
DOI: 10.4018/IJISMD.297060

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Software Architecture Recovery
Using Integrated Dependencies
Based on Structural, Semantic,
and Directory Information
Shiva Prasad Reddy Puchala, National Institute of Technology, Kurukshetra, India*

Jitender Kumar Chhabra, National Institute of Technology, Kurukshetra, India

Amit Rathee, Government College, Sonipat, India

ABSTRACT

Architecture recovery techniques study dependencies in source code and reconstruct architecture.
Most techniques either use structural or semantic dependencies, and it is observed that the use of
directory information helps in improving architecture recovery. The research carried out to date has
focused on using the semantic information in a very limited manner and directory information in a
trivial manner without considering directory hierarchy. Further, all three (structural, semantic, and
directory-structure) are reported to be very useful in architecture recovery but have not been used
in a combined manner at all. So, this paper proposes a new scheme for architecture recovery using
a weighted combination of all three dependencies. A new approach is designed to effectively mine
semantic dependencies and extract directory dependencies. Finally, different dependency schemes
are evaluated with four clustering algorithms on three open-source projects. The obtained results
show that the proposed scheme performs better than the existing approaches in architecture recovery.

Keywords
Architecture Recovery, Directory Dependencies, Directory Hierarchy, Directory Structure, Integrated
Dependencies, Semantic Dependencies, Structural Dependencies, Weighted Combination

INTRODUCTION

Software architecture is defined as the organization of a system embodying its components and their
relationships. As software systems grow in size and complexity, it becomes hard for developers to
keep architecture well-documented, and this phenomenon results in an architecture shift from its initial
design. Most of the open-source projects lack architectural documentations and for these projects,
code is the available documentation. So software architecture recovery is crucial for many reasons, to
adapt a software system to changing requirements, to enable the reuse of components, and estimate
the cost and risks involved in a change.

For this reason, huge research was carried out in this domain to recover the architecture of a
software system, and architecture recovery is defined as a reverse engineering approach that aims

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

2

at reconstructing architecture from the implementational view of software. Many techniques have
already been proposed to recover the architecture of software and these techniques work on different
types of input information. Depending on the input information used, these techniques are categorized
as, structure-based techniques, semantic-based techniques, knowledge-based techniques (Kong et al.,
2018). Structure-based techniques depend on the structure of source code to extract relations and group
software elements based on structural dependencies using different clustering techniques. Semantic-
based techniques depend on the textual information present in source code and documentation.
These techniques try to form topics and group software elements into these topics. Knowledge-based
techniques use various types of input information from software repositories viz; framework-related
information, directory information, patterns, commits, and issues in version control systems.

In literature, the majority of architecture recovery techniques are either structure-based
(Mancoridis et al., 1999) (Maqbool & Babri, 2004) (Andritsos & Tzerpos, 2005) (Wang et al., 2010)
(Zhang et al., 2010) (Cho et al., 2019) or semantic-based (Kuhn et al., 2007) (Garcia et al., 2011)
(Sajnani, 2012) (Link et al., 2019). Only a few techniques (Li et al., 2017) (Shahbazian et al., 2018)
(Kong et al., 2018) (Guimaraes & Cai, 2020) exploit the available knowledge in software repositories
and use them in architecture recovery. In software, readily available knowledge is its directory
information, and only very few techniques (Kong et al., 2018) use this knowledge in architecture
recovery. Most of the techniques use one or two types of input information in the recovery process.
However, none of these techniques utilize structural, semantic, and directory information at the same
time. Further, there is no proper study on how to extract available directory knowledge and integrate
it with structural and semantic information for architecture recovery.

This paper aims to mine all needed semantic information, compute hierarchy-based directory
dependencies information and integrate these with structural dependencies to recover the software
architecture. Effective mining of semantic information including comments, identifiers, variables,
class/method names as well as usage, is carried out and a new approach for extracting directory
dependencies based on directory hierarchy is proposed. Various coupling schemes are formulated to
evaluate the effect of using multiple dependencies in architecture recovery. These coupling schemes
are also experimented with different sets of weights on three subject systems, to identify the best
combination of weights for integrating dependencies. The main contributions of this paper include:

1. 	 Designing a new approach for computing directory dependencies from directory hierarchy by
using distance and depth-based measures.

2. 	 Effective mining of all types of semantic information and empirically evaluation of the effect of
using semantic and directory dependencies in architecture recovery by formulating six different
dependency coupling schemes.

3. 	 Integrating all three dependencies in the best combination of weights based on experimentation.
4. 	 To study the effect of integrated dependencies in architecture recovery by using Complete linkage

clustering.

RELATED WORK

In literature there are already various architecture recovery techniques, these techniques try to obtain
dependency information from source code and group related software elements into modules to produce
a high-level view of the system. In this study, the architecture recovery techniques are categorized
into three types based on the input information they use in the recovery process.

Structure-Based Recovery Techniques
Bunch (Mancoridis et al., 1999) is a clustering tool that creates software decompositions automatically.
It considers the module dependency graph and recovers architecture by optimizing the Modularization

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

3

Quality function on the graph. The weighted combined algorithm (WCA) (Maqbool & Babri,
2004) is a hierarchical agglomerative clustering technique. It calculates inter-cluster distance using
Ellenberg measure and groups entities based on inter-cluster distance. Andritsos & Tzerpos (2005)
proposed Scalable Information Bottleneck (LIMBO), a hierarchical clustering technique that employs
an agglomerative information bottleneck algorithm for clustering. LIMBO uses information loss
measures to group entities and it works on minimizing the information loss measure. Wang et al. (2010)
proposed a fuzzy logic-based hierarchical clustering technique (LBFHC) which is an improvement
over the LIMBO technique. Zhang et al. (2010) proposed a hybrid clustering algorithm HPCA based
on partitional and hierarchical clustering. It considers a weighted directed class graph and uses
hierarchical clustering to find kernels in the graph, then partitions the graph based on kernels. Cho
et al. (2019) proposed an architecture recovery approach using cluster ensembles. It uses outputs of
different clustering techniques and consolidates these outputs to recover a better architecture.

Semantic-Based Recovery Techniques
Kuhn et al. (2007) proposed an architecture recovery approach based on the information retrieval
technique Latent semantic indexing (LSI), and it works by recognizing topics in source code and
grouping similar artifacts into topics. Garcia et al. (2011) proposed a machine learning-based technique
to identify connectors and components in a software system using software concerns. Sajnani (2012)
proposed a machine learning-based automatic software architecture recovery approach. It considers
domain, textual, structural, runtime behavioral, and contextual information. It uses unsupervised
learning techniques for component identification and classification techniques to find utility and
application components. Sun et al. (2017) proposed a novel program comprehension approach for
clustering classes in large-sized packages using Latent Dirichlet Allocation (LDA). Recover and
RELAX (Link et al., 2019) is a concern-oriented architecture recovery approach. It considers textual
information from source code to extract concerns and uses a pre-trained classification model to relate
entities to a specific domain.

Knowledge-Based Recovery Techniques
In this study, the architecture recovery techniques that use the information other than structural and
semantic are categorized into knowledge-based recovery techniques. Li et al. (2017) proposed a
framework information-based software architecture recovery approach. It considers framework-specific
features and incorporates this information into clustering. Shahbazian et al. (2018) proposed RecovAr,
an approach to recover the architectural design decisions. It links the issues found in version control
systems to their corresponding code changes and identifies potential architectural changes. Kong et
al. (2018) proposed a directory-based dependency approach for architecture recovery. It considers
code dependencies between directories to generate a dependency graph and uses it in structure-based
recovery techniques. Guimaraes & Cai (2020) proposed a language-independent pattern-oriented
architecture recovery framework. It recovers design patterns and architectural design decisions from
source code.

Evaluation Measures
Architectural decompositions that are obtained as a result of the recovery process must be assessed
to evaluate their quality. This assessment can be carried out by using external and internal evaluation
measures. In external evaluation, the recovered architecture is compared with an architecture created
by experts. Precision and Recall (Anquetil & Lethbridge, 1999), are effectiveness measures that are
based on intra pairs, where intra pairs are pairs of entities in the same cluster. Precision is defined
as the percentage of intra pairs in the recovered architecture that are also in the expert architecture.
Recall is defined as the percentage of intra pairs in the expert architecture that are also in the
recovered architecture. MoJo (Tzerpos & Holt, 1999) is an external evaluation metric that measures
the distance between two architecture decompositions by counting the number of move and join

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

4

operations needed in transforming one architecture to another. MoJoFM (Zhihua Wen & Tzerpos,
2004) is an effectiveness measure based on MoJo. EdgeMoJo (Zhihua Wen & Tzerpos, 2004) is an
improvement of MoJo to account for edge weights. Obtaining expert architectures or constructing
expert decompositions is difficult for most researchers, so they evaluate the recovered architecture
based on the cohesion and coupling-ness between entities. Amarjeet & Chhabra (2017) and Rathee
& Chhabra (2018) studied the measurement of coupling and cohesion between entities through the
use of structural, semantic, and evolutionary dependencies. In architecture recovery, the majority
of techniques used structural relations in computing cohesion and coupling. Turbo Modularization
Quality (Turbo MQ) (Mitchell et al., 2001) (Mitchell, 2002) is one such measure that measures inter-
connectivity and intra-connectivity in the recovered architecture. It is an internal quality measure,
based on the assumption that recovered architecture should exhibit high cohesion and low coupling.
MoJoFM and Turbo MQ measures are commonly used in the evaluation of architecture recovery.

Comparison of Architecture Recovery Techniques
In literature, there are many evaluation studies on architecture recovery techniques (Maqbool &
Babri, 2007) (Bittencourt & Guerrero, 2009) (Shtern & Tzerpos, 2012) (Garcia et al., 2013) (Zahid
et al., 2017). Maqbool & Babri (2007) showed that LIMBO performs better than WCA. Bittencourt
& Guerrero (2009) showed that Modularization Quality and Design Structure Matrix techniques
perform better in graph-based clustering. Shtern & Tzerpos (2012) presented the evaluation of
software clustering approaches and outlined the major research challenges in this area. In (Garcia
et al., 2013) it is shown that ACDC and Architecture Recovery using Concerns perform better than
other techniques. These studies are not always consistent because they differ in clustering technique
implementations, subject systems, and evaluation measures.

In literature, most of the architecture recovery techniques are either structure-based or semantic-
based and consider only one specific type of input information in the recovery process. The research
suggests that the accuracy of recovery techniques could be improved by using different types of input
information. Only a few recovery techniques exploit directory information although it is the readily
available architectural knowledge that exists for most of the systems. The research carried out to date
has focused on using the semantic information in a very limited manner, and directory information
in a trivial manner without considering hierarchy and path at all. Further, the three dependencies
structural, semantic and directory-structure are reported to be very useful to recover the architecture
but have not been used in a combined manner at all. These research gaps motivated the authors to
propose a new approach for extracting directory dependencies based on directory hierarchy and mine
all types of semantic information effectively to empirically evaluate the effect of all three (structural,
semantic, and directory-structure) dependencies combined in architecture recovery.

PROPOSED APPROACH

Software architecture recovery is the process of reconstructing the architecture for software by
studying its source code, and the recovered architecture helps in software maintenance and program
comprehension. Architecture recovery techniques try to reconstruct the architecture by grouping
related software elements into packages and sub-packages based on their structural, semantic, and
directory relations.

In this paper, the first step in evaluating the effect of dependencies is to obtain structural,
semantic, directory dependencies from the source code of the software. The effect of using directory
dependencies and integrated dependencies in architecture recovery is studied from six different
dependency coupling schemes, namely Structural (STR), Semantic (SEM), Structural + Semantic
(STR+SEM), Structural + Directory (STR+DIR), Semantic + Directory (SEM+DIR), and Structural

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

5

+ Semantic + Directory (STR+SEM+DIR). This study helps us to determine that the use of directory
dependencies in combination with structural or semantic dependencies improves the results. These
results lead us to integrate all three dependencies and study their effect on architecture recovery. In
this paper, each dependency coupling scheme is evaluated with four Hierarchical Agglomerative
Clustering (HAC) techniques, namely Single linkage, Unweighted average linkage, Weighted average
linkage, and Complete linkage. Finally, the results of these clusterings are analyzed with different
evaluation metrics and each coupling scheme is experimented with different weights to learn the best
possible weights for integrating dependencies.

Figure 1 diagrammatically shows the procedure adopted for evaluating different dependencies.
During the whole evaluation process, the following five steps are followed, and finally, the results
are analyzed.

Step 1: Obtaining structural, semantic, and directory-structure relations of software elements from
source code, and these relations are modeled into dependencies between software elements later.

Step 2: Obtained relations are used in modeling dependencies and these dependencies are represented
in the form of software dependency matrices. (Each element of the matrix represents the
dependency strength between the corresponding pair of software elements.)

Step 3: The dependencies obtained are combined using six different coupling schemes, they are
STR, SEM, STR+SEM, STR+DIR, SEM+DIR, STR+SEM+DIR and different weights are
considered in integrating dependencies.

Step 4: Each coupling scheme is empirically evaluated with different clustering algorithms and the
results are recorded.

Step 5: The obtained clustering results are evaluated using MoJoFM and Turbo MQ measures, the aim
of performing this step is to find out how directory dependencies and integrated dependencies
help in improving the overall architecture recovery.

Figure 1. Proposed approach to evaluate the effect of integrated dependencies in architecture recovery

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

6

Obtaining Structural Dependencies
Structural dependencies are obtained by analyzing the structural information present in the source
code, such as references, method calls, parameters, etc. A previous study by (Muhammad et al., 2012)
analyzed 26 types of structural relationships between entities in an object-oriented system and the
relationships are listed in Table 1.

The file based and genericity based relationships are not relevant to the study because the
dependency computation is made at the class level and only the static dependencies are considered. In
this study, a more generalized relationship category is followed which incorporates all the structural
relationships. Table 2 shows the eight relevant structural relations used in this study, these relations
model most of the relations listed in Table 1 and also introduces few more important relations that
exist in an object-oriented system. The number of structural inputs are greatly reduced using these
eight relations so that clustering techniques can take advantage of these reduced and rich inputs. In
(Prajapati et al., 2017; 2019; 2020) (Rathee & Chhabra, 2018; 2019) authors discussed the importance
and proved the effectiveness of the eight relations listed in Table 2.

After identification of the relations, each relation is represented in the form of an n x n matrix,
where n is the number of entities in the software system. Each entry in the matrix is based on the
relationship between the corresponding entities. As an example, consider a hypothetical system
with the following three classes C1, C2, and C3 as in Table 3. A ‘1’ in the second row and fourth

Table 1. Structural relationships between entities in an object-oriented system

Inheritance based Containment based Association based

• Inheritance
• same inheritance hierarchy
• inheritance type
• virtual method override
• base class variable access
• base class method access

• containment as objectsame class
containment
• variable accessmethod access

• maintaining pointer
• maintaining reference
• method parameter
• method local
• same class in methods

Global based Genericity based File based

• same global var. accesssame global
func. accessame macro access

• instantiating parameter
• same generic class
• same generic parameter
• inheritance via genericity
• containment via genericity

• same file
• include source file
• same folder

Table 2. Structural relations under study

S. No. Relation Name Description

1 THROWS Class A throws an exception of type Class B.

2 IS OF TYPE Class A has an attribute or a field of type Class B.

3 CALLS Method of Class A calls the method of Class B.

4 RETURNS Class A has a method that returns an object of type Class B.

5 REFERENCE Class A invokes an attribute or a method of Class B.

6 HAS PARAMETER Class A has a method with a parameter of type Class B.

7 IMPLEMENTS Class A implements the behavior specified by Class B.

8 EXTENDS Class A extends Class B.

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

7

column of the matrix represents that there is a relation between C1 and C3, for example, C1 may be
inherited from C3.

Table 4 represents a hypothetical system with three classes C1, C2, and C3. A ‘2’ in the second
row and third column indicates that there is a relation between C1 and C2, for example, C1 calls the
method of C2 and its frequency is 2.

To calculate structural dependencies based on structural relations, this paper uses the approach
proposed by Rathee & Chhabra (2018). The relations listed in Table 2 are extracted by analyzing the
source code and the relative weight (wi) for each relation is calculated as:

Relative weight w
Total No of i type of relations in

i

th

 () = . tthe system

Total No of relations in the system

 .
	 (1)

The structural dependency between two classes Ci, Cj is calculated as:

StD C C f w
i j

i
i i

,() = ×()
=
∑

1

8

	 (2)

Here fi is the frequency of each relation and wi is the relative weight of the ith type of relation.
The overall structural dependency matrix which contains structural dependencies between every pair
of elements is calculated as:

StDM i j StD C C
i

N

j

N

i j
, ,() = ()

= =
∑∑

1 1

	 (3)

Here |N| is the total number of classes in the system and StDM is the overall structural
dependency matrix.

Table 3. n x n matrix showing EXTEND relations among entities

C1 C2 C3

C1 0 0 1

C2 1 0 0

C3 0 0 0

Table 4. n x n matrix showing CALLS relations among entities

C1 C2 C3

C1 0 2 0

C2 0 0 0

C3 0 3 0

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

8

Obtaining Semantic Dependencies
Software developed with proper coding standards and guidelines contains a fine amount of semantic
information and the software elements that follow these standards, show a degree of semantic similarity
(Rathee & Chhabra, 2017).

In this paper, semantic information of each class is obtained by mining the source code and
documentation of software. Each source file is parsed to generate an abstract syntax tree and the
abstract syntax trees are used in mining tokens from the comments, identifiers, class/method/variable
definitions, and statements. After the mining process, each class is represented with a document
containing a set of tokens. These documents are normalized and the following language preprocessing
steps are applied to them, removal of programming language-specific keywords, removal of English
language stop words, and applying of Porter’s stemmer algorithm to stem words. In this paper, TF-
IDF is used as a weighting scheme for tokens and it is calculated using the following formula:

tf idf t d tf t d
N

df
− () = ()×

+











, , log
1

	 (4)

Here, t ε T where T is the set of all tokens present in the system, d ε D where D = {d1, d2,
d3,.....,dN} is the set of all software elements, N = |D| is the total count of documents, tf is the term
frequency and idf is the inverse document frequency. The semantic similarity between two classes
Ci, Cj is calculated using cosine-based similarity measure as shown below:

Csim C C
V V

V Vi j

i j

i j

,
.

() =
×

	 (5)

Csim C C
w w

w w
i j

k

n

k i k j

k

n

k i k

n

k j

,
, ,

, ,

() =
×()

=

= =

∑

∑ ∑
1

1

2

1

2

	 (6)

Here, Vi = (wi,1, wi,2,,wi,n) and Vj = (wj,1, wj,2,,wj,n) is the vector representation of documents
for the corresponding classes Ci, Cj respectively. The overall semantic dependency matrix (SmDM)
is calculated as:

SmDM i j Csim C C
i

N

j

N

i j
, ,() = ()

= =
∑∑

1 1

	 (7)

Here |N| is the total number of documents. SmDM is symmetric and its values vary between [0, 1].

Obtaining Directory Dependencies
In literature, most of the techniques obtain information from code-level dependencies, which belongs
to the implementational view of software. As software architecture belongs to logical view and there
may be losing important logical information while translating information from implementation view
to logical view (Kong et al., 2018).

The design of directories is one of the readily available logical information in software and most of
the approaches ignore the available knowledge of directory structure in recovering the architecture. So

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

9

in this paper, to impart the available logical knowledge of directory structure into the recovery process,
the path information of each class in the software system is extracted and used to generate a directory
tree. To generate the path information each source file is examined for the classes defined in it and class
names are appended with package names of the source files to generate the final path information. The
internal nodes in the directory tree represent intermediate directories and leaf nodes represent the classes
in the system. The directory dependency between two classes is computed based on their placement in
the directory tree by applying similarity measures based on the distance between nodes in the directory
tree. Most of the similarity measures based on distance would degenerate to trivial measures when
applied on a tree (Sologub, 2011), so to compute similarity the following two measures are used:

Distance-Based Measure
Distance is an opposite concept of similarity and it can be used to construct similarity measures. The
standard similarity measure based on distance is expressed as:

S C C
D C C

i j

i j

,
,

() =
+ ()

1

1
	 (8)

Here, D(Ci, Cj) is the length of path/distance between tree nodes of classes Ci, Cj. In obtaining
dependencies based on the directory tree the above measure shows trivial results because little
importance is given to the hierarchical arrangement of classes in the directory tree. Consider an
example directory tree as shown in Figure 2. The following pairs (C1, C2) and (C4, C5) show similarity
of 0.33 and 0.33 on applying the usual distance-based similarity measure, but in the designer’s logical
view, the similarity of (C1, C2) should be more than the similarity of (C4, C5) because the nodes C1,
C2 are more specialized than C4, C5 in the directory hierarchy.

Distance-Depth Based Measure
Generally, while designing, developers tend to create file hierarchies to group related files and
directories. So in developers’ view files at greater depth in the hierarchy are more related than the files
at a lower depth. To reduce the effect of trivial distance-based measures and account for granularity,
depth is used in similarity computation and it is calculated as the distance between the root node and
common ancestor node (Sologub, 2011). The distance-depth based measure for similarity computation
is expressed as:

S C C
D C C

D A R

D i j

i j

i j

,
,

,
,

() =
+
()
()

1

1

	 (9)

S C C
D A R

D A R D C C
D i j

i j

i j i j

,
,

, ,

,

,

() =
+ ()

+ ()+ ()
1

1
	 (10)

Here, Ai,j is the lowest common ancestor of (Ci, Cj) and R is the root. Using the example in Figure
2, the pairs (C1, C2), (C4, C5) show similarities of 0.6, 0.5 respectively on applying distance-depth
based measure. This is because of the depth used in similarity computation which allows considering
the directory structure hierarchy to produce nontrivial results. By using equation (10) the directory
dependency matrix (DrDM) is calculated as:

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

10

DrDM i j S C C
i

N

j

N

D i j
, ,() = ()

= =
∑∑

1 1

	 (11)

Here, |N| is the total number of classes in the system. DrDM is a symmetric matrix and its values
vary between [0, 1].

Integration of Dependencies and Clustering
In this study, a custom tool is designed to extract structural, semantic, and directory dependencies from
the java systems, and with little modification, this custom tool can be made adapted to software systems
written in other object-oriented languages. After obtaining structural, semantic, and directory structure
relations and their corresponding dependency matrices, six different coupling schemes are used in
integrating dependencies viz; STR, SEM, STR+SEM, STR+DIR, SEM+DIR, and STR+SEM+DIR.
These coupling schemes are formulated by considering dependencies as individuals and as a weighted
combination of dependencies. Each coupling scheme is experimented with different weights to learn
the best combination of weights to integrate dependencies.

To study the effect of integrated dependencies in architecture recovery, each coupling scheme is
evaluated with four clustering algorithms. This study uses Single linkage, Unweighted average linkage,
Weighted average linkage, and Complete linkage hierarchical agglomerative clustering algorithms,
and the results of applying these clustering algorithms are recorded.

Evaluation
In this paper, the recovered architecture is evaluated with MoJoFM (External assessment) and Turbo
MQ (Internal assessment) measures. MoJoFM measures the similarity of recovered architecture to the
expert architecture. Turbo MQ measures the cohesiveness of clusters formed in the recovery process
and it is independent of expert architectures.

EXPERIMENTS AND RESULTS

The main aim of this study is to find how directory dependencies in combination with semantic
or structural dependencies perform in architecture recovery, how does the combination of all
three dependencies affects the results of recovery, and how directory dependencies from directory

Figure 2. Example directory tree

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

11

hierarchy are computed by using distance and depth based measures. This work answers the
following research questions:

RQ1: Can directory dependencies combined with structural and semantic dependencies improve the
accuracy of a recovery technique?

RQ2: How does the distance-depth measure perform in obtaining directory dependencies when
compared to the usual distance measure?

RQ3: How does the proposed integrated dependences approach perform compared to the approaches
in literature?

Experimental Setup
Subject Projects
In this study, three open-source projects ArchStudio, Hadoop, and Tiny-Weka are selected to investigate the
three research questions. Table 5 shows detailed information about subject systems. The selected projects
are mainly Java because of its strong package mechanism, which is closely related to the directory structure.
Lutellier et al. (2015) constructed expert architectures for Chromium, ITK, Bash, Hadoop, ArchStudio
software and open-sourced their work. Two of the subject systems Hadoop and ArchStudio used in this
study are selected from Lutellier et al. (2015) work and also many previous studies (Garcia et al., 2013)
(Lutellier et al., 2015) (Kong et al., 2018) used these projects for architecture recovery evaluation. The third
subject system is Tiny-Weka which is selected randomly and its expert architecture is constructed manually.

Accuracy Measures
To evaluate the results of a recovery technique there are two different types of measurements in
literature, one measures the internal quality of the recovered architecture, and the other measures
the similarity between recovered and expert architectures. In this paper, Turbo MQ (Mitchell et al.,
2001) (Mitchell, 2002) is used for internal quality assessment and MoJoFM (Zhihua Wen & Tzerpos,
2004) is used for external evaluation.

Turbo Modularization Quality (Turbo MQ)
Turbo MQ is an internal quality measure that is based on the assumption that recovered architecture
should exhibit low coupling and high cohesion. To calculate Turbo MQ, the Cluster Factor needs to
be calculated first. The Cluster Factor for module i is calculated as:

CF
i

i

i j ij ji

=
+ ()∑

2

2

µ

µ ε ε,
	 (12)

where μi indicates the number of intra-relationships in cluster i, and εij + εji indicates the number
of inter-relationships between cluster i and cluster j. Turbo MQ is defined as the sum of all cluster
factors and it is calculated by the following formula:

Table 5. Subject systems details

Project Version Language Description Total Classes

ArchStudio 4 Java Architecture Development 582

Tiny-Weka 3.9 Java Data Mining Tool 339

Hadoop 0.19.0 Java Data Processing 590

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

12

TurboMQ CF
i

k

i
� =

=
∑

1

	 (13)

MoJoFM
MoJoFM is an external evaluation measure. It measures the similarity of recovered architecture to
the expert architecture and it is calculated as:

MoJoFM
mno P Q

mno P Q
= −

()
∀()()












×1 100

,

,
%

max
	 (14)

where P is the recovered architecture, Q is expert architecture, mno(P, Q) is the minimum number of
Move and Join operations needed in transforming P to Q. A lower score indicates a greater disparity
between the architectures P and Q and a higher score indicates how much P is closer to Q.

RESULTS AND DISCUSSION

This section presents the results obtained by evaluating six dependency coupling schemes on three
subject systems. The clustering results obtained by applying four algorithms are analyzed and it is
observed that the Complete Linkage HAC algorithm outperforms all others and forms more cohesive
clusters. Anquetil & Lethbridge (1999) and Maqbool & Babri (2007) also described in their work
that, the results of applying the Complete Linkage HAC are better when compared to Single Linkage
HAC, Unweighted Average Linkage HAC and Weighted Average Linkage HAC algorithms. So in
this paper, only the results of applying Complete Linkage HAC are demonstrated and the evaluation
results of the other clusterings are presented in the work (Puchala, 2021). Table 6 demonstrates the
overall scores of MoJoFM and Turbo MQ obtained by evaluating each coupling scheme with the
Complete Linkage HAC on three subject systems.

In this paper, the hit and trial approach is used in determining the best combination of weights
for each coupling scheme. The first three columns of Table 6 lists different weight combinations used
in this study for integrating structural, semantic, and directory dependencies. The experimentation
results in this study indicate that the following weight combinations (0.5, 0.5); (0.6, 0.4) for pairwise
coupling schemes and (0.4, 0.2, 0.4) for STR+SEM+DIR coupling scheme results in best scores.
In Table 6 the best scores of each coupling scheme, when applied to a particular subject system, are
highlighted in light gray.

RQ1: Can directory dependencies combined with structural and semantic dependencies improve the
accuracy of a recovery technique?

Figure 3 and figure 4 show a comparison of various coupling schemes based on their best scores
obtained in the evaluation of three subject systems using MoJoFM and Turbo MQ. It is clear from
the plots that using pairwise dependency schemes in architecture recovery produces more accurate
results. Based on scores it is observed that the integration of directory and structural dependencies
in recovery results in an average improvement of 32% in scores of MoJoFM and an adequate
improvement in the scores of Turbo MQ when compared to the scores of using structural dependencies
alone. By comparing the scores of using semantic dependencies and scores of integrating semantic
and directory dependencies, an average improvement of 15% is observed in the scores of MoJoFM.
To leverage most of the information present in software repositories and to form better cohesive

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

13

clusters, the dependency coupling scheme STR+SEM+DIR is proposed. This scheme integrates all
three structural, semantic, and directory dependencies and it is observed that this coupling scheme
outperforms all other schemes, and when the results of this coupling scheme are compared with the
STR+SEM coupling scheme, an average improvement of 17% in the scores of MoJoFM is observed
and a fine improvement in the scores of Turbo MQ. The subject system Hadoop shows only a small
variation in the scores of Turbo MQ and MoJoFM because of its directory hierarchy, Garcia et al.
(2013) showed that this version of Hadoop has fewer directories with many components scattered.

It is clear from figures 3 and 4 that imparting existing directory knowledge into the recovery
process by pairing it with structural or semantic dependencies improves the accuracy of a recovery
technique and the proposed dependency coupling scheme STR+SEM+DIR which is defined as
a weighted combination of structural, semantic and directory dependencies outperforms all other
coupling schemes earlier formulated in this paper.

Table 6. Obtained Turbo MQ and MoJoFM scores on three subject systems

Weights ArchStudio Hadoop Tiny-Weka

STR SEM DIR Turbo MQ MoJoFM Turbo MQ MoJoFM Turbo MQ MoJoFM

1 0 0 9.8 32.86 6.6 16.43 1.4 68.18

0 1 0 13.5 51.87 13.1 41.7 2.6 67.88

0.3 0.7 0 21.4 55.24 19.9 44.52 3.6 69.39

0.4 0.6 0 21.8 56.48 20.4 43.11 2.8 66.97

0.5 0.5 0 21.8 55.6 20.9 44.88 3.6 69.7

0.6 0.4 0 21.7 58.08 20.7 43.29 2.9 67.27

0.7 0.3 0 23.8 59.33 20.8 42.93 2.9 71.52

0.9 0 0.1 22 68.03 18.8 50.71 3.5 87.27

0.8 0 0.2 20.9 69.45 19.2 52.83 3.3 84.24

0.7 0 0.3 20.2 70.69 19.3 55.65 3.6 86.97

0.6 0 0.4 21.7 69.98 19.7 53.89 3.7 91.52

0 0.9 0.1 15.3 58.61 12.9 44.35 3 72.73

0 0.8 0.2 15.2 60.92 13.5 46.11 3 86.67

0 0.7 0.3 16.6 62.52 14.8 51.41 3.6 86.67

0 0.6 0.4 13.9 67.67 14.9 51.77 3.7 89.7

0.5 0.3 0.2 23 71.4 21.4 50 3.8 83.33

0.4 0.4 0.2 22.9 70.52 22.7 51.06 3.4 82.73

0.3 0.5 0.2 19.3 64.65 21.4 49.82 3 81.52

0.5 0.2 0.3 23 74.96 19.4 54.42 3.9 90.91

0.4 0.3 0.3 22.2 71.58 19.9 53.36 3.5 83.33

0.3 0.4 0.3 22.5 71.4 20.7 52.65 3.7 83.64

0.2 0.5 0.3 20.5 68.92 21.1 52.65 2.9 81.21

0.4 0.2 0.4 23.8 75.49 20.2 54.42 4 93.33

0.3 0.3 0.4 23.3 74.07 19.9 54.59 3.8 90

0.2 0.4 0.4 22.2 71.4 21.3 53 3.7 85.76

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

14

RQ2: How does the distance-depth measure perform in obtaining directory dependencies when
compared to the usual distance measure?

To test RQ2, the evaluation scores of each coupling scheme are recorded by considering distance
and distance-depth measures in similarity computation of directory dependencies. The boxplots in
Figure 5 are plotted based on MoJoFM scores obtained by using distance and distance-depth measures.
The boxplots show high variability in the scores of MoJoFM using the distance-depth measure. From
the boxplots (a), (b), (c) in Figure 5 it is clear that the distance-depth measure produces much better
results when compared to the usual distance measure. It is observed that on all three subject systems
and in each coupling scheme that involves directory dependencies by using distance-depth measure

Figure 3. Comparison of coupling schemes based on MoJoFM scores

Figure 4. Comparison of coupling schemes based on Turbo MQ scores

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

15

produces required nontrivial results. Based on the obtained scores of MoJoFM on three subject
systems, it is concluded that the distance-depth measure captures directory dependencies perfectly
by using depth and performs better in architecture recovery.

RQ3: How does the proposed integrated dependences approach perform compared to the approaches
in literature?

To show how integrated dependencies improve the architecture recovery results, a comparison
is provided between Kong et al. (2018) and the proposed approach. Kong et al. (2018) proposed
approach generates a submodule-level dependency graph based on directory hierarchy and in this
approach directory dependencies are used together with structural dependencies to generate the final
architecture. Bunch-NAHC, Bunch-SAHC techniques from (Mancoridis et al., 1999) are used for
clustering in Kong et al. (2018) and the obtained results are presented separately for each of these
clustering approaches. The MoJoFM and Turbo MQ approaches are further used to evaluate obtained
recovered architecture. Therefore, in order to efficiently evaluate and compare the approach of Kong
et al. (2018) with the proposed approach of this paper, the individual scores of these two clusterings
approaches are averaged and compared with the scores obtained using the proposed approach. Table
7 presents the scores of MoJoFM and Turbo MQ obtained after evaluating the proposed approach
and the values presented by Kong et al.’s (2018) approach on Hadoop and ArchStudio. The main
reason behind considering Hadoop and ArchStudio is that these software systems are evaluated by
Kong et al. (2018) and their proposed approach is not publicly available for experimentation purposes.

It can be observed from Table 7 that there is an overall improvement of 8-20% in the scores of
MoJoFM. The MoJoFM scores show how close the recovered architecture is to the expert’s constructed
architecture. The improved score for MoJoFM indicates the fact that the architecture recovered by

Figure 5. Comparison of distance and distance-depth based similarity measures

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

16

the proposed approach is much closer to the experts’ architecture when compared to the architecture
recovered by Kong et al. (2018). Hence, it can be easily claimed that the proposed approach of this
paper sustains its accuracy while recovering software architecture. Moreover, the obtained Turbo
MQ score shows a minor improvement in the case of Hadoop software. Whereas, for ArchStudio,
the Turbo MQ score shows some decrease to the value as observed in Kong et al. (2018). However,
these values are comparable. A higher value of Turbo MQ represents better architectural design in
terms of cohesion and coupling quality parameters. Based on obtained results as presented in Table
7 and their interpretations it can be concluded that the proposed approach in this paper is capable of
recovering high-quality architectural design having sufficiently high modularization quality. Hence,
it is clear from the results that the proposed approach outperforms the Kong et al. (2018) approach
because of the effective utilization of dependencies. Finally, it can be concluded that a better usage
of integrated dependencies improves the overall architecture recovery results.

THREATS TO VALIDITY

The following four threats to the validity of the proposed approach are identified. The first threat
to validity is the directory hierarchy of software, for the subject system Hadoop, it is observed that
there is only a slight improvement in recovery results because it has fewer directories with many
components scattered. So it is observed that the quality of directory hierarchy impacts the results
of the proposed approach. The second threat is regarding the determination of weights used in
integrating different dependencies. Preferably, all combinations of weights are to be considered, but
it is not feasible. Thus, the weights in this study are determined using the hit and trial approach and
all the major possibilities have been considered to attenuate this threat. The third threat to validity
is the clustering techniques used for architecture recovery. The proposed methodology operates
on four basic hierarchical clustering algorithms and many techniques are specifically tailored for
architecture recovery and produce more accurate results. To reduce this threat more experiments
are to be conducted on more subject systems with more clustering techniques. The fourth threat
to validity is the measures involved in the computation of cohesion and coupling. In literature a
variety of information such as structural details, the semantics of source code, and also component
evolution history is used in computing cohesion and coupling, these different approaches need to
be investigated to find their effect in architecture recovery. In this study, the threat is minimized by
considering structural, semantic, and directory relations, and their effect is studied by considering
the individual, pairwise, and triplet in architecture recovery.

CONCLUSION AND FUTURE WORKS

Software architecture is crucial for effective maintenance, as it helps in program comprehension
significantly. After some iterations of changes and growth of the software, maintaining a well-
documented architecture becomes difficult due to various drifts in the architecture. So, architecture
recovery techniques have been proposed to recover the architecture of software by mining its source
code and other documents. The accuracy of an architecture recovery technique mainly depends

Table 7. Comparison of the proposed approach with Kong et al.’s (2018)

Subject Systems
Kong et al.’s (2018) Proposed Approach

MoJoFM Turbo MQ MoJoFM Turbo MQ

ArchStudio 62% 26.35 75% 23.8

Hadoop 49% 18.1 54% 19.9

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

17

on the input information used. This paper proposes an effective approach of obtaining directory
dependencies from the directory hierarchy of software and mining the suitable semantic information
for collecting more meaningful inputs for architecture recovery. In this paper, the impact of using
different dependencies in architecture recovery is studied by using six dependency coupling schemes.
These coupling schemes are designed to evaluate the effect of using structural, semantic, directory
dependencies in architecture recovery, and a new scheme is proposed based on the integration of
all three dependencies. The best weights for combining the three dependencies are identified by
experimentation on three open-source projects. Based on the study it is observed that using only a
single type of dependency is not enough and the use of integrated dependencies shows a significant
improvement in the results of overall architecture recovery.

The software systems that lack proper architectural documentations are hard to maintain, in this
setting the results of the proposed approach can be used as architectural descriptions and also can help
in studying the system components and connections. If the current architecture of a system deviates
from planned architecture then it is not easy to understand software even with documentation support.
In such cases, the recovery results of the proposed approach can be used to study current architecture
and take necessary actions. Open source projects are known for their lack of documentation support,
in this scenario the results of the proposed approach can be used in getting a high-level understanding
of the project.

In the future, the proposed approach can be investigated by considering different sources of
information in modeling the relations between entities. The proposed integrated dependencies approach
can be utilized for software restructuring, remodularization, and fault prediction. There is also a scope
that the proposed approach of directory dependencies based on directory hierarchy can be used in the
construction of ground truth architectures. Moreover, the weights used in the combination of all three
dependencies are learned by experimentation, but a new approach can be designed where weights
could be learned automatically based on the quality of input information.

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

18

REFERENCES

Amarjeet & Chhabra, J. (2017). Improving modular structure of software system using structural and lexical
dependency. Information And Software Technology, 82, 96-120.

Andritsos, P., & Tzerpos, V. (2005). Information-theoretic software clustering. IEEE Transactions on Software
Engineering, 31(2), 150–165. doi:10.1109/TSE.2005.25

Anquetil, N., & Lethbridge, T. (1999). Experiments with clustering as a software remodularization method. Sixth
Working Conference On Reverse Engineering (Cat. No.PR00303), 235-255. doi:10.1109/WCRE.1999.806964

Bittencourt, R., & Guerrero, D. (2009). Comparison of Graph Clustering Algorithms for Recovering Software
Architecture Module Views. 2009 13th European Conference on Software Maintenance and Reengineering.

Cho, C., Lee, K., Lee, M., & Lee, C. (2019). Software Architecture Module-View Recovery Using
Cluster Ensembles. IEEE Access: Practical Innovations, Open Solutions, 7, 72872–72884. doi:10.1109/
ACCESS.2019.2920427

Garcia, J., Ivkovic, I., & Medvidovic, N. (2013). A comparative analysis of software architecture recovery
techniques. 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE).

Garcia, J., Krka, I., Mattmann, C., & Medvidovic, N. (2013). Obtaining ground-truth software architectures.
2013 35th International Conference on Software Engineering (ICSE).

Garcia, J., Popescu, D., Mattmann, C., Medvidovic, N., & Cai, Y. (2011). Enhancing architectural recovery using
concerns. 2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011).

Guimaraes, E., & Cai, Y. (2020). Understanding Software Systems through Interactive Pattern Detection. 2020
IEEE International Conference On Software Architecture Companion (ICSA-C).

Kong, X., Li, B., Wang, L., & Wu, W. (2018). Directory-Based Dependency Processing for Software
Architecture Recovery. IEEE Access: Practical Innovations, Open Solutions, 6, 52321–52335. doi:10.1109/
ACCESS.2018.2870118

Kuhn, A., Ducasse, S., & Gîrba, T. (2007). Semantic clustering: Identifying topics in source code. Information
and Software Technology, 49(3), 230–243. doi:10.1016/j.infsof.2006.10.017

Li, X., Zhang, L., & Ge, N. (2017). Framework Information Based Java Software Architecture Recovery. In
2017 24th Asia-Pacific Software Engineering Conference Workshops. APSECW.

Link, D., Behnamghader, P., Moazeni, R., & Boehm, B. (2019). Recover and RELAX: Concern-Oriented Software
Architecture Recovery for Systems Development and Maintenance. 2019 IEEE/ACM International Conference
On Software And System Processes (ICSSP). doi:10.1109/ICSSP.2019.00018

Lutellier, T., Chollak, D., Garcia, J., Tan, L., Rayside, D., Medvidovic, N., & Kroeger, R. (2015). Comparing
Software Architecture Recovery Techniques Using Accurate Dependencies. 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering.

Mancoridis, S., Mitchell, B., Chen, Y., & Gansner, E. (1999). Bunch: a clustering tool for the recovery and maintenance
of software system structures. Proceedings IEEE International Conference On Software Maintenance - 1999
(ICSM’99). ‘Software Maintenance For Business Change’ (Cat. No.99CB36360). doi:10.1109/ICSM.1999.792498

Maqbool, O., & Babri, H. (2004). The weighted combined algorithm: a linkage algorithm for software clustering.
Eighth European Conference On Software Maintenance And Reengineering, 2004. CSMR 2004. Proceedings,
15-24. doi:10.1109/CSMR.2004.1281402

Maqbool, O., & Babri, H. (2007). Hierarchical Clustering for Software Architecture Recovery. IEEE Transactions
on Software Engineering, 33(11), 759–780. doi:10.1109/TSE.2007.70732

Mitchell, B. (2002). A Heuristic Search Approach to Solving the Software Clustering Problem (Ph.D.). Drexel
University.

Mitchell, B., Traverso, M., & Mancoridis, S. (2001). An architecture for distributing the computation of software
clustering algorithms. Proceedings Working IEEE/IFIP Conference On Software Architecture. doi:10.1109/
WICSA.2001.948427

http://dx.doi.org/10.1109/TSE.2005.25
http://dx.doi.org/10.1109/WCRE.1999.806964
http://dx.doi.org/10.1109/ACCESS.2019.2920427
http://dx.doi.org/10.1109/ACCESS.2019.2920427
http://dx.doi.org/10.1109/ACCESS.2018.2870118
http://dx.doi.org/10.1109/ACCESS.2018.2870118
http://dx.doi.org/10.1016/j.infsof.2006.10.017
http://dx.doi.org/10.1109/ICSSP.2019.00018
http://dx.doi.org/10.1109/ICSM.1999.792498
http://dx.doi.org/10.1109/CSMR.2004.1281402
http://dx.doi.org/10.1109/TSE.2007.70732
http://dx.doi.org/10.1109/WICSA.2001.948427
http://dx.doi.org/10.1109/WICSA.2001.948427

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

19

Muhammad, S., Maqbool, O., & Abbasi, A. (2012). Evaluating relationship categories for clustering object-
oriented software systems. IET Software, 6(3), 260. doi:10.1049/iet-sen.2011.0061

Prajapati, A., & Chhabra, J. (2019). Information-Theoretic Remodularization of Object-Oriented Software
Systems. Information Systems Frontiers, 22(4), 863–880. doi:10.1007/s10796-019-09897-y

Prajapati, A., Parashar, A., & Chhabra, J. (2020). Restructuring Object-Oriented Software Systems Using
Various Aspects of Class Information. Arabian Journal for Science and Engineering, 45(12), 10433–10457.
doi:10.1007/s13369-020-04785-z

Puchala, S. (2021). Software Architecture Recovery Using Structural, Semantic and Directory Features
[Unpublished master’s thesis]. National Institute of Technology, Kurukshetra.

Rathee, A., & Chhabra, J. (2017). Software Remodularization by Estimating Structural and Conceptual Relations
Among Classes and Using Hierarchical Clustering. Communications in Computer and Information Science, 712,
94–106. doi:10.1007/978-981-10-5780-9_9

Rathee, A., & Chhabra, J. (2018). Clustering for Software Remodularization by Using Structural, Conceptual,
and Evolutionary Features. Journal of Universal Computer Science, 24(12), 1731–1757.

Rathee, A., & Chhabra, J. (2019). Mining Reusable Software Components from Object-Oriented Source Code
using Discrete PSO and Modeling Them as Java Beans. Information Systems Frontiers, 22(6), 1519–1537.
doi:10.1007/s10796-019-09948-4

Sajnani, H. (2012). Automatic software architecture recovery: A machine learning approach. 2012 20th IEEE
International Conference On Program Comprehension (ICPC).

Shahbazian, A., Kyu Lee, Y., Le, D., Brun, Y., & Medvidovic, N. (2018). Recovering Architectural Design
Decisions. 2018 IEEE International Conference On Software Architecture (ICSA). doi:10.1109/ICSA.2018.00019

Shtern, M., & Tzerpos, V. (2012). Clustering Methodologies for Software Engineering. Advances in Software
Engineering, 2012, 1–18. doi:10.1155/2012/792024

Sologub, G. (2011). On Measuring of Similarity between Tree Nodes. In Proceedings of the Fifth Russian Young
Scientists Conference in Information Retrieval (pp. 63-71). St. Petersburg University Press.

Sun, X., Liu, X., Li, B., Li, B., Lo, D., & Liao, L. (2017). Clustering Classes in Packages for Program
Comprehension. Scientific Programming, 2017, 1–15. doi:10.1155/2017/3787053

Tzerpos, V., & Holt, R. (1999). MoJo: a distance metric for software clusterings. Sixth Working Conference On
Reverse Engineering (Cat. No.PR00303). doi:10.1109/WCRE.1999.806959

Tzerpos, V., & Holt, R. (2000). ACCD: an algorithm for comprehension-driven clustering. Proceedings Seventh
Working Conference On Reverse Engineering, 258-267. doi:10.1109/WCRE.2000.891477

Wang, Y., Liu, P., Guo, H., Li, H., & Chen, X. (2010). Improved Hierarchical Clustering Algorithm for Software
Architecture Recovery. 2010 International Conference On Intelligent Computing And Cognitive Informatics.
doi:10.1109/ICICCI.2010.45

Wen, Z., & Tzerpos, V. (2004). An effectiveness measure for software clustering algorithms. Proceedings of
the 12th IEEE International Workshop on Program Comprehension, 194-203.

Wen, Z., & Tzerpos, V. (2004). Evaluating similarity measures for software decompositions. 20th IEEE
International Conference on Software Maintenance Proceedings.

Zahid, M., Mehmmod, Z., & Inayat, I. (2017). Evolution in software architecture recovery techniques — A
survey. 2017 13th International Conference On Emerging Technologies (ICET).

Zhang, Q., Qiu, D., Tian, Q., & Sun, L. (2010). Object-oriented software architecture recovery using a new
hybrid clustering algorithm. 2010 Seventh International Conference On Fuzzy Systems And Knowledge Discovery.
doi:10.1109/FSKD.2010.5569799

http://dx.doi.org/10.1049/iet-sen.2011.0061
http://dx.doi.org/10.1007/s10796-019-09897-y
http://dx.doi.org/10.1007/s13369-020-04785-z
http://dx.doi.org/10.1007/978-981-10-5780-9_9
http://dx.doi.org/10.1007/s10796-019-09948-4
http://dx.doi.org/10.1109/ICSA.2018.00019
http://dx.doi.org/10.1155/2012/792024
http://dx.doi.org/10.1155/2017/3787053
http://dx.doi.org/10.1109/WCRE.1999.806959
http://dx.doi.org/10.1109/WCRE.2000.891477
http://dx.doi.org/10.1109/ICICCI.2010.45
http://dx.doi.org/10.1109/FSKD.2010.5569799

International Journal of Information System Modeling and Design
Volume 13 • Issue 1

20

Shiva Prasad Reddy Puchala is currently pursuing his Master’s degree in Computer Engineering from National
Institute of Technology, Kurukshetra, India. He received his Bachelor’s degree in Computer Science and Engineering
from Nalla Malla Reddy Engineering College, Hyderabad, Telangana, India, in 2018.

Jitender Kumar Chhabra is Professor, Dept of Computer Engg, National Institute of Technology, Kurukshetra India.
He has been always topper throughout his career. and has more than 28 years of teaching & research experience.
He has published more than 140 papers in reputed journals and conferences. He is author of three international
books and filed 8 patents out of which five have been published. Additionally, four copyrights for software have
been granted to him as Intellectual Property Rights (IPR). He has completed a Research Project by DRDO, Govt
of India. He is Reviewer for IEEE Transactions, ACM Transactions, Elsevier, Springer, Wiley, IGI Global & many
other journals. He has guided six scholars for their PhD and three are in progress. One of his guided PhD theses
has been selected as resource Material by ACM, USA. His areas of interest are Software Engineering, Clustering,
Soft Computing and Object-Oriented Systems. Earned his PhD from NIT Kurukshetra.

