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ABSTRACT

The centroid-based clustering algorithm depends on the number of clusters, initial centroid, distance 
measures, and statistical approach of central tendencies. The initial centroid initialization algorithm 
defines convergence speed, computing efficiency, execution time, scalability, memory utilization, and 
performance issues for big data clustering. Various researchers have proposed the cluster initialization 
techniques, where some initialization techniques reduce the number of iterations with the lowest 
cluster quality, and some initialization techniques increase the cluster quality with high iterations. 
For these reasons, this study proposed the initial centroid initialization based maxmin data range 
heuristic (MDRH) method for K-means (KM) clustering that reduces the execution times, iterations, 
and improves quality for big data clustering. The proposed MDRH method has compared against the 
classical KM and KM++ algorithms with four real datasets. The MDRH method has achieved better 
effectiveness and efficiency over RS, DB, CH, SC, IS, and CT quantitative measurements.

Keywords
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INTRODUCTION

The rapid development of digital technologies had produced enormous amounts of data in a different 
format at high speed, such as social media. In Sep. 2019 (Viens, 2019), the monthly active users of 
Facebook was 2.4 billion that sent 41.6 million messages through Messenger in a minute, YouTube 
has 2 billion users that have watched 4.5 million videos per minute, Instagram has 1 billion users 
out of which 347,222 users scrolled the Instagram per minute, Twitter has 330 million users where 
87500 users tweeted. All these social media describes how much data has been generated by the 
user in current ages with high speed. Digital technologies have changed the scales, formats, and 
speed of data production. For these reasons, the nature of the usual data changed to big data. The 
volume, variety, and velocity characteristics have defined the complex framework of big data. The 
volume characteristic defines Terabytes and Petabytes scaling, the variety defines heterogeneous 
data formats generated through the heterogeneous data sources, and the velocity defines the speed of 
data production and data analysis. Data volume is the base of big data that defines the massive data 
set. Here, this paper summarizes the volume, variety, and velocity characteristics basis of existing 
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research (Hariri et al., 2019; Lee, 2017; Nada Elgendy & Elragal, 2014) as “volume depends upon 
variety, and variety depends upon velocity.”

Recent researchers have suggested other characteristics of the big data as value (Oracle), veracity 
(IBM), variability (SAS), and visualization. Value is defining the valuable information from massive 
volume using constant attributes of the big data that describe the decision system (Hariri et al., 2019; 
Sivarajah et al., 2017). Veracity is determining the quality of the data as trustiness and accuracy during 
the data analysis, data storing and management, and heterogeneous sources. Variability is defining 
data structure, meaning, and behavior that changes from time to time due to rapid growth. Veracity 
is determining the accuracy of the decision-making system (Nada Elgendy & Elragal, 2014; Tabesh 
et al., 2019) and variability used in sentiment analysis (Gandomi & Haider, 2015; Sivarajah et al., 
2017). Visualization characteristic visualizes the knowledge as user expectation, or unstable such as 
pictorial or graphical such as a table, graph, picture, statically, and so on. This paper summarizes the 
value, veracity, variability, and visualization characteristics of big data as “ Veracity validates the 
accuracy basis of variety, the value identifies predicted value based on volume and variety, variability 
presents specific analysis tools based on the volume and variety, and visualization visualized the 
results and problems based on the volume, variety, and velocity.”

Classical data mining algorithms use a centralized data source, but big data mining algorithms 
use distributed, centralized and a mixture of multiple sources. Multiple sources mining of big data 
could be grouped into four categories pattern analysis, classification, clustering, and fusion (Wang et 
al., 2018). The clustering process is the default data mining approach that labels data items without 
any prior knowledge basis of data similarity (Jain, 2010). For this reason, clustering is known as 
unsupervised learning. Data similarities define by the distance measures, where data similarities 
and variance of within-cluster are minimum, the data similarities of between-clusters are maximum. 
Classical clustering algorithms are facing various challenges due to data volume, variety, and velocity. 
The data volume is defining the computational cost, speed, efficiency, and scalability challenges of 
the classical clustering algorithms (Khondoker, 2018; Maheswari & Ramakrishnan, 2019). Big data 
clustering focuses on scale-up, speed-up, optimizing computation costs, and resources without the 
effect of cluster quality. The design of the big data clustering is dependent upon the single-machine 
and multiple-machine execution environment (Khondoker, 2018).

Clustering methods determine the data points and patterns as natural behaviors through 
the statistical classification techniques and the clustering process used for compression, natural 
classification, and underlying structure of the data. Data volume consists of data varieties such as 
structured, unstructured, and semi unstructured. Structured data have specific formats such as table, 
graph, vector, while unstructured data have no such format for example text, images, audio, video, 
and so on. The structured data have the semantic relationship between each object which is basic 
requirements for clustering. During the clustering process, data variety ignores the structure of the 
unstructured data and uses its feature vector. Unstructured data firstly converted into the pooled 
feature vector (Jain, 2010) or numerical data vector (Duwairi & Abu-Rahmeh, 2015), and after that 
become suitable for application of applies the clustering methods. This type of clustering is called 
multi-way clustering, co-clustering, bimodal clustering, etc. (Jain, 2010). Clustering algorithms are 
classified into partitional, hierarchical, distribution, probabilistic, model, density, grid, fuzzy, and 
graph clustering (K.K. Pandey & Shukla, 2019; Kamlesh Kumar Pandey et al., 2020).

The partitional clustering algorithms used in four phases for performing the clustering process 
and optimization of the relative objective function. The first phase selects the number of cluster K, 
and the second phase initializes the K cluster centroids basis of initialization methods. During the 
third phase, the distance measures find the nearest data points through the cluster centroid and data 
points of the dataset. The last step of the partitional clustering is to update the K centroid through 
central tendency based statistical approaches. The third and fourth phases use multiple times until 
the defined objective function has not to be optimized (Jain, 2010). This paper selects the K-Means 
(KM) to study cluster quality, execution time, speed up, memory utilization, and scalability under big 
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data mining setup considering the initial centroid initialization. The KM clustering is widely adopted 
for segmentation, text mining, bioinformatics, wireless sensor networks, financial discipline, data 
compression, texture segmentation, computer vision, vector quantization, etc (Pandove et al., 2018; 
Xie et al., 2019).

The result of the KM depends on the initial centroid because poorly initial centroid increases 
the number of iterations and troubles the local minima. This weakness is compensated by using a 
better initialization method or repeating the KM several times and extracting better results (Fränti & 
Sieranoja, 2019). The study contained in (Fränti & Sieranoja, 2018) described a better initialization 
approach that removes the weakness of well-separated clusters, improves cluster balancing without 
any number of K, and reduced the number of iterations. The content of (Peña et al., 1999) defines 
local minima, the number of K clusters and iterations are indirectly related to the initial centroid of the 
KM clustering. Better initial centroid points reduced the local optima and achieved the nearest optima 
(Duwairi & Abu-Rahmeh, 2015), improved accuracy (Arthur & Vassilvitskii, 2007), convergence 
speed (Duwairi & Abu-Rahmeh, 2015), and computing time (Fränti & Sieranoja, 2019).

The objective of this study is to reduce the iterations and execution time of the KM algorithm 
without effecting the cluster quality through the initial centroid. The first section elaborates big data 
clustering and fundamental issues of the KM clustering under data volume. Section 2 presents the 
related works of partitional clustering-based initial centroid initialization techniques and compares 
them for big data clustering basis of data size, convergence speed, computation efficiency, memory 
efficiency, scalability, and time complexity. In section 3, describe the KM objective function and 
proposed the MDRH initial centroid method for partitional big data clustering. The extensive 
experimental studies between the proposed method, classical KM, and KM++ algorithms with four 
real datasets respected to clustering objective, convergence speed, computing time in section 4. Finally, 
section 5 concludes the achievement of work, remarks, and future scope.

CENTROID CLUSTERING-BASED INITIALIZATION TECHNIQUES

Let X x x x
n

= ……{ }1 2
, , ..  dataset with d dimensional space and the partitioning clustering 

method clusters the X into K non-overlapping cluster C c c c
n

= ……{ }1 2
, , ..  basis of K clusters, 

initial centroid, distance measure, and statistical tools. The objective function of partitional clustering 
methods is to minimize the squared error of the cluster through the centroid statistical approach. The 
number of clusters always greater than two during the objective function minimization. If K is equal 
to one that is known as hard clustering, and K is equal to two, that clustering suffers the NP-hard 
problems. Partitional clustering algorithm satisfies convex, proportion, omission, and monotone 
properties (Jain, 2010; Pandove et al., 2018), and offering the drawn cluster are always non-empty 
(Arora & Chana, 2014).

The KM algorithm minimizes the sum-of-squared errors of numerical and non-numerical data, 
through grouping into K clusters (Fränti & Sieranoja, 2019). The KM algorithm is the second top 
algorithm in data mining and depends on the mean central tendency. During the KM clustering, first, 
select the K according to data labeling requirements. After that, select the K data objects as the initial 
centroid of the clusters using a random manner. Initialization of the K through initial centroid is 
known as the initialization step, and thereafter applies the update step through distance measure and 
mean statistical tool. Update step clustered the data items according to the minimum distance of the 
centroid and data items, and reassigned the centroid as a mean of the K clusters. In statistics, various 
distance measures are available for minimization of the SSE that is used inside the KM clustering. 
The Euclidean distance achieves the optimal distance in the least time with spherical or ball-shaped 
clusters. The Mahalanobis distance gives the hyperellipsoidal shaped cluster with higher computation 
time (Jain, 2010), the cosine measure gives spherical KM (Zahra et al., 2015), Gaussian mixture 
distance model generates a natural cluster (Fränti & Sieranoja, 2019). The update step repeats until the 



International Journal of Information Retrieval Research
Volume 12 • Issue 1

4

previous and current means are the same. This stage terminates the clustering process and obtains the 
optimum objective function. Iteration of the update step depends on the initialization step, where good 
centroid gives the least iterations with the improvement of cluster results (Fränti & Sieranoja, 2019). 
The complexity of the KM depends upon the initialization and update steps (HajKacem et al., 2019).

The quality of the KM clustering improves via centroid initialization and updation (distance 
measures, termination criteria, statistical approach) steps (Celebi et al., 2013). This section investigates 
the related works of initial centroid methods and analyzed them for big data mining with respect to 
high volume computation related criteria. Initial centroid methods can use other partitional clustering 
algorithms such as Fuzzy c-means, K-Modes, K-Median, K-Medoids, and so on because initial 
centroid methods work independently.

Forgy (Forgy, 1965) proposed a random centroid-based method for the KM algorithm, in which 
each centroid of K is selected randomly. MacQueen (MacQueen, 1967) proposed a method, where 
first to select the K data points randomly, and map them into the rest of the data points for selecting 
the K centroid. The mapping process of the MacQueen method is based on data density. Authors of 
(Peña et al., 1999) described the random partition method, where the entire dataset is partitioned into 
K clusters through a random selection of data and started the updating process of the KM algorithm. 
The Random partition method avoids the worst-case centroid selection than random centroids based 
methods (Fränti & Sieranoja, 2019).

Kaufman et al. (Gentle et al., 1990) discussed the Kaufman method, where the first centroid 
of the cluster extracted through successive selection, and the rest of the centroid selected through 
the maximum distance and heuristic rule. The successive approach gives the most centrally located 
centroid of the dataset (Fränti & Sieranoja, 2019). According to the literature of (Fränti & Sieranoja, 
2019), the random partition and Kaufman method act as a variant of the maxmin heuristic. Hierarchical 
clustering used the maximin heuristic for choosing the initial centroid that is known non-trivial 
solutions of random centroids based methods (Duwairi & Abu-Rahmeh, 2015).

Gonzalez (Gonzalez, 1985) proposed the approximation based maximin methods for minimizing 
the maximum intercluster distance that avoided the worst-case centroid selection of random centroids. 
The first cluster centroid selected through the arbitrary order, and the remaining cluster centroid 
selected through the maximum Euclidean distance between data points and previously selected 
centroid. Mirkin (Mirkin, 2005) discussed MaxMin heuristics, where the first cluster centroid selected 
through maximum distances, and the remaining cluster centroid selected by the minimum distances 
of the data points (Steinley & Brusco, 2007).

Bradley and Fayyad (Bradley & Fayyad, 1998) proposed the refinement based Bradley and 
Fayyad method (BFM), where the entire dataset partitioned into J subsets according to the random 
manner and these subsets clustered by using the MacQueen process. The contribution (Duwairi & 
Abu-Rahmeh, 2015) defines the J subsets drawn by the mixture model, joint probability distribution 
with maxima of probability that generalized the other iterative clustering methods. BFM produced 
high convergence speed and accuracy, but it doesn’t offer a guarantee that the initial points are 
efficient, and the number of subsets expected. BFM method describes the high time complexity due 
to the high data points of refinement (Duwairi & Abu-Rahmeh, 2015). The contribution of (Bradley 
& Fayyad, 1998) defines the results of the BFM and random partition methods are similar in the 
majority of the dataset.

Arthur et al. (Arthur & Vassilvitskii, 2007) proposed the K-Means++ (KM++) method for 
increasing the speed and accuracy of the KM algorithm, where the first centroid selected through a 

uniform random process and other centroid chosen through d x d x

x X

� � � �
�
�2 2

/  probability. In the 

probability formulation, d x� �2  indicated the distance between previously selected centroid to other 
data points. The KM++ method identified the interpolates between the MacQueen and Maximin 
methods (Celebi et al., 2013). The Maxmin and KM++ method belongs to the furthest point heuristic 
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because each step takes the new centroid between the nearest (min) existing centroid and furthest 
(max) data points(Fränti & Sieranoja, 2019).

Various research contributions identified greedy methods for the optimization of the initial 
centroid. Some greedy based initial centroid approaches (Fränti & Sieranoja, 2019) are the greedy 
technique (He et al., 2004), subsampling (Celebi et al., 2013), and repeated strategy (Bradley & Fayyad, 
1998). He et al. (He et al., 2004) used the greedy method for optimization of the cluster distance for 
achieving the cluster objectives through the KM clustering. Celebi et al. (Celebi et al., 2013) used the 
greedy method as a subsampling process through the KM++ algorithm for avoiding the similarity 
chances of two centroids. The greedy KM++ algorithm selects the centroid through probabilistically 
on each iteration after that greedy method selects those centroids which reduce the SSE. Bradley 
et al. (Bradley & Fayyad, 1998) used the repeat strategy for the refinement of the KM algorithm.

Sorting based initial centroid method select the K centroid after the sorting of the data points 
using some heuristics such as select first k points, select every N k/  points, select K according to 
random or systematic sampling (Fränti & Sieranoja, 2019). Hartigan et al. (Hartigan & Wong, 1979) 
sort the data points firstly according to the data distance and select every N k/ th data point for the 
centroid of the clusters. The sorting distance finds through the centroid of the dataset to data points. 
Astrahan (Astrahan, 1970) suggested the nearest neighbor density-based heuristics rules for centroid 
initialization, where the select the high-density location data points as first centroid and other centroid 
selected through decreasing order of the density location data points.

The projection-based initial centroid method selects the K centroid after the projection of data 
points using some similar heuristics rules of sorting methods that are generally applicable to one 
dimension of data (Fränti & Sieranoja, 2019). The recent study (Sieranoja & Fränti, 2018) used 
random projection and two furthest points projection approach for centroid selection, where the 
random projection approach is much efficient. Random projection method projects the two random 
data points through the line passing, and after that uses the heuristics rules for centroid selection.

Su et al. (Su & Dy, 2007) suggested the PCA-Part (Principal Component Analysis Partitioning) 
and Var-Part (Variance Partitioning) methods for minimizing the SSE through the divisive hierarchical 
approach. The PCA-Part method finds the principal eigenvector through the covariance matrix, and 
the Var-Part method splits the covariance matrix according to a higher variance-based coordinate 
axis of data. The PCA-Part method had found better desirable for cluster quality and convergence 
speed, but its time complexity is higher than Var-Part.

Luxburg (Luxburg, 2010) proposed a density heuristics-based method for centroid selection, where 
cluster size and density correlated for the SSE minimization. This method draws many independent 
n size samples and uses the KM algorithm in each sample. Later combine the minimal matching 
distance cluster until the K clusters are found.

The split based initial centroid method combines all data points into one cluster and splits until 
the K clusters are found. The splitting process used standard deviation (Franti et al., 1997), bisecting 
KM (Steinbach et al., 2000), tri-level KM (Yu et al., 2017), and so on.

Pena et al. (Peña et al., 1999) empirically compared the Forgy (Forgy, 1965), MacQueen 
(MacQueen, 1967), Kaufman (Gentle et al., 1990), and Random Partition (Peña et al., 1999) 
initialization methods concerning the sensitivity of initial centroid points, cluster quality, and effect 
of convergence speed. This study found Kaufman and Random Partition methods outperformed 
as compared to other studied methods and encouraged the robustness and effectiveness of the 
KM algorithm results. This study described theoretical differences between the studied initial 
methods, where the Forgy and random partition methods are independent on the instance order, the 
MacQueen method dependent on instance order, and the Kaufman method used deterministic order. 
The MacQueen method shows the fastest converging approach of KM, and Kaufman describes the 
higher convergence speed than other studied methods. Pena et al. suggested the Kaufman method 
for KM as initial centroid because Kaufman method achieved excellent robustness, effectiveness, 
and convergence speed.
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He et al. (He et al., 2004) reviewed and measured the random centroids, distance optimization, 
and density estimation for the initial centroid methods basis of the quantitative property. The Forgy 
(Forgy, 1965) and MacQueen (MacQueen, 1967) methods are categories under the random centroids, 
the Simple Cluster Seeking (SCS) (He et al., 2004) method and other greedy variant methods are 
categories under the distance optimization, and the Kaufman method (Gentle et al., 1990) and other 
Maximin variant methods are categories under the density estimation. This contribution observed 
that the initial centroid methods abandoned the cluster separation and considered cluster compaction 
during the KM algorithm optimization. He et al. found the convergence speed, cluster separation, 
and cluster compactness of random centroids are extremely poor compared to other studied methods. 
The Greedy and Maxmin methods achieved better convergence speed, cluster separation, and cluster 
compactness than other studied methods. The computational efficiency of Maximin has been found 
better than another greedy approach, but it needs more distance calculation.

Steinley et al. (Steinley & Brusco, 2007) examined Astrahan (Astrahan, 1970), BFM (Bradley & 
Fayyad, 1998), Continuous KM (Faber, 1994), Hand and Krzanowski (HKM) (Hand & Krzanowski, 
2005), SPSS [30], Milligan ward (Milligan & Isaac, 1980), Mirkin maxmin heuristics (Mirkin, 2005), 
Mirkin Intelligent KM (Mirkin, 2005), PCA-part, SAS, Likas global KM (Likas et al., 2003), and 
Steinley KM (Steinley, 2003) initial centroid techniques for batch KM where some of the centroid 
techniques were based on agglomerative clustering. The Stanley KM (Steinley, 2003) method 
performs better than other studied methods based on numbers of clusters and variables, effects of 
variable and multidimensional, and cluster density factors. Steinley et al. observed the Steinley KM 
(Steinley, 2003) needs multiple repetitions for achieving the centroid, and agglomerative clustering 
works better if using the numerous clusters.

Celebi et al. (Celebi et al., 2013) compared the linear time complexity based initial centroid 
methods as Forgy (Forgy, 1965), MacQueen (MacQueen, 1967), Maximin (Gonzalez, 1985), BFM 
with J = 10 (Bradley & Fayyad, 1998), KM++ (Arthur & Vassilvitskii, 2007), Greedy KM++ (Celebi 
et al., 2013; Tou & González, 1974), Var-Part (Su & Dy, 2007), and PCA-Part (Su & Dy, 2007) respect 
to the cluster quality and speed criteria. Cluster quality criteria measured by the initial SSE, final 
SSE, normalized rand value, van Dongen, the variance of information, and clustering speed criteria 
measured by the number of iterations and CPU time. This study concludes that the Forgy, MacQueen, 
and Maximin methods perform worst in all analyzed criteria with slower convergence, and remaining 
methods achieved high convergence and effectiveness clustering results. Here, the PCA-Part and Var-
Part methods define the high computational complexity and much-complication for implementation 
due to hierarchical formulation. The BFM and Greedy KM++ methods obtained a high convergence 
rate and effectiveness in the massive datasets. The PCA-Part and Var-Part methods are known as 
deterministic and other studied methods known as non-deterministic, where non-deterministic methods 
outperform respect to minimum statistic and deterministic methods outperform respect to mean and 
standard deviation statistic. Celebi et al. suggested the KM++ algorithm achieved better all discussed 
criteria except standard deviation statistics and BFM, Greedy KM++, Var-Part, PCA-Part used for 
approximate clustering.

Fränti et al. (Fränti & Sieranoja, 2019) studied the Random partition (Peña et al., 1999), Random 
Centroid (Forgy, 1965; MacQueen, 1967), Maxmin (Gonzalez, 1985), KM ++ (Arthur & Vassilvitskii, 
2007), BFM (Bradley & Fayyad, 1998), Sorting (Hartigan & Wong, 1979) , Projection (Sieranoja 
& Fränti, 2018), Luxburg (Luxburg, 2010), and Split (Franti et al., 1997) initial centroid methods 
respect to the overlap and number of clusters, dimensions, and unbalance of cluster sizes using CI-
values, success rates and iterations criteria. The CI values of the Random partition identified poorly, 
and Luxburg and Split identified strongly with high computational efficiency. The Luxburg and Split 
methods have achieved a high success rate and improved the computational space by using fewer 
iterations, but both methods identified unbalance in some computational criteria. This study found 
BFM achieved better overlap factor and worst unbalance cluster, the Luxburg method minor affected 
by a number of cluster criteria, and other studied methods obtained accurate dimensions factors. Fränti 
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et al. observed the KM ++ and Maxmin algorithms work efficiently in all computational criteria. 
For these reasons, the Fränti et al. suggested the KM ++ and Maximin initial centroid methods for 
KM clustering.

The author of (Fahad et al., 2014; Pandey et al., 2020) is determining the clustering algorithms 
for volume, variety, and velocity characteristics of the big data using some clustering algorithm 
characteristics. The volume considered dataset size, the sensitivity of outliers/ noisy and high 
dimensionality handling criteria, the variety considered a type of dataset and cluster shape criteria, and 
the velocity considered the performance of clustering algorithms such as time complexity, computing 
efficiency, scalability. The comparative analysis of (Celebi et al., 2013; Fränti & Sieranoja, 2019) 
discussed recent initial centroid methods of KM clustering and compare them through effectiveness 
and efficiency related measurement.

Based on the existing research perspective, and comparative analysis of (Celebi et al., 2013; 
Fränti & Sieranoja, 2019; He et al., 2004; Peña et al., 1999; Steinley & Brusco, 2007) finds which 
initial centroid methods are suitable for the KM algorithm. Here, this paper examines which initial 
centroid methods are achieved better performance under the big data environment through high volume 
data processing capability, convergence speed, time complexity, scalability, computation efficiency, 
memory efficiency factor. Pros and cons examinations of the initial centroid methods are shown in 
table 1 for big data clustering through the discussed literature and comparative analysis (Celebi et 
al., 2013; Fränti & Sieranoja, 2019; He et al., 2004; Peña et al., 1999; Steinley & Brusco, 2007) 
using random centroid, random partition, repeated heuristics, maxmin/distance optimization, greedy 
heuristics, sort heuristics, projection heuristics, density heuristics, and split heuristics categories.

Size of Data (DS) (Fahad et al., 2014; Fränti & Sieranoja, 2019)

This parameter identified data processing capability in the massive datasets for achieving the 
initial centroid. The better initial centroid method presents the high capacity for handling large data 
size because the size of the data affects the clustering quality and processing time.

Convergence Speed (CS) (He et al., 2004; Peña et al., 1999)

This parameter identified the number of iterations for achieving the centroid. The best initial 
centroid method presents the higher convergence speed rate and high convergence speed that are 
obtained by fewer iteration. Here the convergence speed of the initial centroid method affected the 
convergence speed of the KM algorithm.

Computation Efficiency (CE) (He et al., 2004; Peña et al., 1999)

This parameter identified the quality of centroid. The best initial centroid method presents high 
computation efficiency because better centroid gives robustness and better quality cluster, minimum 
SSE, and cluster objectives.

Memory Efficiency (ME) (Celebi et al., 2013; Fränti & Sieranoja, 2019)

This parameter identified the memory space and computational resources during the clustering. 
The better initial centroid methods used smaller consumption of memory space and computing 
resources because of the final memory efficiency of the KM algorithm is dependent upon the memory 
consumption of the initial centroid method.

Scalability (SB) (Fränti & Sieranoja, 2019; Steinley & Brusco, 2007)



International Journal of Information Retrieval Research
Volume 12 • Issue 1

8

This parameter identified the quality of initial centroid methods and it unaffected by data volume, 
dimensions, attributes, variables, number of clusters, and observation of dataset. The best initial 
centroid method presents high scalability.

Time Complexity (TC) (Fränti & Sieranoja, 2019; Peña et al., 1999)

This parameter identified the CPU time during the centroid achieved by initial centroid methods. 
The better initial centroid method presents the lower time complexity because the final time complexity 
of the KM algorithm depends upon the time complexity of the initial centroid method.

Table 1 identified the random centroid, random partition, and maximin/distance optimization 
family-based methods achieved better computing performance than other centroid methods. Based on 
the existing comparative research examination (Celebi et al., 2013; Fränti & Sieranoja, 2019; He et al., 
2004; Peña et al., 1999; Steinley & Brusco, 2007), and table 1, the KM++ algorithm performs better 
than other random centroids, random partition, and other categories methods. The initial centroid of 
the KM++ algorithm minimized the local optima, CPU time, and increased the convergence speed 
and cluster quality of the KM algorithm concerning Forgy, MacQueen, random partition, and other 
centroid methods. According to this outcome, this paper takes KM++ and random centroid based 
classical KM for comparison to the proposed work.

PROPOSED INITIAL CENTROID INITIALIZATION METHOD

This section describes the clustering objective and presents the Maxmin Data Range Heuristic 
(MDRH) initial centroid initialization technique for the KM algorithm under the big data mining 
using the single machine execution. Here, the heuristic term defines the rules of the proposed method. 
The proposed work increased the convergence speed, speed-up, and removed the worst case of local 
optima without the effect of cluster quality and objective.

Objective Function
The objective of the KM is minimizing the SSE of all K clusters through the iterative process. 
Formally, the objective function of the KM defined as Eq 1(Fränti & Sieranoja, 2019; Jain, 2010).
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Table 1. Comparative analysis of centroid initial methods for big data

Centroid Algorithms DS CS CE ME SB TC

Random Centroid Methods

Forgy Large High Low Better High Ÿ N( )

MacQueen Large Medium Low Better High Ÿ N( )

Faber Continuous KM Large Medium Medium Better Medium Ÿ N( )

Random Partition Methods

Random partition Large High Low Better High Ÿ N( )

Steinley KM Large Low High Medium High Ÿ NK( )

Repeat based heuristics Methods

BFM Medium Medium High Medium Medium Ÿ N RKK +( )2

HKM Medium Medium High Medium Medium Ÿ ND RKK +( )2

Maxmin/distance optimization heuristics Methods

Gonzalez maxmin Large Medium High Medium Medium Ÿ NK( )

Kaufman maxmin Large Medium High Medium Medium Ÿ N 2( )

Mirkin maxmin (IKM) Medium Low Medium Medium Medium Ÿ NK( )

KM++ Large Medium High Medium High Ÿ KN( )

Likas Global KM Medium Low Medium Medium Medium Ÿ NK 2( )
Greedy based heuristics Methods

SCS Medium Medium High Medium Medium Ÿ NK( )

Greedy KM++ Medium Medium High Medium Medium Ÿ NK( )

Sort based heuristics Methods

Hartigen sort Large Medium Medium Medium High Ÿ N log N  ( )

Astrahan sort Large Medium Medium Medium High Ÿ N 2( )

continued on followng page
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Unfortunately, the optimal solution of objective function converges to the local minima that are 
related to the NP-hard (Jain, 2010; Xiao & Yu, 2012). The KM algorithm used the greedy approach 
through various iterations for obtaining the objective of KM clustering. The proposed method reduced 
the iterations and abolished the worst case of the local minima during the acquiring of the KM objective.

The research (Arthur & Vassilvitskii, 2007; Celebi et al., 2013; Fränti & Sieranoja, 2019; Peña et 
al., 1999) observed the optimal initial centroid achieved the minimum SSE and the minimum number 
of iterations through multiple runs of the KM algorithm. This study identified the first iteration can 
minimize the SSE then certainly as soon as achieved the minimum SSE in fewer iterations, and it is 
possible through prior knowledge of the data range and their corresponding maxmin distance. The 
SSE of the first iteration depends on the initial centroid of the cluster. The proposed method finds 
the initial centroid of the clusters through the centroid points of the dataset according to the data 
range. Normalization of the dataset centroid is minimizing the worst case of the local minima and 
achieving near SSE to the minimum SSE in the first iteration. The objective function of the first 
iteration is defined as Eq 4 with the condition of Eq 5 based on converges of the KM algorithm 
(Kalyanakrishnan, 2017).

SSEJ X C SSEJ X C� , � min � ,( )≅ ( ) 	 (4)

Centroid Algorithms DS CS CE ME SB TC

Projection-based heuristics Methods

Random projection Medium Medium Medium Medium Medium Ÿ N log N  ( )

PCA-Part Medium Low High Medium Medium Ÿ dN K2( )

Var-Part Medium Low High Medium Medium Ÿ NKd( )
Density-based heuristics Methods

Luxburg Large Medium High Medium Medium Ÿ N log NK   ( )
Split based heuristics Methods

Standard deviation split Medium Medium Medium Medium High Ÿ N log N  ( )
Bisecting KM Medium Medium Medium Medium Medium

Ÿ N 2( )
Tri-level KM Medium Medium Medium Medium Medium Ÿ NKdI( )
Milligan ward Medium Medium Medium Medium Medium

Ÿ NK 2( )
(N=Size of Data Set, K=Number of Clusters, R= Number of repeats, D= Cluster separation, d= Number of dimensions, I= Number of Iterations)

Table 1. Continued
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SSEJ X C SSEJ X Ct t� , � � ,( )≥ ( )+ +1 1 	 (5)

Where Xt+1  is the data member and C t+1  is the centroid of the next iteration of the KM, the current 
iteration of the KM algorithm gave minimum or near SSE as compared to the previous iteration of 
SSE. Through this concept can minimize the iteration of KM and reduce the KM execution CPU 
time by selecting the accurate centroid of the dataset.

Proposed Initial Centroid Method
The proposed algorithm is inspired by the stratification theory of the stratified sampling process 
that improves the computing efficiency and reduces the computational cost of any algorithm. In 
stratification, entire data objects are partitioned into respective homogenous subsets and after that 
extract the appropriate knowledge in each subset. To achieve the initial centroid of the cluster, firstly 
create the K homogenous subsets using the maxmin data range heuristic, and hereafter extract the 
knowledge as means of each K subset for K initial centroid.

The proposed MDRH method is to use the maxmin data range heuristics for creating K 
homogeneous data groups. A better maxmin data range heuristic has described the high density and 
compaction inside each group. The proposed MDRH method uses the three phases for extracting the 
initial centroid of the KM algorithm. The first phase finds the K centroid of the entire dataset using 
max and min range heuristic of the data points, the second phase initializing the whole data into K 
groups using maximin distance heuristic, and the last phase finds mean of K groups. The combination 
of the three phases is known as the heuristic that defines the rule of finding the initial centroid. The 
mean of each group used as the initial centroid of the cluster. The complexity of the proposed method 
is equal to one iteration of the KM algorithm and smaller than the KM++ algorithm.

The final step of the proposed algorithm is validating quality measures of the MDRH method/
algorithm. The quality measures show that any two mean values are equal or zero then the data set 
has required deep preprocessing. The most observed reasons are that datasets have hidden noise, data 
has wrongly grouped, the number of clusters is highly or least selected, or any means value finds 
most negative and so on. The proposed MDRH method shown in algorithm 1 which finds the C

e
 

initial centroid of the cluster, where step 1 to 13 shows the maxmin data range heuristic. After that 
proceed the standard KM with dataset X, number of K clusters, and initial centroid C

e
.

The proposed MDRH method works as universally for any partitional clustering on the replacement 
of mean statistics as the other center tendency statistics. In this study, the paper is considering the 
KM algorithm, where center tendency uses the mean of the clusters, that is the reason initial centroid 
used the mean of the group. The proposed MDRH method to resolve the worst-case performance of 
KM using mean as an initial centroid.

EXPERIMENTAL ANALYSIS

Any experimental analysis validated any research work and based on the computing environment, 
dataset, existing algorithm, evaluation criteria, and results. This section computes the computing 
performance of MDRH based KM based on the cluster internal and efficiency-related measurement.

Experiment Environment and Dataset
The MDRH based K-Means (MDRHKM) algorithm is implemented through the Jupyter notebook 
framework with python computing tool, Intel I3 processor, 320 GB hard disk, 4 GB of main memory, 
Windows 7 Operating System. All experiments carried on four real data sets (https://archive.ics.uci.
edu/ml/datasets.php) under the single machine execution. The characteristics of the experimental 
data sets shown in table 2.
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Algorithm 1. Maxmin Data Range Heuristic initial centroid initialization (MDRH) method

Input:

     1. X x x x
n

= ……{ }1 2
, , ..  data points with d dimensions

     2. K= Number of cluster/ required number of center
Output:

     3. C C C C
e e e ek
= ……{ , }

1 2
 of the initial centroid of the cluster

Method:
Find the centroid of the entire dataset

     4. min min X i d
i

= ( ) ≤ ≤� ,� �1

     5. max max X i d
i

= ( ) ≤ ≤� ,� �1

     6. v K= − +( )( / )max min 1
     7. if v max ≥
     8. Dataset has high variance noise data point and exit()
     9. else
Find the centroid of the K group

     10. c v
1
= +min

     11. c c v
2 1
= +� �

     12. c c v
k k
= +−� �

1
     13. End if
     14. for i=1 to length(X)
Initialized group data member

     15. dis
euclidean

X c X c
i k i k
,( ) = −

2

16. Assign near distance on the closed C
k
= ……{ }C C C

K1 2
, , ..  group

     17. end for
          Find the initial centroid of each cluster

     18. C mean C C C
e K
= ……� �{� ,� � }

�1 2

     19. if anymean C C orany C then
K K e

� � � � � ��� �
�

==( ) ==( )−1 0
     20. Dataset has highly noise data point and wrongly clustered and restart process to step 4
     21. else

     22. return C mean C C C
e K

� �{� ,� � }
�

� = ……( )1 2

Table 2. Characteristics of the experiments data sets

Datasets Objects Attributes Area

Corel Image Feature 68,040 17 Image

Person Activity 1,64,859 8 Life

3D Road Network 4,34,873 4 Computer

Geo-magnetic 58,374 10 Computer
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Compared Initial Centroid Algorithms
Based on comparative analysis (Celebi et al., 2013; Fränti & Sieranoja, 2019; He et al., 2004; Peña 
et al., 1999; Steinley & Brusco, 2007) and examination of table 1, this paper compared the proposed 
method against the standard random KM (Forgy, 1965; Jain, 2010) and KM++ algorithm (Arthur & 
Vassilvitskii, 2007; Fränti & Sieranoja, 2019) based on efficiency and effectiveness related measures 
because both methods achieved better performance in the massive dataset and suitable for the big 
data clustering.

Evaluation Criteria
Evaluation criteria measure the performance of any proposed work through effectiveness (internal 
and external measure) and efficiency (speed) criteria. The objective of clustering is validated through 
internal measurement techniques because internal techniques did not require any external information 
for clustering validation. In this study, the paper used R square, Davies Bouldin score, Calinski 
Harabasz score, Silhouette coefficient as internal validation (Aggarwal & Reddy, 2013; Gan et al., 
2007), and the number of iterations, CPU time as efficiency (speed) validation (Celebi et al., 2013; 
Peña et al., 1999; Zahra et al., 2015). Better-resulted value of R square, Calinski Harabasz score, and 
Silhouette coefficient are each time maximized, and the Davies Bouldin score, number of iterations, 
and CPU time are each time minimized.

•	 R square (RS): RS is validating the degree of difference between the clusters. This measure 
finds the ratio of the sum of squares between (SSB) and sum of squares total (SST).

RS
SSB

SST
= 	 (6)

•	 Davies Bouldin score (DB): DB measures the average similarity of each cluster and validates 
the separation between the clusters. The cluster similarity is the ratio of within to between-cluster 
distances. The DB score validates the clustering algorithm without depending on the number 
of clusters.

DB
k
R

i

k

i
=

=
∑

1

1

	 (7)

R max
within within

betweeni i j

i j

ij

=
+

≠

 
	 (8)

within
c

x c
j

j i

c

i j

j

= −
=
∑� � � � � �

1

1

2

	 (9)
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between c c
ij i j
= −� � � �

2

	 (10)

In the DB formulation, k is the total number of clusters, c
j

 defines the total number of data 

point x
i
 inside of c

j
  cluster and c

i
 is another cluster.

•	 Calinski Harabasz score (CH): CH measures the variance of the cluster and validates the 
clustering performance through the average sum of squares value of between-and-within the 
clusters.

CH
n k tr B

k tr w
=

−( ) ( )
−( ) ( )
�

�1
	 (11)

tr B c m m m m
i

k

i i

T

i( ) = −( ) −( )
=
∑
1

�  (12)

tr w x m x m
i

k

x c
i

T

i

i

( ) = −( ) −( )
= ∈
∑∑�

�1

 (13)

In the CH formulation, n is the total number of data points, k is the total number of clusters, x 
is data points inside the c

i
 cluster, m is mean of the entire dataset, and m

i
 is the mean of c

i
 cluster.

•	 Silhouette coefficient (SC): SC measures the similarity within the cluster and validates the 
clustering performance based on the pairwise difference of the cluster compactness and separation 
of the clusters.

S
b x a x

b x a xx Ci
=

( )− ( )
( ) ( )



















∈∑ max ,
	 (14)

In this formula a(x) is the average distance of x to other data points in the same cluster C, b(x) 
is the average distance of x to other data points in all Ci clusters.

•	 Number of iterations (IS) : IS measures the convergence speed of algorithm/model and validates 
the efficiency by independent of the compiler, implementation style, and CPU architecture. The 
number of iterations is obtained through the execution of the KM algorithm because the KM 
algorithm executes multiple times until the requirements have reached.

•	 CPU time (CT): CT measures the total computation time of any algorithm/model. The CT is 
defined by between the entry ENT and exit EXT time of any data mining algorithm.

ET EX EN
T T

  = − 	 (15)
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Results and Discussion
The code of the KM, KM++, and MDRHKM algorithms are written in the Jupyter notebook using 
the python language. Efficiency and effectiveness related results shown in table 3-4 and reported 
results of each evaluation measure are showing the average value of ten trials. Here is the number of 
clusters fixed at three for experiments according to the dataset. For this cluster setup, the Corel Image 
Feature, 3D Road Network, and Geo-magnetic dataset results are closed to the optimal value, and 
the Person Activity dataset resulted in little afar from accurate value. This paper used the predefined 
python library function DB, CH, and SC internal measurements and technical code of RS, IS, and 
CT for clustering algorithm evaluation. The optimal value of each measure is marked as bold in table 
3-4, where the optimal values of RS, CH and SC are required maximization, and DB, IS and CT are 
required minimization. The minimization of IS and CT is showing the speed-up of any clustering 
algorithms. Comparative analysis of all measurements shown in fig 1-8 using a line chart, where 
measure value organized as ascending order.

Table 3 summarizes the proposed MDRHKM methods using optimum iterations and CPU time 
that removes the worst-case efficiency situation of the KM and KM++ algorithms. Table 4 summarizes 
the proposed MDRHKM method is to improve the cluster quality and remove the worst-case cluster 
effectiveness of the KM and KM++ algorithms.

Experimental observations of the Corel Image Feature dataset, the values of RS and DB have 
found similarities inside the KM, KM++, and MDRHKM algorithms. The CH and SC values of the 
MDRHKM algorithm are found better as compared to the KM and KM++ algorithms, but they are 
approx equal. The MDRHKM algorithm minimized the IS value as 71.22% and 71.32% and reduced 
the CT value as 76.43% and 77.98% respect to the KM and KM++ algorithms.

Experimental observations of the 3D road network dataset, the values of RS, DB, CH have found 
similarities inside the KM, KM++, and MDRHKM algorithms. The SC value of the MDRHKM 
algorithm is achieved better than KM and KM++ algorithms. The MDRHKM algorithm minimized 
the IS value as 38.77% and 18.91% and reduced the CT value as 48% and 53.17% respect to KM 
and KM++ algorithms.

Experimental observations of the Geo-magnetic and Person Activity dataset, the reported 
values of RS, DB, CH, SC have found better inside the MDRHKM algorithm than KM, and KM++ 
algorithms, where the performance of the KM++ algorithm is achieved worst. The IS and CT of 

Table 3. Comparative average analysis of efficiency (means std± ) over 10 trials

Dataset Criteria KM KM++ MDRHKM

Corel Image Feature IS 27 8 4 13. .± 27 9 3 31. .± 8 0 0± .

CT 172 16 20 67. .± 184 31 55 62. .± 40 57 8 96. .±

Person Activity IS 3 3 1 33. .± 3 9 1 28. .± 3 0 0± .

CT 42 52 18 60. .± 67 91 12 88. .± 31 60 3 55. .±

3D Road Network IS 9 8 2 48. .± 7 7 1 33. .± 6 0 0± .

CT 331 15 131 11. .± 364 58 59 12. .± 170 73 24 10. .±

Geo-magnetic IS 4 8 2 85. .± 8 1 0 31. .± 2 0 0± .

CT 22 33 13 73. .± 30 68 10 87. .± 8 11 0 79. .±
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the MDRHKM algorithm are found better than KM and KM++ algorithms in both data sets. Inside 
the Person Activity dataset, the MDRHKM algorithm minimized the IS value as 9.03% and 23.07% 
and reduced the CT value as 25.68% and 53.46% respect to KM and KM++ algorithms. For the 
Geo-magnetic data set, the MDRHKM algorithm minimized the IS value as 58.33% and 75.30% and 
reduced the CT value as 63.69% and 73.57% respect to KM and KM++ algorithms.

Table 4. Comparative average analysis of internal measures (means std± ) over 10 trials

Dataset Criteria KM KM++ MDRHKM

Corel Image Feature RS 0 88889 0 0. .± 0 88889 0 0. .± 0 88889 0 0. .±

DB 0 5 0 0. .± 0 5 0 0. .± 0 5 0 0. .±

CH 272147 83 0 0061. .± 272147 83 0 0049. .± 272147 84 0 0. .±

SC 0 5898 0 0021. .± 0 58877 0 00277. .± 0 58998 0 0035. .±

Person Activity RS 0 57139 0 034. .± 0 50572 0 061. .± 0 61089 0 0. .±

DB 1 22994 0 11. .± 1 24879 0 16. .± 1 08436 0 0. .±

CH 111005 24 15578 52. .± 86749 70 21843 74. .± 129410 055 0 0. .±

SC 0 27932 0 3058. .± 0 29581 0 03748. .± 0 3123 0 0021. .±

3D Road Network RS 0 91605 0 0. .± 0 91605 0 0. .± 0 91605 0 0. .±

DB 0 39505 0 0. .± 0 39505 0 0. .± 0 39505 0 0. .±

CH 2372570 77 0 0. .± 2372570 77 0 0. .± 2372570 77 0 0. .±

SC 0 6809 0 0027. .± 0 68096 0 0031. .± 0 68187 0 0030. .±

Geo-magnetic RS 0 9372 0 06036. .± 0 86707 0 0. .± 0 98396 0 0. .±

DB 0 28651 0 09475. .± 0 39661 0 0. .± 0 21312 0 0. .±

CH 1150346 40 82621 58. .± 190363 67 0 0. .± 1790334 89 0 0. .±

SC 0 80862 0 11064. .± 0 68096 0 002. .± 0 89567 0 002. .±

Figure 1. Analysis of SSW on each trial
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The observation of table 3-4 and above discussion shows the proposed MDRHKM algorithm 
achieved better clustering effectiveness and efficiency for the massive dataset as compared to the 
KM and KM++ algorithms. For these reasons, the proposed MDRHKM algorithm eliminated the 
chance of local minima, and increases the speed up and scalability of the KM and KM++ algorithms. 
A good clustering algorithm defines the sum of squares within-cluster is all the time minimum, and 
the sum of squares between clusters is all the time maximum. The internal clustering measurement 
depends upon the SSW, SSB, and SST that reasons these terms describe the variance, homogeny, 
compaction, separation, similarity, and dissimilarity of the cluster.

Fig 1 and Fig 2 shows the SSW and SSB of the experimental data sets for using the KM, KM++, 
and MDRHKM algorithms in each trial. The experiment dataset of 3D Road Network gave similar 
SSB and SSW in each trial for using KM, KM++, and MDRHKM algorithms. Inside the Corel 
Image Feature, Person Activity, and Geo-magnetic data set, the proposed MDRHKM algorithm 
gives minimum SSW and maximum SSB in each trial. Observation of fig 1-2 defines the MDRHKM 
algorithm is to find better compaction and separation of the cluster and takes a guarantee for all the 
time finds the best case of SSB and SSW than the KM and KM++ algorithms.

Fig 3-6 shows the IS, CT, DB, and SC scores of the KM, KM++, and MDRHKM algorithms 
for using experimental data sets in each trial, where the proposed algorithm eliminates the worst IS, 
CT, DB, and SC scores of the KM and KM++ algorithms. The observation of fig 3-6 defines the 
proposed MDRHKM algorithm achieved close results to the best case of KM, and KM++ algorithms, 
where the proposed algorithm minimized the IS, CT, and DB, and maximized the SC in each trial 
than KM, and KM++ algorithms.

Fig 7-8 shows the RS and CH score of the KM, KM++, and MDRHKM algorithms for using 
experimental datasets in each trial. The observation of the fig 7-8 defines the proposed MDRHKM 
algorithm finds better within-similarities and between-dissimilarities of the cluster and finds the best 
case of RS and CH score.

CONCLUSION

This paper discussed various KM based initial centroid methods concerning the big data characteristics 
through existing research examination and proposed the initial centroid based MDRH method for 
resolving the worst-case situation of the KM and KM++ algorithms. The existing initial centroid 
algorithms do not present the optimal cluster quality and speed due to a random selection of the 
initial centroid. The proposed method presents the optimal cluster quality, iterations, and execution 
time because the MDRHKM method used constant iterations through the data range heuristic. The 
experimental study of this paper is based on the clustering objective and analyzed the cluster quality 
through the internal effectiveness and efficiency measurement that shows the proposed MDRHKM 
method achieved better effectiveness and efficiency as compared to the KM and KM++ algorithms. 
This paper observed during the KM and KM++ algorithm’s execution, when the KM and KM++ 
algorithms have used fewer iterations then their CPU time and cluster quality are reduced, respectively. 
In these situations, the proposed method always used constant iterations, least CPU time, and higher 
cluster quality. The results of RS, DB, CH, and SC effectiveness validation are shown the MDRHKM 
method is eliminates the worst case of clustering results than the KM and KM++ algorithms. The 
results of IS and CT efficiency validation are shown the MDRHKM method is increased the speed-up, 
scale-up, convergence speed, and utilized memory resources than the KM and KM++ algorithms. 
This indication shows the proposed method is straightforwardly scalable under big data mining 
and reduced the local optima problem. During the experimental analysis, this paper observed high 
variance, and a high noise dataset does not achieve the accurate centroid through maxmin heuristic. 
Therefore, some of the groups are found empty for that reason, the initial centroid is not forwarding 
the KM clustering. Further scope of this research is to resolve the high variance related problem 
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Figure 2. Analysis of SSB on each trial

Figure 3. Analysis of IS on each trial

Figure 4. Analysis of CT on each trial

Figure 5. Analysis of DB on each trial

Figure 6. Analysis of SC on each trial
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through the multiple machine-based technologies such as Hadoop and Spark using other internal 
and external measurements.
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