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ABSTRACT

Gene regulatory networks (GRNs) are the pioneering methodology for finding new gene interactions 
getting insights of the biological processes using time series gene expression data. It remains a 
challenge to study the temporal nature of gene expression data that mimic complex non-linear 
dynamics of the network. In this paper, an intelligent framework of recurrent neural network (RNN) 
and swarm intelligence (SI)-based particle swarm optimization (PSO) with controlled behaviour has 
been proposed for the reconstruction of GRN from time-series gene expression data. A novel PSO 
algorithm enhanced by human cognition influenced by the ideology of Bhagavad Gita is employed 
for improved learning of RNN. RNN guided by the proposed algorithm simulates the nonlinear and 
dynamic gene interactions to a greater extent. The proposed method shows superior performance 
over traditional SI algorithms in searching biologically plausible candidate networks. The strength 
of the method is verified by analyzing the small artificial network and real data of Escherichia coli 
with improved accuracy.

Keywords
Gene Regulatory Networks, Human Cognition-Based PSO, Recurrent Neural Networks, Time-Series Gene 
Expression Data

1. INTRODUCTION

Recent years have seen the advent of DNA microarray technology and information retrieval has been 
proved essential for the reconstruction of gene regulatory networks (GRNs) from temporal gene 
expression data. GRNs proves important for understanding many unkown biological functionalities 
and processes. It gives insights of the activities of genes and provide knowledge about transcriptional 
regulations among them (Aalto et al., 2020). GRNs is a virtual network of genes and their mutual 
influences, where node of the network is a gene and edges are the influence from the regulator to 
the target gene which either activates or suppress target gene’s ability of protein formation (Morgan 
et al., 2019). GRNs have been successfully applied in diagnostics and contributes in identification 
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of essential genes (Xie et al., 2020). The well known issue encountered in the analysis of temporal 
data for GRN reconstruction problem is the curse of dimensionality (Altman & Krzywinski, 2018).

In context of the computational models used for GRNs reconstruction from time series data, 
researchers has adopted several methods (Delgado & Gómez-Vela, 2019; Razaghi-Moghadam & 
Nikoloski, 2020) such as Boolean networks, Bayesian networks (BNs), dynamic Bayesian networks 
(DBNs) and linear additive genetic model. Boolean networks model (Barman & Kwon, 2018) considers 
only two states for each gene: active and inactive. This model does not take into consideration the 
intermediary effects on the genes which cause information loss. Bayesian networks (BNs) model 
(Sanchez-Castillo et al., 2018) are graph based models forming a genetic network as a directed acyclic 
graphs. This model effectively handles noise, missing values and the random nature of gene expression 
data, however it does not take into account the dynamical nature of GRNs and the temporal aspect of 
the data. The limitations of BNs were overcome by dynamic Bayesian networks (DBNs) (Adabor & 
Acquaah-Mensah, 2019). The linear additive genetic model (Luque-Baena et al., 2014) may identify 
linear regulatory relationships but does not consider the non-linear behaviour of GRNs.

Motivation: Considering the limitations of these models researchers adopted recurrent neural network 
(RNN) for the problem of GRNs reconstruction. RNN model clearly manifested the temporal 
nature of gene expression data and non-linear dynamics among gene regulations which is essential 
for GRN reconstruction. This model has an ability to consider the feedforward and feedback 
loops of the genetic regulation network (Biswas & Acharyya, 2016, 2018). Time-series data is the 
input to the RNN model. The data contains expression levels (xi(t)) of genes at consecutive time 
points. The gene expression level xi(t+1) of a gene (i) of the current time point (t+1) of an RNN.

Layer is simulated from the expression levels xj(t) of genes (j) (regulator genes) at previous time 
point t accompanied by the set of genetic network parameters. In terms of GRNs topology very few 
regulatory genes j influence a target gene i which concludes that genetic network connectivity is 

Figure 1. The overview of the work flow
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sparse. In sense of the modelling of GRNs with RNN model, the set of parameters which requires 
training are weights w

ij
, bias term b

i
 and the time constant t

i
 associated with each gene.

Training of RNN model parameter is a difficult task. Most widely used machine learning 
algorithm which effectively learns RNN model parameters was back propagation through time 
(BPTT) algorithm (Gudise & Venayagamoorthy, 2003; Lillicrap & Santoro, 2019). BPTT algorithm 
encounters difficulties in handling local minima. Further, existing literature has also reported various 
swarm intelligence (SI) algorithms for RNN parameter training for the problem of GRN reconstruction. 
Some of such algorithms are genetic algorithm (GA) (Kordmahalleh et al., 2017), particle swarm 
optimization (PSO) (Jana et al., 2019) and ant colony optimization (ACO) (Kentzoglanakis & Poole, 
2012). PSO algorithm has been proved ground breaking for unrolling RNN when multiple local optima 
exists (R. Xu et al., 2007), but suffers from the problem of slow global optimization and premature 
convergence. There is always a need to improve the learning of RNN parameters to provide improved 
credibility to obtain biologically plausible candidate GRN structure hence the motivation of the 
paper is to improve the learning mechanism of RNN model parameters. Various PSO variants have 
been proposed which certainly improved the learning strategies leading to better search efficiency 
(Lynn & Suganthan, 2015; G. Xu et al., 2019). Some human cognition based variants of PSO with 
controlled behavior was reported in the literature such as self-regulating PSO (SRPSO) (Tanweer et 
al., 2015), human bagavad Gita PSO (HBGPSO) and human dedication PSO (HDPSO) (Gajawada et 
al., 2019). These algorithms significantly improves the learning strategy of PSO leading to improved 
exploration and exploitation ability. Thus, accommodating the intelligent framework using human 
cognitive PSO for the training of RNN model parameters associated with GRN may provide an 
intelligent GRN reconstruction framework.

Contribution: This paper contributes by proposing an intelligent framework of modified PSO with 
controlled behavior for training the RNN model parameters for the problem of GRN reconstruction 
using time series gene expression data. The overview of the work flow is explained in fig. 
1. The proposed algorithm is employed for improving learning strategies by incorporating 
human cognition of self-learning from his own performance. The learning strategy is further 
enhanced by the ideology of Bhagavad Gita and human dedication. The proposed method adopts 
performance analyser mechanism which intakes the performance of all the particles and each 
particle is provided with different learning strategy based on its performance. This practice 
effectively guides the searching of the particle thus achieving faster convergence. The quality 
of the biologically plausible network architectures are evaluated by predicting minimum error 
and as a result the proposed intelligent framework of GRN reconstruction involving improved 
human cognition based learning strategies for training RNN model parameters produced better 
accuracy of reconstructed GRN with respect to the gold standard GRN when compared with 
other state-of-art human cognition based SI algorithms in terms of performance metrices for 
both small artificial network and E.Coli real world dataset.

The rest of the paper has been organized as follows. Section 2 gives brief overview of literature 
survey. Section 3 describes of the problem of GRN using RNN model. Section 4 gives the explanation 
of the proposed framework. Section 5 explains the experimental outcomes and finally section 6 gives 
the conclusion highlighting the future scopes for the research.

2. LITERATURE SURVEY

GRN has become a pioneering methodology for the modeling of typical biological activities. In the 
recent years various computational models have been developed for the reconstruction of GRNs from 
gene expression data based on mathematical formulations (Barbuti et al., 2020). These models are 
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Boolean network, Bayesian network (BNs), dynamic Bayesian network (DBNs) and linear additive 
genetic model. Boolean network model has a binary nature where each gene state can be regarded as 
either turned on or off (Manica et al., 2020). These models do not consider the intermediately effects 
on the gene state which certainly cause the loss of information in data discretization. The Boolean 
network has a deterministic approach thus cannot deal with missing expression data and performs task 
in huge computational time. Researchers also proposed Bayesian network model (BNs) (Grzegorczyk 
et al., 2019; Li et al., 2016). It is represented in the form of acyclic graphs where vertices of the graph 
represent genes and edges represent the conditional dependency relationship in between the genes. 
BNs can adequately eradicate noise and stochastic form of gene data but however failed to use the 
temporal gene expression data and does not consider dynamical nature of gene regulatory networks. 
This model also requires huge computational time and fails to determine self-regulation of the gene 
which is a needful requirement GRN modeling. DBNs overcome the drawbacks of BNs (Yu et al., 
2017). This model takes into account the temporal nature of gene expression data and effectively 
incorporates the non-linear dynamics of gene regulations. The linear additive genetic model performs 
the weighted sum of the expression level of all genes at previous time point to calculate the expression 
level of a gene at the current time point, but this model does not consider the non-linear behaviour 
of GRNs (Luque-Baena et al., 2014).

Recurrent neural network is however the successful method for the modeling of GRNs, since it 
employs the non-linear and dynamic interactions of gene regulations (Liu & Liu, 2020; Raza & Alam, 
2016). RNN permits continuous variables and produces the expression level of a gene (i) of RNN at 
t +1  time point by the influence of the regulatory gene (j) at the previous time points t  using w

ij
 

weight parameter. The gene (i) then produces the expression level x t
i
' +( )1  as predicted output. To 

minimize the error between original and predicted expression level of gene (i) there is a need to train 
the parameters of RNN efficiently.

Researchers have adopted BPTT algorithm and SI algorithms to train RNN parameters (Khan et 
al., 2020). BPTT algorithm unfolds each layer of the network through time finding the derivates with 
respect to the weights and rolling back these derivatives using gradient descent with the objective 
to minimize the error. However, it faces difficulty in dealing with local optima. SI methods proves 
efficient for training RNN model parameters for GRN reconstruction some such algorithms are genetic 
algorithms (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). Adopting 
improved learning mechanism for training RNN parameters has improves the quality of functional 
and structural parameters of GRN obtained. Khan et al., (2016) proposed hybrid SI framework of 
bat algorithm (BA) inspired PSO for GRN reconstruction prolem and obtained better results when 
compared to contemporary literature because of improved learning strategies adopted for RNN 
model training. ACO-PSO framework was used by Kentzoglanakis & Poole, (2012) wherein ACO is 
employed for GRN structure optimization and PSO is used for RNN model parameter optimization for 
the corresponding structure obtained. A hybrid differential evolution (DE) and PSO was proposed R. 
Xu et al., (2007) for RNN model parameter learning proves to perform better for GRN reconstruction 
problem. Some human cognition based PSO variants exists in the contemporary literature such as 
SRPSO, HBGPSO and HDPSO (Gajawada et al., 2019; Tanweer et al., 2015). These algorithms are 
inspired by human thought process in contributing problem solving skills and demonstrated improved 
convergence characteristics. Hence, in this paper, we proposed a human cognition based variants of 
PSO with controlled behavior which possess human like behavior to improve the performance of 
RNN parameter learning.

3. PROBLEM

Mathematically, GRN is represented as a graph G = [V, E] where V vertices represent genes and E 
edges represents the regulatory interactions among them. The problem of GRN reconstruction aims 
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to obtain the genetic network parameters. Basically, there are three parameters associated with GRN 
problem, these are connection weight W w

ij NXN
  = 


  (represented in the form of matrix), bias 

expression parameter B =  [ ]b
i XN1

 and time constant T =  [ ]t
i XN1

, where N is the total number of 
genes. The GRN is computationally denoted as an adjacency matrix G = g

ij NXN




 , and on the basis 

of presence and absence of an edge the values of g
ij

 is 0 or 1 (Kentzoglanakis & Poole, 2012). GRN 
reconstruction is a two-fold process which involves the structure optimization finding appropriate 
biologically plausible network architecture that explains the connectivity between the genes and 
second is parameter estimation for the given model structure. Gene expression dataset is fed as an 
input to GRN reconstruction problem. Data is represented in the form of matrix Data x t

i NXT
= ( )



 , 

where x t
i ( )  is the gene expression of gene i( )  at time (t), N  is the total number of genes and T  

is total time points.
A neural network based RNN formalism is an efficient method for GRN reconstruction as it 

allows feed forward and feedback loops which is are necessary of GRN reconstruction. RNN model 
captures the non-linear dynamics of gene interactions and reproduces the nature of temporal gene 
expression data Vohradsky, (2001). The gene expression level x

i
 of target gene ( i ) in time point 

t t+( )∆  represents the regulatory effect and is given by (1):

x t t
t

w x t b
i

i j

N

ij j i

+( ) =
+ − ( )+





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





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

 =∑
∆

∆

t 1
1
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


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− −










( )1

∆t
x t

i
it

	 (1)

where x
j
 is the gene expression level of regulators, w

ij
, b
i
 and t

i
 are the parameters of GRN 

associated with RNN model which requires training. The expression level of gene (i) obtained in the 
range [0, 1].

The parameters of the model are predicted so as to mimic the nature of the time series gene 
expression data. In the sense, the model-driven GRN reconstruction problem becomes an optimization 
problem where model parameters are trained with the objective to minimize the mean square error (
MSE ) in between the original and predicted gene expression value of each time point of the time-
series gene expression data which is given by (2):

MSE
NT

x t x t
i

N

t

T

i i
= ( )− ( )( )

= =
∑∑

1

1 1�
 	 (2)

where x t
i ( )  is the original gene expression level and x t

i

 ( )  is the predicted gene expression level 
of i

th
 gene at t  time point.

In context of structure optimization, GRN connectivity is usually sparse i.e. only few regulators 
influence a target gene. For the 8-gene network we have considered maximum 4 genes influences 
per target gene. This property limits the search space from 2N  to 

4
NC , where N  is the total number 

of genes in the GRN (Khan et al., 2016). The intense searching is done on reduced search space using 
the combination of all possible regulators this obtains more likable candidate architectures. Regulators 
restriction process also improves model quality. For parameter estimation, the global problem has 
NX N +( )2  parameters which becomes very large with large values of N . Thus researchers suggested 
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the problem decomposition strategy where parameters associated with each target gene i.e. N +( )2  
is estimated this reduces computational overhead (Noman et al., 2013). In this work, the proposed 
novel SI algorithm is given the objective function of parameter estimation for each target gene ( i ) 
to minimize the estimated error ( error

i( )  is given by (3):

error
T

x t x t
i

t

T

i i
= ( )− ( )( )

=
∑

1

1�
 	 (3)

where x t
i ( )  and x t

i

 ( )  is the observed and predicted gene expression level at time point t( ) . 
Subsequently, the ( error

i( )  is used to obtain the total predicted mean square error (Total MSE_ ) 
for all N  genes given by (4):

Total MSE
N

error
i

N

i
_ =

=
∑

1

1

	 (4)

4. PROPOSED FRAMEWORK

In this paper, an intelligent framework of modified PSO with controlled behaviour for training the 
RNN model parameters for the problem of GRN reconstruction using time series gene expression 
data has been proposed. The problem takes time-series gene expression data as input. The data is 
then passed to the proposed intelligent GRN reconstruction framework. In specific to GRN modelled 
with RNN, w b,  and t  parameters are tuned with the objective to minimize the error between the 
actual and predicted gene expression time-series. The obtained model is analysed against the gold 
standard network so that true biological understanding can be fetched from it. The overview of the 
work process is described in fig. 1. In the proposed approach, the performance of RNN model is 
improved by training its parameters with modified PSO algorithm with controlled behaviour. This 
algorithm is inspired by the human cognition enhanced by the ideology of Bhagavad Gita and human 
dedication. The algorithm adopts a performance analyser and adopts an intelligent move by dividing 
the population of the particles into subpopulations. The performance analyser on the basis of the 
performance of the particle divides the population into the best particle, ideal/dedicated particle, 
non-ideal particle when got success and non-ideal particle when got failure and adaptively adjust 
their learning strategies.

The learning strategy for the best particle is incorporated with the feature of human cognition 
i.e. when a person knows his current performance is best he will adopt best learning strategy for the 
desired outcome, this is done by accelerating its weight inertia without taking consent of his own 
previous personal experience and social information which induces higher exploration. Best particle’s 
velocity vel

i
 and position pos

i
 is updated using (5), (6) and (7) respectively:

w w dw
I I
= + 	 (5)

vel t w vel t
i I i
+( ) = ( )1 * 	 (6)

pos t pos t vel t
i i i
+( ) = ( )+ +( )1 1 	 (7)
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where:

dw
maximum iteraion

w w=
−max min

_
	

w
I
 ranges linearly from maximum weight inertia max

w
= 0.9 to minimum weight inertia min

w
= 0.4.

The second improvement in learning strategy of other remaining particles is done by incorporating 
the ideology of Bhagavad Gita and dedication dividing them into ideal/dedicated, non-ideal particle 
which got success and non-ideal particle which got failure characteristics, considering the lesson 
of Bhagavad Gita that the human is not always classified as best or worst, the ideal human also 
exist who always moves with some dedication whether they have achieved success or failure. A 
particle is ideal/dedicated in a population is decided with the random probability considering rand < 
IdealCandidateProbability is true, where rand is within the range [0, 1] and IdealCandidateProbability 
= 0.5. Dedication characteristic is induced by making the particle move with the factor of 0.9 in 
the search space. The random nature and increased movement effects in particle’s learning strategy 
provides the intelligent exploitation of the search space. The inertia weight, velocity and position of 
these particles are obtained using (8), (9) and (10) respectively:

w w dw
I I
= − 	 (8)

vel t w vel t c rand pbest pos t
i I i i
+( ) = ( )+ − ( )( )1 1 1* * * 	 (9)

pos t pos t vel t
i i i
+( ) = ( )+ +( )1 0 9 1. * 	 (10)

The non-ideal person can move ahead with some dedication only when he gets success. The 
random probability decides non-ideal particles achieves success when rand < SuccessProbability is 
true, where SuccessProbability = 0.5 and rand is within the range [0, 1]. The inertia weight for these 
particles is updated using (5) because if these particles are provided with higher acceleration they 
can perform better leading to higher exploration of the search space. Velocity vel

i
 and position pos

i  
 

of these particles are updated using (11) and (12), because these particles achieved some success 
they will show some dedication and will move with the factor of 0.9 in the search space. Further, 
non-ideal person when fails will have no dedication so the velocity vel

i
 and position pos

i
 of these 

particles are updated using (13) and (14):

vel t w vel t c rand pbest pos t c rand gbe
i I i i
+( ) = ( )+ − ( )( )+1 1 1 2 2* * * * * sst pos t

i
− ( )( ) 	 (11)

pos t pos t vel t
i i i
+( ) = ( )+ +( )1 0 9 1. * 	 (12)

vel t vel t
i i
+( ) = ( )1 	 (13)
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pos t pos t vel t
i i i
+( ) = ( )+ +( )1 0 1 1. * 	 (14)

The improved learning strategies provide better convergence and balanced exploration and 
exploitation which helps to obtain better biologically plausible network architecture. The position 
vector of the proposed algorithm encodes the RNN model parameters associated with each sub 
problem and training is performed. The error for each candidate solution is evaluated by using (3). 
The proposed framework of RNN learning using novel SI methodology is explained in Algorithm 
1 and compared with other state-of-art human cognition based SI algorithms in terms of MSE and 
accuracy of prediction of true interactions i.e. true positives (TP).

Algorithm 1. Steps in RNN learning using proposed SI method

1.  for each gene g  = 1: N  do // Genes Loop
2.     Given the population of the particles ps , the set of 
       particles is represented X x x xps= ( )1 2, ,...,

       Initialize randomly the position and velocity vector of the  
       ps  particles of D dimension.
3.     The structure of the position vector for each particle  
       iPos i w w w b

i i iN i i( ) = …



1 2

, , , , ,t ], where  is the number of genes. 

4.     The weight, bias and time constant should be in assigned  
       boundaries, wmin wmax bmin bmax min max, , , ,














and t t  and velocity 

       −

Vmax Vmax,

5.     for each particle i  do
6.        Using the RNN model formalism predict the gene  

          expression of gene g  at time point, x t
i

 ( ) from the original 
          gene expression of genes at previous time point t −( )1 , 

          x t
i

 −( )1  as in (1) then evaluate the error for each 

          particle i  using (3).
7.           Find the personal best ( pbest ) for each particle and 
             global best ( gbest ).
8.     end for
// Evolution of Particles

9.     for iter = 1:MaxIterations do
10.          Find the gbest  particle 
11.            for the gbest particle do
12.              Evaluate the inertia weight using (5) and then  
                 update the velocity and position of the best   
                 particle using (6) and (7) respectively. 
13.            end for
14.            for other remaining particles do
15.              Randomly generate a number and check whether a  
                 particle is ideal/dedicated 
16.                if (rand < IdealCandidateProbability), do
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17.                  Evaluate the inertia weight using (8) and  
                     then update the velocity and position of the  
                     particle using (9) and (10) respectively. 
18.                else // Particle is Non-ideal
19.                    if (rand < SuccessProbability), do // 
                       Non-ideal particle achieving success   
20.                       Evaluate the inertia weight using (5)  
                          and then update the velocity and  
                          position of the particle using (11) and  
                          (12) repectively. 
21.                    else // Non-ideal particle got failure          
22.                       Update the velocity and position of the  
                          particle using (13) and (14) repectively.   
23.                    endif      
24.                endif       
25.            end for
26.           Update the personal best and global best. 
27.        end for MaxIterations
28.    Store gbest  for each gene at the end of MaxIterations.
29. end for Genes loop

Collect and combine the obtained gbest  result i.e. N N +( )2 . Extract the first N  elements 
from each row to form an NXN  adjacency matrix i.e. the reconstructed GRN. The proposed framework 
of RNN learning using novel SI algorithm for the reverse engineering problem of GRNs reconstruction 
is stochastic in nature; i.e. considering the time-series data each reconstructed network has differences 
in their topology when run for L  =10 independent experiments. These L  networks are ensembled 
and the adjacency matrix of size NXN  which is considered as the best solution of each independent 
experiment is noted. Subsequently, the scoring methodology Score

ij
 is used to build a final 

reconstructed GRN G   =  g
ij
NXN






 whose each edge g
ij

  is either 0 or 1, is obtained by (15):

Score
L

g
ij

L

L

ij
=

=
∑

1

1

	 (15)

where g
ij

 Î  G reconstructed GRN at independent experiment. An edge in final predicted GRN will 
be included or not is monitored by the inclusion threshold value q  Î  [0, 1] is obtained by (16):

g
if Score

otherij
ij =
>1

0

               

                    

q
wwise








	 (16)

5. EXPERIMENTATION AND DISCUSSIONS

In this paper, the proposed framework for the problem of the reconstruction of gene regulatory 
networks was first tested on the small artificial network consisting of 4 genes and then the methodology 
has been applied on 4 different temporal datasets of SOS DNA damage repair network of Escherichia 
coli (in vivo) consisting of 8 major genes. The final reconstructed GRN is obtained with the binary 
values in the matrix g

ij

 , is validated for its biological significance. Network validation provides 
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insights for many meaningful regulations among genes. Section 5.1 explains the evaluation criteria 
on which the performance of the reconstructed GRN has been validated when compared with true 
Gold Standard. The results are shown in the section 5.2. The simulations are done on Intel Core i7 
CPU with 3.4 GHz and 8 GB RAM system, the program is implemented in MATLAB 2015a with 
Windows 10 64-bit operating system environment.

5.1 Evaluation Criteria
The performance of the proposed method is validated when comparison is made between the final 
reconstructed GRN and the Gold Standard GRN using some statistical properties. Edge e

ij
 in final 

GRN is categorized as true positive (TP), true negative (TN), false positive (FP), false negative (FN). 
TP: when an edge is predicted correctly, TN: when an edge is not predicted in final network and also 
not present in gold standard network, FP: when an edge in final network is predicted but not present 
in gold standard network and FN: when an edge in final network is not predicted but is present in 
gold standard network.

When gold standard network is known then final reconstructed network is compared with it using 
these statistical properties for performance analysis. True Positive Rate (TPR) (sensitivity/recall) 
which is the fraction of the count of edges predicted correctly (TP) to the count of total number of 
edges actually have to be predicted (TP + FN), another is false positive rate (FPR) (specificity) which 
is the fraction of the count of incorrect predicted edges (FP) to the count of total number of edges 
that should not be predicted (FP + TN), last metric is positive predictive value (PPV) (precision) 
which is the fraction of count of edges predicted correctly (TP) to the count of total number of edges 
predicted (TP + FP).

5.2 Results and Analysis
The performance of the proposed approach is tested on the synthetic dataset in which gene expression 
data is generated and then used as input for GRN reconstruction, it is elaborated in sub section 5.2.1. 
Further sub section 5.2.2 shows the performance of the approach on the 4 different experiments of 
E. Coli SOS DNA damage repair real-world dataset.

5.2.1 Small Artificial Network
The proposed methodology reconstructs the 4-genes and 8 regulatory interactions small artificial 
network given by (R. Xu et al., 2007). The purpose of reconstructing small artificial network is for 
primary justification of the proposed method for the problem of GRNs reconstruction. The training 
dataset has been generated using (1) considering the parameters of RNN model given in the Table 1.

Using (1) total 500 time points are generated assuming time interval Dt  = 0.1, the expression 
values of the genes get saturated very fast. Figure 2 shows the dynamics of the training data generated. 
Out of 500 time points 50 time points are evenly sampled because in real-world such huge time-points 

Table 1. RNN parameters used to generate training data of small artificial network (R. Xu et al., 2007)

w
ij

b
i

t
i

20 -20 0 0 0 10

15 -10 0 0 -5 5

0 -8 12 0 0 5

0 0 8 -12 0 5
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are not possible. Now considering the training data generated with 50 time points as input for the 
GRN reconstruction, L =10 independent trails of the proposed RNN learning with the novel SI 
algorithm framework has been performed, taking swarm population of 

m
C4  where m = 1, 2, 3 and 4 

and performing the learning for 50,000 iterations.

Discussion: Considering the parameters proposed SI algorithm the weight inertia decreases linearly 
with max

w
= 0.9, min

w
= 0.4, c c1 2=  = 2. The initial value of weight (bias) and time constant 

parameters of RNN model are [-1, 1] and [1, 10] respectively that encodes the position vector 
of the proposed SI algorithm and maximum velocity is Vmax = 2. Table 2 gives the count of 
TP, FP, TN and FN of the reconstructed GRN formed by the proposed framework of RNN 
learning using novel SI algorithm and results are compared with the framework of RNN learning 
with PSO and RNN learning framework with the other human cognition based SI algorithms 
Self-Regulating PSO (SRPSO) (Tanweer et al., 2015), Human Bhagavad Gita PSO (HBPSO) 
and Human Dedication PSO (HDPSO) (Gajawada et al., 2019). It is observed that with inclusion 
threshold q  = 0.8, novel SI algorithm obtained 7 TPs and no FP, using single time-series. The 
average mean square error (MSE) obtained by novel SI algorithm is approximately in magnitude 
of 10-2 and 10-3. Figure 3 shows that proposed algorithm performed better when comparison is 
made for TPR with other state-of-art algorithms. FPR and PPV are 0 and 1 respectively for all 
the algorithms.

5.2.2 E. Coli SOS DNA Damage Repair Real-World Network
The proposed methodology for reverse engineering of GRNs from time-series data has been applied on 
the (in vivo) real-world network of E. Coli SOS repair networks. The dataset appropriately shows the 
dynamical nature of E. Coli SOS repair system; this network contains the proteins which participate 
in the repair mechanism. The actual SOS network consists of 40 genes for the repair mechanism of 

Figure 2. Dynamics of the training dataset for small artificial network consisting of 4-genes

Table 2. Performance Analysis of the proposed algorithm and other state-of-art algorithms

Algorithms TP FP TN FN

Proposed SI method 7 0 8 1

SRPSO 5 0 8 3

HBGPSO 5 0 8 3

HDPSO 6 0 8 2

PSO 5 0 8 3
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DNA (Michel, 2005). LexA and recA deeply contribute in the changes in expression level of other 
genes. Ronen et al. (2002) elaborated about the temporal behavior of 8 major genes of the SOS 
repair mechanism capturing the dynamical nature of response system showing 9 interactions. These 
eight major genes are lexA, recA, uvrD, uvrA, uvrY, umuD, ruvA, and polB. Total 4 experiments 
are conducted using two separate UV light intensities on the E.Coli, on 1st and 2nd experiment UV 
light of 20 Jm-2 was used and on 3rd and 4th experiment UV light of 5 Jm-2 was used and temporal 
datasets are formulated, each dataset contains 50 time points (columns in the training data) sampled 
evenly at the interval of 6 minutes for 8 major genes (rows in the training data). The dataset is 
obtained from the link (http://wws.weizmann.ac.il/mcb/UriAlon/sites/mcb.UriAlon/files/uploads/
DownloadableData/sosdata.zip).

The experimental setup used for the inference of SOS repair system from the given temporal 
data, L = 10  independent trials of the proposed framework has been performed taking the 
population size of swarm as 

m
C8  where m be the plausible combinations of regulations per target 

gene (m = 1,2,3 and 4). Each experiment is trained for 5000 generations. In all 4 datasets of SOS 
repair system the gene expression value at first time point is zero so in experimentation it has been 
removed leaving with total 49 time points in the dataset. The dataset then needs to be normalized 
within the range of [0, 1].

Discussion: Considering the initial random value of weight (bias) and time constant of the RNN 
model parameters encoded in the position vector of the proposed SI algorithm are [-5, 5] and 
[1, 10] respectively and maximum velocity taken is vmax = 5 . Table 3 shows the statistical 
properties and MSE obtained for the reconstructed GRN with the threshold value of q  = 0.9 
using the framework of RNN learning with proposed SI algorithm. Figure 4 shows the 
comparison between the performance (TPR, FPR and PPV) of the proposed algorithm with 
other state-of-art algorithms. The 2nd experiment achieves highest prediction with 16 edges 
in network topology. Kentzoglanakis and Poole (2012) lacks to obtain true positive in 4th 
experiment but our proposed method identifies true positive in each experiment. It has been 
observed that results show significant improvement. It is because of the improved learning 

Figure 3. Performance measure of TPR between the proposed SI algorithm and other state-of-art algorithms

Table 3. Statistical Properties of the proposed SI algorithm with E.Coli dataset

Dataset TP TN FP FN TPR FPR PPV MSE

1 5 48 7 4 0.56 0.13 0.42 0.0036

2 8 47 8 1 0.89 0.15 0.5 0.0074

3 7 47 8 2 0.78 0.15 0.47 0.0072

4 5 48 7 4 0.56 0.13 0.42 0.0062
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strategy adopted in proposed SI algorithm for both the best particle providing it with high 
acceleration leading to enhanced exploration along with it other particles are incorporated 
with the ideology of Bhagavad Gita empowering its velocity and position update mechanism 
and some randomness which help escape the local optimum, improving its exploration and 
exploitation ability providing high precision solution.

Figure 5 shows the actual and predicted gene expression level obtained by RNN learning with 
proposed algorithm from the 2nd experiment of E.Coli dataset consisting 8 major genes efficiently 
mimicking the dynamics of the original time-series data.

6. CONCLUSION

The problem of the reconstruction of gene regulatory networks (GRNs) from high throughput 
time-series gene expression data using computational intelligence is a well-posed challenge in 
bioinformatics. RNN model is an efficient modeling approach for GRN reconstruction. In this paper, 
an intelligent framework for GRN reconstruction problem has been proposed which employs the 
modified PSO based on the human cognition for the training of RNN parameters (GRN parameters). 
The proposed swarm intelligence based algorithm along with SRPSO, HBGPSO and HDPSO human 
cognition based SI algorithms are fitted to the GRN model and each algorithm is executed separately 
on small artificial network dataset (4 genes and 8 interactions) and four different experiments of 
E.Coli real-world network dataset (8 genes and 9 interactions). Experiments show that proposed SI 

Figure 4. Performance measure for E.Coli datasets (a)Dataset 1 (b) Dataset 2 (c) Dataset 3 (d) Dataset 4
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methodology outperforms all other methods for both artificial and real-world network datasets. In 
the experiment, the proposed framework obtains highest true positive count (7) for artificial network 
dataset. In the 2nd experiment of the E.Coli dataset proposed framework achieves the highest sensitivity 
(0.89). The GRN reconstruction problem requires highly-scalable modeling approaches to handle 
large-scale datasets. Large datasets causes curse of dimensionality that makes suffer the performance 
of modeling methods. Further, complete biological insight will be obtained by the integration of 
multi-omics data obtained from multiple-sources, and it can be the major focus of GRN research. In 
the conclusion, GRN modeling is a powerful tool in system biology which allows the discovery of 
complex relationships among biological entities.

Figure 5. Actual and Predicted dynamics for genes of E.Coli Dataset 2 (a) Gene uvrD (b) Gene lexA (c) Gene umuDC (d) Gene recA 
(e) Gene uvrA (f) Gene uvrY (g) Gene ruvA (h) Gene polB
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