services measures for global use: the service measurement index
(SMI). In 2012 Annual SRII global conference (pp. 411-415). IEEE.

Suryateja, P. S. (2016). A Comparative Analysis of Cloud Simulators. International Journal of Modern Education
& Computer Science, 8(4), 64–71. doi:10.5815/ijmecs.2016.04.08

Vaezi, M., & Zhang, Y. (2017). Cloud mobile networks. Springer.

http://dx.doi.org/10.1109/TNSM.2020.3015657
http://dx.doi.org/10.32604/cmc.2021.015026
http://dx.doi.org/10.1016/j.jksuci.2016.01.003
http://dx.doi.org/10.1109/CCWC51732.2021.9376146
http://dx.doi.org/10.5815/ijmecs.2016.04.08

