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ABSTRACT

Conventional distorted born iterative method (DBIM) using single frequency has low resolution and 
is prone to creating images with high-contrast subjects. The authors propose a productive frequency 
combination method to better result in tomographic ultrasound imaging based on the multi-frequency 
technique. This study uses the natural mechanism of emitting oscillators’ frequencies and uses these 
frequencies for imaging in iterations. They use a fundamental tone (i.e., the starting frequency f0) 
for the first iteration in DBIM, then consecutively uses its overtones for the next ones. The digital 
simulation scenarios are tested with other multi-frequency approaches to prove the method’s feasibility. 
They performed 57 different simulation scenarios on the use of multi-frequency information for the 
DBIM method. As a result, the proposed method is for the smallest normalization error (RRE = 
0.757). The proposed method’s imaging time is not significantly longer than the way of using single 
frequency information.

Keywords
Distorted Born Iterative Method, Fundamental Tone and Overtones (FTaOT), Inverse Scattering, Sound Contrast, 
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1. INTRODUCTION

Medical imaging is the method of creating images of human or animal parts to collect data concerning 
the structure or properties of tissue, bone, or even physiological characteristics by injecting particular 
substances into the body (National Research Council, 2006). For the past years, medical imaging has 
been rapidly changing clinical diagnosis. With the advancement of media and information technology, 
numerous intelligent and sophisticated diagnosis and treatment methods have been presented (Feng, 
2019). In 1885, Wilhelm Roentgen discovered X-ray; hence, medical imaging was born. In the past 
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century, a significant change has been originated from X-ray to MRI, CT, PET, SPECT, ultrasound, 
etc. The efficiency of non-intrusive imaging systems has made a considerable step along with 
computer science.

Nowadays, there are a vast number of biological imaging methods, as mentioned above. However, 
in our study, we only focus on ultrasound because it is one of the most popular and often considered 
a golden standard in essential diagnoses such as obstetric or cardiac issues.

The use of sonar in 1910 led to the popularity of imaging techniques using sound waves later. 
One of the most popular sonar-based imaging methods is B-mode (Schueler et al., 1984), which is 
used for non-intrusive diagnosis and medical imaging. It qualitatively presents the change of sound 
resistance, which then allows us to distinguish different environments. The image’s spatial resolution 
can be received by an array transducer (Macovski, 1979) and highly-converged, single-element 
transducers (Kino, 1987). Even though the quality can be worsened by uncertainties in amplitude and 
phase (Zhu & Steinberg, 1993), B-mode is overall considered uncomplicated and reliable. However, 
due to its qualitative nature, medical diagnosis using these images is subjective and heavily based 
on the doctor’s expertise.

A qualitative ultrasound technique (also known as tomographic ultrasound) is considered superior 
to B-mode in offering more valuable information (Jonathan & Oelze, 2013). However, this method 
still downsides, including its limitation to only weak scattering media, high computation complexity, 
and commercial equipment capabilities. The application of this method is limited, mostly used with 
breast cancer.

Tomographic ultrasound is a technique based on inverse scattering theory. The Distorted-
Born iterative method (DBIM) is often used to solve the inverse problem. In this method, Green’s 
function is repeated each iteration, causing DBIM to converge quickly (Montero & Janniel, 2009). 
A significant disadvantage of this approach is its divergence in strong scattering media. In reality, 
Born approximations hypothesize that the scattering pressure is so small that it can be neglected. 
It is only correct in weak scattering media. In stronger scattering media, Born approximation is not 
accurate anymore (Slaney et al., 1984). This problem can be solved by using multiple frequencies 
for reconstruction based on sound contrast (Haddadin & Ebbini, 1997), (Haddadin & Ebbini, 1998). 
In these studies, frequencies f1 and f2 are utilized to reconstruct the subject in Nf1 and Nf2 iterations. 
The low-frequency f1 ensures the convergence of the algorithm to a contrast level near the true level 
at the cost of low spatial resolution. After that, the high-frequency f2 can improve spatial resolution 
as maintaining the convergence. The reason behind this is the relatively small difference between the 
true contrast and initial contrast (Born approximation satisfied). In (Jonathan & Oelze, 2013), (Tijhuis 
et al., 2001), (Lavarello & Oelze, 2010), (Tran et al., 2016), the authors suggested using more than 
two frequencies to get the resolution of a tomographic ultrasound image closer to the level of tissue 
image reconstruction. Not only for ultrasound tomography, the multiple - frequency technique is 
also applied for ultrasound images in (Ma et al., 2015; Sayed, 2018; Varray et al., 2012; Yoshizumi 
et al., 2009). However, the use of different frequencies in different iterations is still inconsistent. 
Frequency hop is usually chosen based on the scenarios being simulated or tested, in fact. Using 
a multi-frequency approach, we proposed an effective method to increase tomographic ultrasound 
imaging quality with a fundamental tone and overtones (FTaOT). The fundamental tone is used in 
the first DBIM iteration, then its overtones for the next iterations. Numerous scenarios have been 
tested to prove the feasibility of our proposed method.

2. MATERIALS AND METHOD

2.1. Distorted-Born Iterative Method
We configured round DBIM measurements surrounding the subject. Transmitters, receivers can be 
randomly or pseudo-randomly arranged. The number of transducers are based on the scenario and 
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practical requirement. If there are too many transmitters and receivers, the measurement system would 
be more complicated and need more computation, storage, information processing, etc. It is also true 
vice versa. The locations of transmitters, receivers might be different or the same (with the current 
transducer technology, a transducer can both transmit and receive at a time).

Let there be Nt transmitters and Nr receivers. Nt transmitters are set up at different angles around 
the subject to get sufficient data. The process is performed as follow: initially, the first transmitter 
sends ultrasound signal (others are inactive), all receivers are on and receive scattered ultrasound; as 
a result, we obtain a set of Nr measurement from the first transmitter; afterward, we active the second 
transmitter and get another Nr measurements with this device; etc. The process continues until the 
last transmitter is active and yields Nt sets of measurement values. With that, we then have sufficient 
data on the subject from different angles. Using only one transmitter at a time is equivalent to using 
a single transducer in tomographic ultrasound imaging.

Figure 1 shows the transmit/receive configuration of the tomographic ultrasound imaging system. 
The survey subject is a small-sized cylinder ψ (r), being environment A1 positioned inside the 
background environment A2. Our target is to reconstruct the cylinder image, which is the region of 
interest (ROI) being divided into N×N squares (each square is one pixel). Suppose 0  is the unchanged 
background wavenumber in an infinite space containing a homogenous environment (like water). 

Figure 1. Transmit/receive configuration of the tomographic ultrasound imaging system
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The subject also has unaltered density and wavenumber  (r) in space. The sound speed difference 
between the subject environment and background environment is called ∆u.  With the scattering 
media, as in Figure 1, the objective function can be calculated as follow:
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with u1
and u0 being sound speed in object and background environments, respectively; f being 

ultrasound frequency; ω  being angular frequency (ω  = 2πf), and R being the object’s radius. ∆u  

is a sound speed difference, also called sound contrast (�u
u
u
u� ��1

0

0

100% ). Small ∆u  means 

the scattering media is weak and vice versa.
The system’s wave equation is shown below:

and the total sound pressure:
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Incoming wave pressure is the zero-order Bessel Beam in two-dimension space:

ξ inc
k

J r r= −( )0 0
 	 (5)

with ξ (
r ) being total sound pressure, ξ inc (

r ) being incoming wave pressure, ξ sc (
r ) being 

scattered wave pressure, G(·) being Green’s function, J0  being zero-order Bessel function and r rk−  
being the distance between transmitter and the kth point in ROI.

Bessel function (J0) is often used in digital simulation as the transmitter signal (incoming wave, 
frequency f, wavelength � � u f

0
/ , in which u0  is the sound propagation speed in the background 

environment). When an ultrasound wave propagates in the environment: a) if the environment is 
homogeneous, the signal received is the incoming wave pressure; b) if the environment is 
nonhomogeneous (strange tumor exists), a few scenarios can happen when the incoming wave meets 
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this subject: when the subject size is multiple times larger than incoming wave wavelength, the signal 
is reflected; when the subject size is equal or smaller than incoming wave wavelength, the ultrasound 
signal is scattered in every direction around the subject. It is taken into notice that ultrasound frequency 
used in clinical diagnosis is between 20 KHz and 12 MHz. Therefore, if the sound the speed of the 
background environment is assumedly 1484 m/s, the wavelength is from 6.2 µm to 74.2 mm.

We use the method of moments (MoM) to discretize equation (4) by gridding the ROI as in 
Figure 1 and presented in the form of matrix. The pressure of ROI points can be calculated as follow:

� �� �( . (I C D ))ξ inc 	 (6)

The pressure of points outside ROI (scattering pressure) has the size of N Nt r ×1 :

� � �sc B D� � �. . . 	 (7)

Utilizing Born approximation, we can find the linear connection between the scattering pressure 
difference �� sc  and the objective function ��  as follow:

� � �� � � �sc B D M� � �� � �. . . 	 (8)

with system matrix M B D� � �. � ; B  being Green’s function that represents the relation between 
the points and receivers; C  being Green’s function that describes the relation between points; I  
being identity matrix; D ·� �  is an operator that transforms a vector into a diagonal matrix (Montero 
& Janniel, 2009).

With one transmitter and one receiver, we form a matrix M  and a vector quantity �� sc . The 
unknown vector ψ  has N×N variables, with the number of variables is the same as the number of 
ROI pixels. We can calculate the objective function as follow:

ψ ψ ψn n n= +− −1 1∆ 	 (9)

with ψ n  and � n�1 being the current and the previous objective function. The data is processed with 
DBIM to recover sound contrast. By this way, we can detect if there is a tumor in the environment. 
DBIM utilizes Born approximation to calculate in iterations of inverse scattering problems.

Tikhonov method is used to solve the uncertainty system of equations to calculate ∆ψ :

∆ ∆ ∆ ∆∆ψ ξ ψ γ ψψ= − +argmin sc
t
M

2

2

2

2
	 (10)

in which Mt  is the matrix NtNr×N2 created by NtNr measurements.

2.2. Inverse scattering problem in DBIM.
To solve the inverse problem when there is interference, we use the nonlinear conjugate gradient 
method (NCG) (Golub et al., 1999). NCG in Algorithm 1 is utilized to solve equation (10):
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Algorithm 1: Nonlinear Conjugate Gradient Method (NCG) 
1.          Initialize ∆ψ  in the form of vector 0 

2.          Initialize b 0� �  = Mt
H

t
sc.∆ξ

3.          Initialize x 0� � = b 0� �  and r b0 0� � � ��
4.          for n =1 to the largest value, do
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15. end for 
To choose γ ,  we use:
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in which,σ
0

2  is calculated using the exponent iteration method with Rayleigh quotient as in Algorithm 
2 (see Fig. 2).

3. PROPOSED METHOD

3.1. Initial Frequency and Frequency Hop
If the low frequency is used in the imaging process, we will get a poor spatial resolution, yet the 
convergence speed is good. On the contrary, if high frequency is used, the spatial resolution is good, 
at the cost of convergence speed. Therefore, using multiple frequencies in different iterations is 
necessary to achieve a recovered image with high convergence speed and spatial resolution. Simulation 
scenarios designer usually chooses frequency hop. In our study, we choose the initial frequency using 
Born approximation, with f = f

1
 so that:

∆𝝋 = 𝟐𝝎 ( 1 1

0
u u
− ) 𝑹 < 𝝅	 (12)
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with f
1

 we recover the image at contrast u
1
.  Afterward, choose the frequency hop value and find 

f
2
. We then recover the image at contrast u

2
 updated from u

1
. Continue to do so until we reach the 

targeted contrast u* (u
1
 < u

2
 < … < u*). The importance of increasing frequency as such is that it 

gradually improves the resolution and approaches image reconstruction at the tissue level.

3.2. Proposed Image Reconstruction Method Using DBIM

Figure 3 presents the flowchart of the proposed method. At first initialize ψ
n( )= ψ

0( )  and ξ ξ
0
=� inc  

with n = 0 . Assume that we have N
t
 transmitters and N

r
 receivers, pick N

t
 and N

r
 that satisfy 

N
t
 ×  N

r
≈  N 2 . With n = 1 , run DBIM using f

1
, which is equal to f

0
�( f

0
 is the fundamental 

tone frequency) in the first iteration of DBIM. The recovered image at this step has a contrast level 
of u1. Similarly, with n = 2 , run DBIM with f f

2 0
2=  and update contrast u1 to u2. When more than 

two frequencies are used in the survey, run DBIM with n n= +1 , the method used f nf
n
=

0
 ( f
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Figure 2. Transmit/receive configuration of the tomographic ultrasound imaging system
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is the nth overtone), which yields clearer spatial resolution gradually. If the condition   n n
iter

≤  is 
satisfied, continuing to the next iteration. End the algorithm if this condition is satisfied.

The process of DBIM is presented in Algorithm 3 below:
Algorithm 3. Distorted-Born Iteration Method
1. Choose initial values: ψ

n( )= ψ 0( )  and ξ ξ
0
=� inc  using (5)

For � � �n toN
DBIM

= 1 , do
2. Calculate B  và C
3. Calculate ξ ξ, sc  in accordance with ψ

n( ) using (6, 7)

4. Calculate ∆ξ sc  using (8)

5. Calculate ∆ψ
n( ) using Nonlinear Conjugate Gradient Method (10)

6. Calculate ψ ψ ψn n n= +− −1 1∆  

End For

3.3. Distorted-Born Iteration Method Using Fundamental 
Tone and Overtones (FTaOT-DBIM)
In physics, the lowest frequency (f0) is called fundamental tone while the higher ones (2f0, 3f0, 4f0, 
5f0, ...) are called overtones. It is the fact that when an oscillator generates frequency f (used for image 
reconstruction and we call it fundamental tone), then it also generates overtones (2f, 3f, 4f, ...). We 
utilize the fundamental tone and its overtones to penetrate the subject and progressively increase 
image resolution. Therefore, in our study, frequency f is used in the first iteration, and naturally, its 
overtones are applied in the following iterations. By that, the resolution is increased progressively 
along with the reconstruction. We then have:

Niter = Nf1 + Nf2 + Nf3 + Nf4 + Nf5 + Nf6 + Nf7 + Nf8	

The FTaOT-DBIM is presented in Algorithm 4. In which, Nf1 = Nf2 = Nf3 = Nf4 = Nf5 Nf6 = Nf7 
= Nf8 = 1.
Algorithm 4. The FTaOT-DBIM 
1. Choose the initial values: ψ

n( ) = ψ 0( ) ; ξ ξ
0
=� inc  using (5)

2. If n � �=0 , do Algorithm 3, f = 0. End for
3. If n n =  +1 to N

f1
, do Algorithm 3, using f

1
. End for. 

4.   If n  = n+1 to N
f2
, do Algorithm 3, using f

2
. End for.

5. If n  = n+1 to N
f3
, do Algorithm 3, using f

3
. End for.

6. If   n = n+1 to N
f4
, do Algorithm 3, using f

4
. End for.

7. If n  = n+1 to N
f5
, do Algorithm 3, using f

5
. End for.

8. If n  = n+1 to N
f6
, do Algorithm 3, using f

6
. End for.

9. If n  = n+1 to N
f7
, do Algorithm 3, using f

7
. End for.

10. If n  = n+1 to N
f8
, do Algorithm 3, using f

8
. End for.

11. Calculate RRE using (13)
In which, relative residual error (RRE) is calculated as below:

RRE
C C

Ci

N

j

N ij ij

ij

=
−

= =∑ ∑1 1

ˆ
	 (13)
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4. RESULTS AND DISCUSSIONS

Simulation parameters: Frequencies f1 = 1 MHz, f2 = 2 MHz, f3 = 3 MHz, f4 = 4 MHz, f5 = 5 MHz, 
f6 = 6 MHz, f7 = 7 MHz, f8 = 8 MHz; Number of pixels N = 20; Number of transmitters Nt = 11; 
Number of receivers Nr = 22; Number of iterations Nsum = 8; Scattering media diameter 7.3 mm; 
Sound contrast 30%; Gaussian noise 10%; Distance from the transmitters and receivers to the subject 
center are 50 mm và 60 mm, respectively.

4.1. The Proposed FTaOT-DBIM Simulation Results
Figure 4 shows the ideal objective function that the ultrasound imaging system needs to recover. Figure 
5 presents the error performance of the proposed method in comparison with the conventional ones. 
It shows that the normalized error is significantly reduced compared to the conventional methods. 

Figure 3. Flowchart of the DBIM using fundamental tone and overtones (FTaOT)



International Journal of Information Retrieval Research
Volume 12 • Issue 1

10

After eight iterations, the normalized errors of the DBIM, DF-DBIM, and FTaOT methods are 0.4205, 
0.1293, and 0.0709, respectively. Therefore, the proposed method’s normalized error is 45% reduced 
compared to the conventional DF-DBIM method.

Figure 6 shows the recovered results for the DBIM, DF-DBIM, and FTaOT-DBIM methods after 
the Nsum iteration. Visually, we can see that the background noise in the proposed method is lower 
than the traditional methods. The results recovered by the proposed method are closer to the ideal 
objective function than the conventional methods.

Figure 7 shows the imaging runtime comparison between FTaOT-DBIM and SF-DBIM (single 
frequency DBIM). It can be seen that the FTaOT-DBIM takes more time; however, the difference 
is insignificant.

Figure 4. The ideal objective function that the ultrasound imaging system needs to recover
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4.2. Assessment of the Proposed Method and Multi-
Frequency-Based Different Approaches
The different scenarios of the DBIM using multi-frequency information are shown in Tables 1-10.

The normalized errors of the scenarios are shown in Table 11. It can be seen that scenario 22 
offers the smallest error (RRE = 0.0757). It is still larger than the error of the proposed method (RRE 
= 0.0709). Therefore, the proposed method is a robust approach for enhanced reconstruction quality 
of ultrasound tomography based on fundamental tone and overtones.

5. DISCUSSION

Our study uses a fundamental tone for the first iteration in DBIM, then consecutively uses its overtones 
for the next ones. The ratio between the starting and the final frequency is varied due to various kinds 
of simulation scenarios. The simulation results proved that multi-frequency ultrasound tomography 
is capable of improving the quality of the image. Fig. 5 also confirmed that using multi-frequency 
DBIM image reconstruction offers better performance than conventional DBIM and our previous 
study (Tran et al., 2016). The technique of using multi-frequency is realistic because the ultrasound 
probes now a large frequency bandwidth.

In our work, the starting frequency is chosen at a relatively low value compared to (Haddadin 
& Ebbini, 1997; Haddadin & Ebbini, 1998; Lavarello & Oelze, 2010; Tijhuis et al., 2001) to ensure 

Figure 5. The error performance of the proposed method in comparison with the conventional ones
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Figure 6. The recovered results for the DBIM, DF-DBIM, and FTaOT-DBIM methods after the Nsum iteration
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convergence. After that, we use its overtones for the next ones to archive the good spatial resolution. 
It is noteworthy that the estimated images in Fig.6 contain many interesting features. It strongly 
confirms the effectiveness of FTaOT-DBIM with DBIM and DF-DBIM.

While there are significant findings reported in our study, the study itself suffers from certain 
limitations. Firstly, Fig. 5 shows that after the 6th iteration, the normalized error of FTaOT-DBIM 
reaches a floor. We can reduce this floor by reducing the tolerated reconstruction error in the 
reconstructed algorithm. It will lead to a more complex computational procedure and, as a consequence, 
a much longer imaging time. Secondly, this research is only concerned with numerical simulation. 
Further investigations are required for extracting the valuable information from the multi-frequency 
ultrasound images. It may be translated to diagnostic ultrasound imaging.

Figure 7. The imaging runtime comparison between FTaOT-DBIM and SF-DBIM (single frequency DBIM)
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Table 1. DBIM Using Multi-Frequency in the case of different Nf1s 

Iterations 1 2 3 4 5 6 7 8

Scenario 1 f1 f2 f3 f4 f5 f6 f7

Scenario 2 f1 f2 f3 f4 f5 f6

Scenario 3 f1 f2 f3 f4 f5

Scenario 4 f1 f2 f3 f4

Scenario 5 f1 f2 f3

Table 2. DBIM Using Multi-Frequency in the case of different Nf2s

Iterations 1 2 3 4 5 6 7 8

Scenario 6 f1 f2 f3 f4 f5 f6 f7

Scenario 7 f1 f2 f3 f4 f5 f6

Scenario 8 f1 f2 f3 f4 f5

Scenario 9 f1 f2 f3 f4

Scenario 10 f1 f2 f3

Table 3. DBIM Using Multi-Frequency in the case of different Nf3s

Iterations 1 2 3 4 5 6 7 8

Scenario 11 f1 f2 f3 f4 f5 f6 f7

Scenario 12 f1 f2 f3 f4 f5 f6

Scenario 13 f1 f2 f3 f4 f5

Scenario 14 f1 f2 f3 f4

Scenario 15 f1 f2 f3

Table 4. DBIM Using Multi-Frequency in the case of different Nf4s

Iterations 1 2 3 4 5 6 7 8

Scenario 16 f1 f2 f3 f4 f5 f6 f7

Scenario 17 f1 f2 f3 f4 f5 f6

Scenario 18 f1 f2 f3 f4 f5

Scenario 19 f1 f2 f3 f4
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Table 5. DBIM Using Multi-Frequency in the case of different Nf5s

Iterations 1 2 3 4 5 6 7 8

Scenario 20 f1 f2 f3 f4 f5 f6 f7

Scenario 21 f1 f2 f3 f4 f5 f6

Scenario 22 f1 f2 f3 f4 f5

Table 6. DBIM Using Multi-Frequency in the case of different Nf6s

Iterations 1 2 3 4 5 6 7 8

Scenario 23 f1 f2 f3 f4 f5 f6 f7

Scenario 24 f1 f2 f3 f4 f5 f6

Table 7. DBIM Using Multi-Frequency in the case of different Nf1s and Nf2s

Iterations 1 2 3 4 5 6 7 8

Scenario 25 f1 f2 f3 f4 f5 f6

Scenario 26 f1 f2 f3 f4 f5

Scenario 27 f1 f2 f3 f4

Scenario 28 f1 f2 f3

Scenario 29 f1 f2 f3 f4 f5

Scenario 30 f1 f2 f3 f4

Scenario 31 f1 f2 f3

Table 8. DBIM Using Multi-Frequency in the case of different Nf2s and Nf3s

Iterations 1 2 3 4 5 6 7 8

Scenario 32 f1 f2 f3 f4 f5 f6

Scenario 33 f1 f2 f3 f4 f5

Scenario 34 f1 f2 f3 f4

Scenario 35 f1 f2 f3

Scenario 36 f1 f2 f3 f4 f5

Scenario 37 f1 f2 f3 f4

Scenario 38 f1 f2 f3
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Table 9. DBIM Using Multi-Frequency in case of different Nf1s, Nf2s, and Nf3s

Iterations 1 2 3 4 5 6 7 8

Scenario 39 f1 f2 f3 f4 f5

Scenario 40 f1 f2 f3 f4

Scenario 41 f1 f2 f3

Scenario 42 f1 f2 f3

Scenario 43 f1 f2 f3 f4

Scenario 44 f1 f2 f3

Scenario 45 f1 f2 f3

Scenario 46 f1 f2 f3 f4

Scenario 47 f1 f2 f3

Scenario 48 f1 f2 f3

Scenario 49 f1 f2 f3

Scenario 50 f1 f2 f3

Table 10. DBIM Using Dual-Frequency (DF-DBIM)

Iterations 1 2 3 4 5 6 7 8

Scenario 51 f1 f2

Scenario 52 f1 f2

Scenario 53 f1 f2

Scenario 54 f1 f2

Scenario 55 f1 f2

Scenario 56 f1 f2

Scenario 57 f1 f2

Table 11. The normalized error of 57 scenarios from Table 2 to 11 after eight iterations

Scenarios 1 2 3 4 5 6 7 8 9 10

Error 0.0728 0.0781 0.0882 0.1157 0.1536 0.0787 0.0882 0.0976 0.1248 0.1730

Scenarios 11 12 13 14 15 16 17 18 19 20

Error 0.0785 0.0902 0.0988 0.1215 0.1275 0.0821 0.0881 0.0979 0.1113 0.0757

Scenarios 21 22 23 24 25 26 27 28 29 30

Error 0.0896 0.0885 0.0774 0.0825 0.0848 0.0897 0.1143 0.1528 0.0898 0.1009

Scenarios 31 32 33 34 35 36 37 38 39 40

Error 0.1495 0.0866 0.0947 0.1206 0.1136 0.0950 0.1235 0.1137 0.0923 0.1077

Scenarios 41 42 43 44 45 46 47 48 49 50

Error 0.0955 0.1477 0.1096 0.1090 0.1527 0.1096 0.0939 0. 0981 0.1420 0.1500

Scenarios 51 52 53 54 55 56 57 # # #

Error 0.2037 0.1472 0.1339 0.1293 0.1352 0.1507 0.2030 # # #



International Journal of Information Retrieval Research
Volume 12 • Issue 1

17

6. CONCLUSION

This paper successfully developed a multi-frequency DBIM image reconstruction model termed 
FTaOT that yields a promising result. The normalized error after each iteration has a notable 
improvement. Multi-frequency DBIM certainly takes more time than single-frequency DBIM, but 
the difference is insignificant. We performed 57 scenarios comparing the proposed method to multi-
frequency DBIM to prove our method’s reliability, in which our approach gains a better result (in 
Tables 1 – 11). This work can be further developed by 3D reconstruction and experiment.
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