
DOI: 10.4018/IJIRR.290830

International Journal of Information Retrieval Research
Volume 12 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

A Framework for Automated Scraping
of Structured Data Records From the
Deep Web Using Semantic Labeling:
Semantic Scraper
Umamageswari Kumaresan, Pondicherry Engineering College, India

Kalpana Ramanujam, Pondicherry Engineering College, India

ABSTRACT

The intent of this research is to come up with an automated web scraping system which is capable of
extracting structured data records embedded in semi-structured web pages. Most of the automated
extraction techniques in the literature capture repeated patterns among a set of similarly structured
web pages, thereby deducing the template used for the generation of those web pages, and then data
records extraction is done. All of these techniques exploit computationally intensive operations such
as string pattern matching or DOM tree matching and then perform manual labeling of extracted
data records. The technique discussed in this paper departs from the state-of-the-art approaches by
determining informative sections in the web page through repetition of informative content rather than
syntactic structure. From the experiments, it is clear that the system has identified data rich region
with 100% precision for websites belonging to different domains. The experiments conducted on the
real-world websites prove the effectiveness and versatility of the proposed approach.

KeyWoRDS
Deep Web, DOM Tree, HTML, Server-Side Templates, Structured Data, Supervised Extraction, Surface Web,
Unsupervised Extraction, Web Scraping, XPATH

INTRoDUCTIoN

Web Scraping involves extracting enormous amount of data embedded in semi-structured HTML
pages. The amount of information available with deep web is of several orders of magnitude higher
than the surface web. The surface web refers to those web pages indexed to search engines like
google, yahoo etc. The deep web refers to web pages that are generated dynamically by querying the
back-end database and embedding the resultant data records in server-side templates. Deep web is
also referred to as Dark web since it not indexed to search engines. The degeneration of data records
is not straightforward since the web pages are intended for human understanding. Getting the data
from deep web is easy if the owner of the web site provides the API for accessing it. This is not true
in most of the cases since it requires technical expertise and some are not willing to outsource their
data. It is due to this reason web scraping is the only solution to get the data from Deep web.

Data from deep web acts as a complementary source of information for many data analytics
applications such as opinion mining, sentiment analysis, product intelligence, customer intelligence

International Journal of Information Retrieval Research
Volume 12 • Issue 1

2

and many more. The huge amount of information needed by the data analytics application is available
in the Dark web or Deep web. The first step is to collect the data from the deep web pages. Performing
copy paste is practically infeasible since the number of web pages to be processed is huge. Therefore,
only possibility is to come up with an automated system which can identify target pages and perform
extraction. The problem of web data extraction can be stated as follows:

Let web site S consists of collection of template generated web pages P = {p1, p2, p3…pi… pm)
where each web page pi consists of set of data objects D = {d1, d2, d3…dr}. Each data object dj in D
is a set of attribute value pairs {<x1,y1>,<x2,y2>……<xn,yn>}. The problem of web data extraction
involves extraction of D from every pi in P belonging to S.

The design of web data extraction system should be capable of handling various challenges such
as heterogeneity of structuring of web pages belonging to different web sites, missing attributes,
several levels of nesting within templates in which data records are embedded, identification of
extraction target, semantic representation of extracted data, automatic labeling and so on. Although
many commercial tools such as Lixto (Baumgartner, Gatterbauer, & Gottlob, 2009), import.io (https://
www.import.io/), Connotate (https://www.connotate.com/) are available for web data extraction, their
usage requires understanding of site map, manual selection of extraction targets. Many automatic
approaches such as ExAlg (Arasu & Garcia-Molina, 2003), RoadRunner (Crescenzi, Mecca, &
Merialdo, 2002), FiVaTech (Kayed & Chang, 2010) and Trinity (Sleiman & Corchuelo, 2014) exist
in the literature. Semantic Scraper departs from these techniques in the following ways:

1. Automatic identification of data rich section
2. Automatic labeling of extracted data records
3. Ability to extract from a single input page

Section 2 discusses about the state-of-the-art approaches in the literature. Section 3 explains the
architecture of Web Data Extraction System (WDES) based on Semantic Labeling, Section 4 shows
experimental results and comparison with other state-of-the-art techniques and Section 5 discusses
about conclusion and future scope.

ReLATeD WoRKS

The problem studied in this work is concerned with automatic identification of Data Rich Region and
extraction of structured records from data rich region. Many state-of-the-art techniques exist in the
literature ranging from hand crafted extractors to unsupervised extractors. Initially wrappers are written
manually using some extraction programming languages. Writing hand crafted wrappers require
high level of expertise which forced the researchers to automatically induce wrappers from labeled
training samples. It involves the following steps: Labeling of training samples, learning extraction
rules from labeled training samples and applying rules to extract items from similarly structured pages.
Systems such as WIEN (Kushmerick, Weld, & Doorenbos, 1997), SoftMealy (Hsu & Dung, 1998),
Stalker (Muslea, Minton, & Knoblock, 1998), IEPAD (Chang & Lui, 2001) and Thresher (Hogue &
Karger, 2005) are examples of wrapper induction techniques. Limitations of these methods include
manual labeling of training examples, accurate learning requires large number of training samples,
manual labeling is laborious and time consuming and wrapper maintenance is costly. Later on, many
unsupervised techniques came into existence. Some techniques focus on identification of Data Rich
Regions (Sleiman & Corchuelo, 2013). (Baskaran & Ramanujam, 2017), (Chang, Kayed, Girgis, &
Shaalan, 2006), (Laender, Ribeiro-Neto, da Silva, & Teixeira, 2002) provide comprehensive survey
of web data extractors available in the literature.

The proposed approach is compared with the related state-of-the-art approaches such as Trinity
(Sleiman & Corchuelo, 2014), RoadRunner (Crescenzi, Mecca, & Merialdo, 2002), ExAlg (Arasu &

International Journal of Information Retrieval Research
Volume 12 • Issue 1

3

Garcia-Molina, 2003) and FiVaTech (Kayed & Chang, 2010). The reason for limiting our comparison to
these techniques is that these techniques have been experimented on real world websites. RoadRunner
(Crescenzi, Mecca, & Merialdo, 2002) tries to learn Union Free Regular Expression by comparing
initial set of rules deduced from input pages with newly seen page and tries to generalize the partial
rule learnt when it encounters mismatches to include optional repetitive structure. The time complexity
of the algorithm is exponential and the authors has come out with several heuristics to lower the time
complexity. ExAlg (Arasu & Garcia-Molina, 2003) considers document as a set of tokens and finds the
number of occurrences of each token. It then finds large and frequently occurring equivalence classes
(LEFQ) and then learns regular expression. Although determining frequency of occurrence of tokens
is simple, finding invalid LEFQs whose tokens do not appear in the same order is complex. ExAlg
(Arasu & Garcia-Molina, 2003) has many assumptions such as many number of tokens must have
unique roles, each type constructor such as union, group, repetition and optional must be instantiated
many times in the document and there should be separators around the attributes. FiVaTech (Kayed
& Chang, 2010) is a page-level extraction system based on tree merging and schema deduction. Tree
merging involves merging DOM trees simultaneously into a structure called fixed/variable pattern
tree. It consists of peer node recognition, peer matrix alignment, pattern mining and optional node
merging. Limitations of FiVaTech (Kayed & Chang, 2010) includes time-complexity associated with
aligning DOM trees, usage of bias to determine peer nodes and the selection of proper bias influences
the accuracy of the system.

Trinity (Sleiman & Corchuelo, 2014) considers document as a string of tokens. It applies Knuth
Morris (Knuth, Jr, & Pratt, 1977) pattern matching algorithm to identify the common pattern among
the documents. The initial shared pattern is referred as prefix, the portion of document which is not
common is referred to as separator and the final pattern which is common among the documents
is referred as suffix. The alignment is carried out recursively to build the trinity tree where each
node has 3 child nodes. Template is deduced using Trinary tree. Limitations of Trinity (Sleiman &
Corchuelo, 2014)are inability to handle template with alternating formatting for the same content,
wrong deduction of template if same sequence of tokens are used as separator for different attributes
and the time complexity associated with string alignment.

In (Janosi-Rancz & Lajos, 2015), authors have developed a semi-supervised approach for
extraction based on custom developed extraction language R whose syntax is similar to CSS queries.
This work served as a base for experimenting semantic analysis in the domain of web data extraction.
In (Vela, Cavero, Caceres & Cuesta, 2019), authors have developed a semi-automatic extractor for
scraping the data from websites having public transport information. Their notion is to develop
a framework for processing and management of data related to public transport. In (Baskaran &
Ramanujam, 2018), authors proposed an unsupervised approach based on Semantic analysis is used
to extract the post records from Health Discussion Forum sites has been developed. The applicability
of the approach to websites belonging to various domains is proved in this paper. Certain works such
as (Dönz & Boley, 2014), (Dönz & Bruckne, 2013), (Furche, Gottlob, Grasso, Orsi, Schallhart, &
Wang, 2012), (Pavai & Geetha, 2013) concentrate on web integration from multiple online sources.

The proposed system departs from all these techniques in the following ways: Instead of
considering entire document for the purpose of extraction, it first identifies the data rich region which
significantly reduces the complexity involved in carrying out the extraction task. The technique does
not consider the HTML code as such. It is based on the heuristics that attributes corresponding to data
records will be present as leaf nodes in the DOM tree and data rich region has many such repetitive
data records. Once the data rich region is identified we extract the XPath (https://www.w3.org/
TR/1999/REC-xpath-19991116/) to each leaf node. It is used as template to extract the remaining
data records. The technique has significantly reduced complexity and the experimental results show
that it has good precision and recall values irrespective of missing attributes and different attributes
formatted using same template.

International Journal of Information Retrieval Research
Volume 12 • Issue 1

4

DeSIGN oF WeB DATA eXTRACTIoN SySTeM
(WDeS) USING SeMANTIC LABeLING

The architecture of WDES based on Semantic Labeling consists of following components: (i)
conversion of web page to DOM tree, (ii) labeling of leaf nodes in the DOM tree using Semantic
Rules database, (iii) determining List of Semantic Features (SFL) for non-leaf nodes, (iv) building
Semantic Feature Tree (SFT), (v) identifying Repeated Semantic Features List (RSFL) for nodes
having more than one child node by computing the similarity between List of Semantic Features using
Tanimoto coefficient (Böhm, & Schneider, 2008), (vi) associating a measure of informativeness for
nodes having Repeated Semantic Features List (RSFL), (vii) finding Maximum Repeated Semantic
Features List (MRSFL) for non-leaf nodes with RSFL, by selecting RSFL of child node with maximum
value for informativeness measure, (viii) Identifying data rich region by finding the lowest node in
the Semantic Feature Tree whose Maximum Repeated Semantic Features List equals to Maximum
Repeated Semantic Features List of root node, (ix) finding nodes representing data records by
determining node whose SFL equals to MRSFL of Data Rich Region and determining XPath to each
of the leaf nodes in the subtree represented by data record and storing in template database. The
architecture is shown is Figure 1.

3.1 Steps in WDeS Using Semantic Labeling

a) Conversion to DOM tree:

The given webpage is converted to DOM tree (https://www.w3.org/DOM/DOMTR) using HTML
parser provided by Jaunt API (https://jaunt-api.com/).

Figure 2 shows the HTML page and the corresponding DOM tree representation.

Figure 1. Architecture of WDES based on Semantic Labeling

International Journal of Information Retrieval Research
Volume 12 • Issue 1

5

b) Determine type of leaf node using Semantic Rules Database:

The design of WDES using Semantic Labeling is based on the heuristic that, determining semantic
type of leaf nodes and accumulating it to root help in identification of Data Rich Region. The content
embedded in HTML template is available as leaf nodes in the DOM tree. It is easy for humans to know
the type of content whereas for a computer it requires some logic for identification. The heuristics
used by humans for identifying the type of content is represented as rules using regular expression
for automatic identification. The rules used in identification of type of data fields is referred to as
semantic rules. For example, the content embedded in heading elements h1 to h6 represents the title,
the content embedded within block elements such as p or div element represents description, the
content which matches regular expression for price represents cost and so on. The sematic rules used
in identification of type of content for product web sites is shown in Table 1.

Figure 2. E-Bay Webpage and its DOM tree representation

International Journal of Information Retrieval Research
Volume 12 • Issue 1

6

After generating DOM tree, the Semantic Feature Tree is built by applying the Semantic rules
in Table 1 to the leaf nodes in the DOM tree of Figure 2.

c) Building Semantic Feature Tree (SFT)

Definition 1: Semantic Feature Tree (SFT) is a replication of DOM tree where every node
is associated with List of Semantic Features (SFL), Repeated Semantic Features List (RSFL) and
Maximum Repeated Semantic Features List (MRSL) and a measure of informativeness.

To obtain the Semantic Feature Tree from DOM Tree, the algorithm build_SemanticFeatureTree
is invoked. The algorithm first traverses the DOM top down to identify the leaf nodes. As the nodes
in the DOM tree are traversed, the corresponding node is created in the Semantic Feature Tree. Once
leaf nodes are reached, they are matched with rules in the Semantic Rules Database and corresponding
bit position is set to 1 in the List of Semantic Features associated with the node in the Semantic
Feature Tree.

Applying Algorithm Build_SematicFeatureTree to the DOM tree in Figure. 2 results in Semantic
Feature Tree shown in Figure 3.

Definition 2: List of Semantic Features(SFL) is a vector of bit strings denoted by SFL (nodem)
= {v1, v2, v3... vk}, where k is the number of labels associated with the leaf nodes in the Semantic
Feature Tree. SFL (nodem)[i]= 1, if the content of leaf node matches the rulei in Semantic Rules
Database. Set to 0, otherwise.

Table 1. Semantic Rules Database containing rules for detecting semantic type of Product Data

Alphabets Description

block_ele Identifies tags such as <td>,<div>,<p> etc.

(O)+ one or more occurrence

(O)* zero or more occurrence

(O)1 one occurrence

(O)? zero or one occurrence

Patterns Description

if O is a child of <h#> or O[attr(class)].contains(“title”)
then, assign node_type= Ptitle

Ptitle: Identifies title of the product
Title: If node is child of heading elements (h1, h2, h3, h4,h5
or h6) and if its class attribute contains “title” then set
node_type as title.

ifO.matches(\d[\d\,\.]+) then, node_type = Pprice Pprice: Identifies price of the product
If content of the node matches with the pattern
corresponding to price then, assign node_type as price.

if ((W)+ && count(W) > 10 && W is a child of (block_
ele) then, assign node_type= Pcontent

Pcontent: Identifies description of the Product
If content of the node has more than one word and is a child
of block elements such as div or p then, set node_type as
content.

if O.matches (\\d\\d\\%\\sOff$|\\d+\\%\\soff$ | \\d+\\,\\
d+\\s+\\(\\d+\\%\\) |\\(\\-\\d\\d\\%\\)) then, node_
type=Poffer

Poffer: Identifies offer price of the Product
If content of the node matches with the pattern
corresponsding to offer price then, assign node_type as
offer price.

if O.matches(img) then, node_type = Pimg If the node corresponds to element then, set node_
type as product image.

International Journal of Information Retrieval Research
Volume 12 • Issue 1

7

Once the Semantic Feature Tree is built, the next step is to find the Semantic Features List of
non-leaf nodes which is done by invoking the algorithm Compute_SFL_Non_Leaf_Nodes. The
algorithm performs a post-order traversal of Semantic Feature Tree in whichSFL(non-leaf_nodem)=
sum(SFL(childNodes(non-leaf_nodem)), where n is the number of child nodes of m

Applying the algorithm Compute_SFL_Non_Leaf_nodes to the SFT in Figure 3 results in SFT
as shown in Figure 4.

Definition 3: Repeated Semantic Features List(RSFL) of a nodem in Semantic Feature Tree
(SFT) is avg(SFLs of childNodes(nodem)) such that sim(SFL(nodei),SFL(nodej)) > 0.75 where nodei,
nodej belongs to childNodes(nodem). 0.75 is chosen as threshold through experiments. By varying
threshold between 0.5 and 0.8, it is observed that accurate results is obtained for threshold = 0.75.

Algorithm Build_SemanticFeatureTree (root_of_DOMTree root, root_of_SFT n)

Input: URL of the Forum page

Output: Semantic Feature Tree

1. begin

2. if(root.type=ELEMENT_NODE) &&root.childNodes.size() >0)

3. Check whether child nodes are text nodes

4. Match the concatenated string against regular expression to determine semantic_type

5. Set the corresponding value in the Semantic Feature List

6. end if

7. if(root.type=ELEMENT_NODE &&root.childNodes.size() !=0)

8. for every child node in DOMTree

9. construct the node in SFT

10. build_SemanticFeatureTree(root.child)

11. end for

12. end if

13. end

Figure 3. Semantic Feature Tree whose leaf-nodes are associated with SFL

International Journal of Information Retrieval Research
Volume 12 • Issue 1

8

Similarity between lists of Semantic Features is determined by using Tanimoto Coefficient
(Böhm & Schneider, 2008).

Where, ai is the jth element in Vector A and bj is the jth element in Vector B and k is the size of
the vectors A and B respectively.

Definition 4: Informativeness Measure associated with RSFL(nodem) is derived by taking into
account the heuristics that informative section contains more number of relevant data fields and hence
the number of non-zero values in the Semantic Features. List will be high and number of times the
SFL is repeated will also be high. Therefore,

Information value (RSFL) =,
Where,
p - size of the list,
vi – ith value in the RSFL(v),

Algorithm Compute_SFL_Non_Leaf_Nodes(root_of_SFT root)

Input: root node of SFT

Output: Semantic Feature Tree with nodes having SFL

1. begin

2. for every child node of root do

3. Compute_SFL_Non_Leaf_Nodes(root.childnode)

4. end for

5. for i<- 1 to root.childNodes.size() do

6. root.SFL[i] +=root.child.SFL[i]

7. end for

8. end

Figure 4. Semantic Feature Tree in which nodes are associated with SFL

International Journal of Information Retrieval Research
Volume 12 • Issue 1

9

n- number of non-zero entries in the feature list and
r – number of times RSFL is repeated.
Algorithm calculate_RSFL performs post order traversal of Semantic Feature Tree. Lines 6, 7,

8 and compares the SFL of every pair of child nodes of the current node and finds the SFLs whose
similarity is greater than the threshold. Line 20 determines the informativeness measure associated

Algorithm calculate_RSFL(root_of_SFT root)

Input: root node of SFT

Output: Semantic Feature Tree with nodes having RSFL

1. begin

2. for every child node of root do

3. calculate_RSFL(root.childnode)

4. end for

5. if (root.child.length>1)

6. for i<- 1 to root.childNodes.size() do

7. for j<-i+1 to root.childNodes.size() do

8. if(sim(root.childNodes[i],root.childNodes[j])>0.75)

9. repeatcnt++

10. store the average of SFL of node i& j as RSFL

11. end if

12. end for

13. end for

14. end if

15. store the repeat count

16. for each feature in RSFL

17. if(feature[i]>0)

18. non-zero_cnt++

19. end if

20. end for

21. for each feature in RSFL

22. if(feature[i]>0)

23. info_val = info_val+feature[i]*repeat_cnt*non_zero_cnt

24. end if

25. end for

26. end

International Journal of Information Retrieval Research
Volume 12 • Issue 1

10

with the RSFL by taking product of each in the list with the number of times repeated and number
of non-zero values.

By applying the algorithm to the SFT in Figure. 4, we get the RSFLs for the following nodes:
<select> elements RSFL: <select> element has many <option> elements as its child nodes (let

us assume 10). SFL associated with <option> element is <1,0,0,0,0> and the similarity between any
two SFLs is, since all are same. Therefore, RSFL of <select> element is <1,0,0,0,0>, the number
of times it is repeated is 10. Information measure of RSFL <1,0,0,0,0> is [1X10X1+0X10X1+0X
10X1+0X10X1+0X10X1] = 10.

 elements RSFL: element has many elements as its child nodes (based on
number of data records). Let us assume it has 10 elements as its child nodes. SFL associated
with li element is <2,1,1,0,0> and the number of times it is repeated equals to 10. Number of non-
zero values in the RSFL is 3. Even if any data record has missing attribute, the technique considers
its SFL since sim >threshold(0.75). Informativeness measure of RSFL <2,1,1,0,0> is [2X10X3 +
1X10X3 + 1X10X3 + 0X10X3 + 0X10X3] = 180.

Definition 5: Maximum Repeated Semantic Features List (MRSFL) of a nodem in the Semantic
Feature Tree (SFT) is determined by

Max {info_value(RSFL(nodem)), info_value(MRSFL(childNodes(nodem)))}
Algorithm calculate_MRSFL performs a post order traversal of Semantic Feature Tree and

determines the MRSFL of the current node by comparing the RSFL of current node and MRSFL of
leaf nodes and choosing the one with the maximum informativeness measure. Lines 5, 6, 7, 8 and
9 finds the MRSFL with maximum informativeness measure. Lines 10,11,12,13 compares MRSFL
with maximum informativess measure with the informativeness measure associated with current
nodes RSFL and assigns the MRSFL of current node accordingly.

Algorithm calculate_MRSFL(root_of_SFT root)

Input: root node of SFT

Output: Semantic Feature Tree with nodes having MRSFL

1. begin

2. for every child node of root do

3. calculate_MRSFL(root.childnode)

4. end for

5. for i<- 1 to root.childNodes.size() do //find child with max RSFL

6. if(root.childNodes[i].info_val>max)

7. max<-root.childNodes[i].info_val

8. max_RSFL<-root.childNodes[i].MRSFL

9. end if

10. end for

11. if(root.info_val>max)

12. MRSFL<-root.RSFL

13. else

14. MRSFL<-max_RSFL

15. end if

16. end

International Journal of Information Retrieval Research
Volume 12 • Issue 1

11

Figure 5. Determine MRSFL of root for the SFT

Algorithm find_DRR(root_of_SFT root)

Input: Root node of SFT

Output: Node with MRSFL same as that of root’s MRSFL

begin

for every child node of root do

for j <- 0 to num_features do

if(child.MRSFL[j] = root.MRSFL[j])

cnt++;

end if

end for

end for

if(cnt == num_features)

flag=1

find_DRR(root.childnode)

else

if (flag == 1)

return root//node representing DRR

end if

end

International Journal of Information Retrieval Research
Volume 12 • Issue 1

12

Upon applying calculate_MRSFL to the SFT in Figure 4, <select> element’s MRSFL equals its
RSFL, element’s MRSFL equals to its RSFL. From Figure 5, it is clear that <body> element get
its MRSFL from element since the informativeness measure associated with its MRSFL is high.

Finding Data Rich Region
Definition 6: Data Rich Region consists of Repeated Data Records whose Maximum Repeated
Semantic Features List (MRSFL) is same as Maximum Repeated Semantic Features List (MRSFL)
of root.

Since the MRSFL is propagated from leaf nodes to root based on informativeness measure, the
root gets its MRSFL from the node containing data records which has the maximum information
value compared to other nodes in the DOM tree. Therefore, the algorithm find_DRR determines the
lowest node whose MRSFL is same as root node’s MRSFL.

Lines 3, 4 and 5 compares the MRSFL of the current node with the MRSFL of root. The variable
cnt keeps track of number of bits that matches in both the vectors. Line 8 checks whether the count
matches with the length of the vector. If it is true then, find_DRR is recursively called on its child
node. When the recursion is exited, the last node whose MRSFL is same as root’s MRSFL represents
the DRR.

From Figure 5, it is clear that body element gets its MRSFL from ul element. The lowest element
whose MRSFL is same as the MRSFL of root is ul element. Therefore, ul element represents the
Data Rich Region.

a)

Finding Data Records
Definition 7: Data Rich Region gets its MRSFL from the node representing data records. Since
the data records contain repeated pattern, the SFL gets repeated which resulted in MRSFL of DRR.

The algorithm find_DataRecords finds the node whose SFL equals MRSFL of DRR. Lines 3, 4,
5 and 6 determines number of bits whose SFL matches with the MRSFL. If the number of bits equals

Algorithm find_DataRecords (drr_node)

Input: Node corresponding to DRR of SFT

Output: Node with SFL same as that of drr_node’s MRSFL

begin

for every child node of drr_node do

for j <- 0 to num_features do

if(child.SFL[j] = drr_node.MRSFL[j])

cnt++;

end if

end for

if(cnt = num_features)

find_XPATH(child)

end if

end for

end

International Journal of Information Retrieval Research
Volume 12 • Issue 1

13

length of the vector then, the current node represents data record. The XPath to each field within the
data record is determined and stored in template database. The XPath in template database is used
to extract data records from similarly structured pages.

By applying the algorithm for the SFT in Figure 5, each li element who’s SFL equals the MRSFL
of DRR represents the data record as shown Figure 6. We get the XPaths shown in Table 2 by finding
the path to each of the leaf nodes from the li element. The XPaths are stored in template database
and used to retrieve the data records from similarly structured pages belonging to the same website.

eXPeRIMeNTAL ANALySIS

The system is implemented using JDK 1.7 using Netbeans IDE. Jaunt API (https://jaunt-api.com/)
is used for parsing HTML documents and for the construction of DOM tree. Experiment has been
carried out in 31 real-world datasets belonging to 7 different domains. The system is able to identify
Data Rich Region with 100% accuracy provided at least two fields belonging to the data records
satisfy the rules in the Semantic Rules Database. Otherwise, the semantic rules need to be updated to
recognize unseen pattern. Semantic Scraper is compared with other state-of-the-art techniques using
the measures: recall and precision. Recall value is the fraction of number of data records extracted
correctly over the actual number of data records present in the document. Precision value is the
fraction of number of records extracted correctly over the number of data records extracted. From
the experimental results in Table 3, it is clear that semantic scrapers outperform the techniques based
on string pattern matching (Arasu & Garcia-Molina, 2003) (Crescenzi, Mecca, & Merialdo, 2002)
and DOM tree matching (Kayed & Chang, 2010) in the following aspects:

Figure 6. Identify data records

Table 2. XPath to data fields within the data record

Data Field XPath

Img body/div/ul/li/div/a/img

Title body/div/ul/li/div/h3/tit and body/div/ul/li/div/tit

price body/div/ul/li/span/price

International Journal of Information Retrieval Research
Volume 12 • Issue 1

14

Table 3. Experimental results

Category
No.
of
Pages

Semantic Scraper Trinity RoadRunner FivaTech

P R F1 P R F1 P R F1 P R F1

Books

Aloe Books 30 1.00 1.00 1.00 1.00 1.00 1.00 0.65 0.58 0.61 0.92 0.99 0.95

Many
Books 30 1.00 1.00 1.00 0.99 0.99 0.99 0.97 0.95 0.96 0.77 0.97 0.86

Awesome
Books 30 1.00 1.00 1.00 1.00 0.87 0.93 0.78 0.53 0.63 0.85 1.00 0.92

Movies

IMDB 30 0.99 1.00 0.99 0.93 0.86 0.89 0.39 0.35 0.37 - - -

Disney
Movies 30 0.98 0.99 0.98 1.00 1.00 1.00 0.67 0.67 0.67 0.71 0.67 0.69

Albania
Movies 30 0.99 0.99 0.99 0.95 0.98 0.96 0.75 0.77 0.75 0.82 0.81 0.81

Cars

Auto Trader 30 1.00 1.00 1.00 0.99 1.00 1.00 - - - - - -

Car Max 30 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.98 0.45 0.89 0.60

Car Zone 30 0.99 0.98 0.98 0.98 1.00 0.99 0.72 0.81 0.76 0.92 1.00 0.96

Jobs

4 Jobs4 30 0.97 0.99 0.98 0.92 0.98 0.95 0.00 0.00 0.00 - - -

Career
Builder 30 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.80 0.83 0.82

Job of Mine 30 0.80 0.90 0.85 0.86 1.00 0.93 0.72 0.72 0.72 - - -

Real Estate

Trulia 30 1.00 1.00 1.00 0.63 1.00 0.77 0.00 0.00 0.00 - - -

Remax 30 1.00 1.00 1.00 0.70 0.98 0.82 0.00 0.00 0.00 - - -

Haart 30 1.00 1.00 1.00 1.00 1.00 1.00 0.79 0.79 0.79 0.94 1.00 0.97

Sports

SoccerBase 30 1.00 1.00 1.00 0.97 1.00 0.98 0.95 1.00 0.97 - - -

UEFA 30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - - -

NFL 30 0.90 0.92 0.91 1.00 1.00 1.00 0.98 0.98 0.98 0.53 0.81 0.64

Doctors

WebMD 30 1.00 1.00 1.00 1.00 1.00 1.00 0.06 0.06 0.06 0.77 1.00 0.87

AMA 30 1.00 1.00 1.00 0.98 1.00 0.99 - - - - - -

Dentists 30 0.97 0.98 0.97 0.92 1.00 0.96 0.96 0.96 0.96 0.56 0.99 0.72

RoadRunner

Amazon 21 1.00 1.00 1.00 0.93 0.73 0.82 0.00 0.00 0.00 0.60 0.67 0.63

UEFA 20 1.00 0.99 0.99 1.00 0.90 0.95 1.00 1.00 1.00 0.91 0.94 0.92

E-Bay 19 0.97 1.00 0.98 0.97 1.00 0.98 0.82 0.82 0.82 0.83 1.00 0.91

Netflix 50 1.00 1.00 1.00 0.99 0.99 0.99 0.76 0.79 0.78 0.82 0.80 0.81

Major
League 9 0.99 0.98 0.98 0.98 0.55 0.70 0.00 0.00 0.00 0.99 1.00 0.99

RISE

Bigbook 235 0.99 0.99 0.99 0.95 0.94 0.94 0.01 0.00 0.00 - - -

IAF 252 1.00 1.00 1.00 0.84 0.38 0.52 0.90 0.09 0.17 0.53 0.69 0.60

Okra 10 1.00 0.97 0.98 1.00 0.82 0.90 0.12 0.01 0.02 0.49 0.34 0.40

LA Weekly 28 0.99 0.99 0.99 0.97 0.92 0.94 0.00 0.00 0.00 0.83 0.57 0.68

Zagat 91 1.00 1.00 1.00 1.00 0.86 0.92 0.00 0.00 0.00 1.00 0.98 0.99

International Journal of Information Retrieval Research
Volume 12 • Issue 1

15

a. Performs automatic labeling of extracted instances based on semantic rules
b. Ability to perform extraction even if a single input page is available
c. The pattern matching based techniques won’t be able to perform extraction if the web page has

missing attributes or if attributes are formatted using alternating templates. Semantic Scraper
has no dependency on templates used to format data records and therefore, it is able to perform
well even if some data records has missing attributes or differently formatted attributes.

d. The complexity of pattern based technique is high, exponential in case of RoadRunner (Crescenzi,
Mecca, & Merialdo, 2002).

Complexity of Semantic Scraper has two major components: construction of Semantic Feature
Tree, determining Repeated Semantic Features List. Construction of SFT requires in-order traversal of
DOM tree whose complexity is O(n) where n is the number of nodes in the DOM tree. To determine
Semantic Features List, Semantic Feature Tree is traversed in post-order and similarity between
Semantic Feature List of child nodes are computed. Let n be the number of nodes in the Semantic
Feature Tree, let m be the number of child nodes for each n in SFT and m<n/4, k be the size of
semantic feature vector. For each pair of child nodes of node n, similarity computation requires k2
iterations. Number of comparisons equals n*m(m-1)*k2. Since the number of features k considered
is constant usually less than 20, k2 is negligible. Also, m(m-1)<n in a DOM tree, since number of
child nodes, a node has is very less compared to total number of nodes in the tree. Therefore, the
complexity reduces to O(n2).

The techniques are compared based on F1 score which is the weighted harmonic mean of precision
and recall values. The box plot in Figure 7 shows the comparison of techniques by taking into account

Figure 7. Box Plot of F1-Measures

International Journal of Information Retrieval Research
Volume 12 • Issue 1

16

the entire range of values by considering min, max, Q1, median and Q3. The maximum value for F1
score is 1.00 for all the techniques since they were able to perform 100% extraction for certain cases.
Semantic Scraper departs from the rest of the techniques with respect to its interquartile range which
is the difference between Q3 and Q1 is the least proving the consistency of the approach compared
to all other state-of-the-art approaches.

CoNCLUSIoN AND FUTURe DIReCTIoNS

Most of the unsupervised algorithms like ExAlg (Arasu & Garcia-Molina, 2003), RoadRunner
(Crescenzi, Mecca, & Merialdo, 2002), FivaTech (Kayed & Chang, 2010) etc. try to learn template
first, which is then used to carry out the extraction process. The drawbacks associated with these
approaches are their dependency on string matching or tree matching makes them computationally
expensive, inability to perform extraction if only a single source page is available, missing attributes,
use of same template for formatting different attributes or use of alternate formatting for same attribute
remarkably degrades the accuracy of extraction. From the extensive study of these approaches it is
clear that all these drawbacks are associated with template deduction. Semantic Scraper approach is
based on the heuristic that attribute values corresponding to data records are available as leaf nodes
in the DOM tree and by scoring the leaf nodes representing relevant content and accumulating the
score to the non-leaf nodes helps in identification of data rich region. A single post order traversal
of the Semantic Feature Tree identifies the Data Rich Region which contains the target data records
and thus computational complexity gets reduced significantly. This approach is capable of performing
extraction even if single source page is available. Since the approach is template independent and
dependent only on the repetition of data records, it performs extraction irrespective of formatting of
attributes and missing attributes. It is proved from the experiments the versatility of the proposed
approach i.e. its applicability to web sites belonging to various domains.

The limitation of SemanticScraper is its inability to classify leaf nodes to appropriate semantic
type if it is not covered by the semantic rules. The accuracy of the system depends heavily on the
semantic rules which is used to classify the semantic type of leaf nodes. Framing Semantic rules
require thorough domain knowledge. In future, the work can be extended to include domain ontologies
for framing semantic rules and represent the extracted data using semantic representations such as
RDF (https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/Overview.html), JSON (https://
www.json.org/) etc. to facilitate analysis.

ReFeReNCeS

Arasu, A., & Garcia-Molina, H. (2003). Extracting structured data from web pages. In Proc. ACM SIGMOD
(p. 337-348). ACM.

International Journal of Information Retrieval Research
Volume 12 • Issue 1

17

Baskaran, U., & Ramanujam, K. (2017). Web harvesting: web data extraction techniques for deep web pages.
In A. Kumar (Ed.), Web usage mining techniques and applications across industries (pp. 351–378). IGI Global.

Baskaran, U., & Ramanujam, K. (2018). Automated scraping of structured data records from health discussion
forums using semantic analysis. In Informatics in Medicine Unlocked. Elsevier. .10.1016/j.imu.2018.01.003

Baumgartner, R., Gatterbauer, W., & Gottlob, G. (2009). Web data extraction system. In Encyclopedia of database
systems (pp. 3465 – 3471). doi:10.1007/978-0-387-39940-9_1154

Böhm, H. J., & Schneider, G. (2008). Virtual Screening for Bioactive Molecules. Retrieved from https://pubs.
acs.org/doi/abs/10.1021/ja0152052

Chang, C. H., Kayed, M., Girgis, M. R., & Shaalan, K. A. (2006). Survey of web information extraction systems.
IEEE Transactions on Knowledge and Data Engineering, 18(10), 1411–1428. doi:10.1109/TKDE.2006.152

Chang, C. H., & Lui, S. C. (2001). IEPAD: information extraction based on pattern discovery. Proceedings of
the Tenth International Conference on World Wide Web (WWW). doi:10.1145/371920.372182

Crescenzi, V., Mecca, G., & Merialdo, P. (2002). Roadrunner: automatic data extraction from data-intensive
websites. SIGMOD. doi:10.1145/564691.564778

Dönz, B., & Boley, H. (2014). Extracting data from the deep web with global-as-view mediators using rule
enriched semantic annotations. In Proceedings of the RuleML 2014 Challenge and the RuleML 2014 Doctoral
Consortium hosted by the 8th International Web Rule Symposium (Vol. 1211, pp. 1-15). Academic Press.

Dönz, B., & Bruckne, D. (2013). Extracting and integrating structured information from web databases using
rule based semantic annotations. Industrial Electronics Society IECON 2013–39th Annual Conference of the
IEEE, 4470-4475. doi:10.1109/IECON.2013.6699855

Furche, A., Gottlob, T., Grasso, G., Orsi, G., Schallhart, G., & Wang, C. (2012). AMBER: Automatic supervision
for multi-attribute extraction. CoRR abs/1210.5984 2012.

Hogue, A., & Karger, D. (2005). Thresher: automating the unwrapping of semantic content from the world wide
web. Proceedings of the 14th International Conference on World Wide Web (WWW). doi:10.1145/1060745.1060762

Hsu, C. N., & Dung, M. (1998). Generating finite-state transducers for semi-structured data extraction from the
web. Journal of Information Systems, 23(8), 521–538. doi:10.1016/S0306-4379(98)00027-1

Janosi-Rancz, K. T., & Lajos, A. (2015). Semantic data extraction. Elsevier Procedia Technology, 19, 827–834.
doi:10.1016/j.protcy.2015.02.119

Kayed, M., & Chang, C. H. (2010). FiVaTech: Page-level web data extraction from template pages. IEEE
Transactions on Knowledge and Data Engineering, 22(2), 249–263. doi:10.1109/TKDE.2009.82

Knuth, D. E., Jr. J. H. M., & Pratt, V. R. (1977). Fast pattern matching in strings. SIAM J. Comput., 6(2), 323–350.

Kushmerick, N., Weld, D., & Doorenbos, R. (1997). Wrapper Induction for Information Extraction. In Proceedings
of the Fifteenth International Conference on Artificial Intelligence (pp. 729-735). Nagoya, Japan: Academic Press.

Laender, A. H. F., Ribeiro-Neto, B. A., da Silva, A. S., & Teixeira, J. S. (2002). A brief survey of web data
extraction tools. SIGMOD Record, 31(2), 84–92. doi:10.1145/565117.565137

Muslea, I., Minton, S., & Knoblock, C. (1998). A hierarchical approach to wrapper induction. Proceedings of
the Third International Conference on Autonomous Agents (AA-99). doi:10.1145/301136.301191

Pavai, G., & Geetha, T. V. (2013). A unified architecture for surfacing the content of deep web databases. Proc.
of Int. Conf. on Advances in Communication, Network, and Computing, 35 – 38.

Sleiman, H. A., & Corchuelo, R. (2013). A survey of region extractors from web documents. IEEE Transactions
on Knowledge and Data Engineering, 25(9), 1960–1981. doi:10.1109/TKDE.2012.135

Sleiman, H. A., & Corchuelo, R. (2014). Trinity: On using trinary trees for unsupervised web data extraction.
IEEE Transactions on Knowledge and Data Engineering, 26(6), 1544–1556. doi:10.1109/TKDE.2013.161

http://dx.doi.org/10.1007/978-0-387-39940-9_1154
https://pubs.acs.org/doi/abs/10.1021/ja0152052
https://pubs.acs.org/doi/abs/10.1021/ja0152052
http://dx.doi.org/10.1109/TKDE.2006.152
http://dx.doi.org/10.1145/371920.372182
http://dx.doi.org/10.1145/564691.564778
http://dx.doi.org/10.1109/IECON.2013.6699855
http://dx.doi.org/10.1145/1060745.1060762
http://dx.doi.org/10.1016/S0306-4379(98)00027-1
http://dx.doi.org/10.1016/j.protcy.2015.02.119
http://dx.doi.org/10.1109/TKDE.2009.82
http://dx.doi.org/10.1145/565117.565137
http://dx.doi.org/10.1145/301136.301191
http://dx.doi.org/10.1109/TKDE.2012.135
http://dx.doi.org/10.1109/TKDE.2013.161

International Journal of Information Retrieval Research
Volume 12 • Issue 1

18

Umamageswari Kumaresan has received Ph.D. in the area of Computer Science and Engineering from Pondicherry
University in April 2019. She was born in June 1984 at Puducherry. She received her B.Tech. in Computer Science
and Engineering from Pondicherry Engineering College in 2005, her M.Tech. in Computer Science and Engineering
from Bharath University in 2012. She worked as Senior Software Engineer in Wipro Technologies from August
2005 till January 2007. She worked as Assistant Professor in the Department of Information Technology at New
Prince Shri Bhavani College of Engineering and Technology from June 2012 till April 2018. She has published
more than ten research papers in reputed International Journals and Conferences. Her research interests include
web mining, web data extraction, information security and sentiment analysis. She is a member of IAENG.

Kalpana Ramanujam is currently working as Professor in the Department of Computer Science and Engineering at
Pondicherry Engineering College, Puducherry, India. She received her B.Tech. degree in Computer Science and
Engineering from Pondicherry University, Puducherry, India in the year 1996 and M. Tech. degree in Computer
Science and Engineering from Pondicherry University, Puducherry in1998. She completed her Ph.D in Computer
Science & Engineering in the year 2013 in the field of Parallel Computing Systems. Her areas of interest include
Parallel Computing Systems, High Performance Computing, Web services and Distributed Computing. She has
published more than 100 research papers in International Journals / Conferences. She is also a member of ISTE.
She is also a recipient of CMI awardee for technical leadership.

Vela, B., Cavero, J. M., Cáceres, P., & Cuesta, C. E. (2019). A Semi-Automatic Data–Scraping Method for the
Public Transport Domain. IEEE Access: Practical Innovations, Open Solutions, 7, 105627–105637. doi:10.1109/
ACCESS.2019.2932197

http://dx.doi.org/10.1109/ACCESS.2019.2932197
http://dx.doi.org/10.1109/ACCESS.2019.2932197

