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ABSTRACT

This study presents an intelligent information retrieval system that will effectively extract useful 
information from breast cancer datasets and utilized that information to build a classification model. 
The proposed model will reduce the missed cancer rate by providing a comprehensive decision support 
to the radiologist. The model is built on two datasets, Wisconsin Breast Cancer Dataset (WBCD) and 
365 free text mammography reports from a hospital. Effective pre-processing techniques including 
filling missing values with regression, an effective natural language processing (NLP) parser, is 
developed to handle free text mammography reports. Balancing the dataset with synthetic minority 
oversampling (SMOTE) was applied to prepare the dataset for learning. Most relevant features were 
selected with the help of filter method and tf-idf scores. K-NN and SGD classifiers are optimized 
with optimum value of k for K-NN and hyper tuning the SGD parameters with grid search technique.
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INTRODUCTION

Cancer is the major chronic health risk worldwide, with 12.7 million cases reported in 2008 and is 
predicted to increase to 21 million by 2030 (Society, 2011). Breast cancer is the most invasive life-
threatening disease among females. Late diagnosis and the high cost of treatment lead to high mortality 
rates. Cancer is the lump in which cells begin to grow recalcitrant and can be mortal. These lumps 
are known as tumors, which can be benign (non-cancerous) or malignant (cancerous). Most breast 
cancers are discovered in the milk-producing glands, called lobules, or in the ducts that connect to 
the nipple. Tumors are small in the initial stages and may not cause noticeable symptoms; therefore, 
it is difficult to diagnose in the early stages. However, advancement in diagnostic techniques allows 
the oncologist to detect breast cancer during the developing stages. Accurate and timely detection 
of cancer helps oncologists make effective treatment strategies that can increase patient survival 
(Jemal, 2005). Early diagnosis requires a reliable and robust diagnostic system that can accurately 
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distinguish between malignant and benign tumors. Machine learning practices are gradually being 
brought together to improve diagnostic capabilities (Osareh, 2010; Kumari, 2017). With the assistance 
of machine learning techniques, the possibility of human error can be minimized, and healthcare 
data can be analyzed rapidly with a higher degree of accuracy (Dutra, 201). Statistically, early tumor 
detection increases the chance of successful treatment by 30% and improves overall survival rates 
(Elmore, 2003; Veronesi U, 2005). Consequently, efficient diagnostic techniques are required to 
detect tumors at an early stage in order to prepare effective treatment plans and strategies for long-
term survival. Medical experts and researchers are increasing efforts to improve detection rates of 
the disease in the initial stages.

Mammography is used as a preliminary diagnostic screening exam to visualize potentially 
malignant breast tumors using a low dose x-ray with a detection accuracy of 80% (Elmore J. G., 2005). 
Each breast screening results in a minimum of one x-ray image and one free text report narrated by a 
radiologist. Each mammography report is assessed and categorized according to the Breast Imaging-
Reporting and Data System (BI-RADS) (Liberman, 2002), a standardized classification system given 
by the American College of Radiology for risk assessment and offers uniformity to radiologist reports. 
Mammograms have the potential to identify tumors several years before the development of physical 
symptoms; however, false positives and negatives are not uncommon. The double evaluation of 
mammograms by two different radiologists is recommended to reduce the proportion of misdiagnoses; 
however, this practice increases the workload, is costly and time-consuming (Brown, 1996).

To confirm detection, Fine Needle Aspiration (FNA) is used as an additional microscopic analysis 
and has a detection accuracy of 65-98% (Giard, 1992). A fine needle is used to extract breast tissue for 
pathological assessment. A comprehensive report is provided on the cell type, including comments 
on malignancy. Moreover, a surgical biopsy is a diagnostic technique with a detection accuracy of 
~100%. The accuracy of the visual interpretation of mammograms and FNA fluctuates extensively 
and is not the most reliable breast cancer detection method. Surgical biopsy reveals most of the 
malignant cases; however, this technique is invasive and expensive. Regardless of the availability 
of contemporary diagnostic procedures and advances in healthcare systems, missed breast cancer 
continues (Singh, 2007). Missed cancer during the diagnosis is the most damaging and expensive 
kind of investigative error, also known as diagnostic errors.

Diagnostic errors are defined as missed, false, or delayed detection of a medical disease by a 
definitive test or screening (Maskell, 2019). The failure to detect a tumor during cancer screening 
increases the mortality rates of cancer patients. Common failures that lead to diagnostic errors include 
inadequate sampling or radiologic technique; human error (pathologist or radiologist); human error 
while documenting; inexperience of the physician in recognizing symptoms. Approximately 30% 
of errors occur during radiology investigations, with 75% of medical negligence claims against 
radiologists associated with diagnostic errors (Lee, 2013). Vigilant analysis and implementing 
standardized practices are required to overcome such unsolicited events.

Machine learning and data science techniques have the potential to discover hidden knowledge 
and statistical regularities from the available historical data to make accurate predictions using new 
data. A large number of studies are reported in the literature that utilizes different machine learning 
techniques to detect the malignant tumor (Cruz, 2006). In recent years, researchers proposed many 
data-driven rational classification models for breast cancer classification (Liu, 2019; Montelongo 
González, 2020; Esmaeili, 2020; Schaffter, 2020). The major limitations of present state-of-art methods 
is that they only aim to increase the classification accuracy and do not attempt to improve the precision 
and recall value. The precision value of the classification system is the measure of false-positives. The 
false-positive value is the number of samples/patients that are incorrectly identified as positives by the 
classifier. This situation could lead to unnecessary procedures or treatment. Moreover, recall value 
measures the false-negatives. The false-negative is the measure of the number of positives samples 
that the classification model fails to identify. An effort must be made to reduce the missed positive 
samples as it results in patients foregoing needed treatment and leads to severe consequences that can 
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be mortal. Additionally, the existing classification model cannot work on both types of datasets, i.e., 
structured medical data and semi-structured medical data. It is known that a considerable amount of 
structure, semi-structured and unstructured data are generated in the medical domain corresponding 
to the different medical activities.

Therefore, the objective of this study is to develop a novel decision support system based on 
a machine learning approach that provides complete decision support for breast cancer. The key 
contribution of the proposed work are as follows:

1. 	 In a medical environment, data is collected and processed in a wide variety of formats for different 
purposes. Therefore, this work presents a novel approach that can simultaneously handle two 
types of datasets, i.e., structured as well as semi-structured data.

2. 	 The performance of the machine learning model is greatly influenced by the quality of data utilized 
for the training and testing of the classifier. Therefore, to extract the most useful information for 
the medical data, two different intelligent information retrieval systems are proposed one for the 
structured dataset and the other for the semi-structured dataset. The information extraction systems 
utilize effective pre-processing practices to improve the quality of data. It involves handling 
missing values, standardizing the data, balancing the unbalanced dataset, NLP parser, reducing 
the dimensionality by selecting the most relevant and best features for the model learning in the 
feature selection step.

3. 	 The extracted information became the input to the machine learning model for the decision 
support. The selection of the classifier for the machine learning model is very crucial and greatly 
affects the model’s performance. Therefore, the two most widely and successfully used classifier, 
i.e., K-NN and SGD, are used to train and test the machine learning model.

4. 	 The performance of the classifiers is greatly influenced by the choice classifier parameters. 
Therefore, both the classifiers, K-NN and SGD, are optimized to the best parameter value.

5. 	 Finally, the proposed model’s performance is evaluated on the model accuracy, precision, recall, 
and F1-score and compared with the present state-of-the-art methods.

BACKGROUND

The researchers used a range of machine learning techniques for predicting susceptibility (Jerez-
Aragonés, 2003; Kate, 2017), diagnosis (Kim, 2012; Bilal, 2013; Kumari M. &., 2018), recurrence 
(Macías-García, 2020; Alzu’bi, 2021; Tseng, 2019) and survivability (Sasikala, 2018; Bouyer, 2017) 
of breast cancer in women.

By examining the available literature, it has been observed that most of the reported studies utilize 
WBCD structured data for the classification of benign and malignant tumors. An automatic diagnostic 
model was proposed for detecting breast cancer. The dimensionality of the WBCD is reduced by 
using association rules and the model is trained with a neural network classifier. A three-fold CV is 
used in the testing phase, which results in a classification accuracy of 95.6% (Karabatak, 2009). The 
classification accuracy was improved to 96.87% for the same dataset using a rough set algorithm to 
select the most predictive feature and SVM classifier for training and testing (Chen, 2011).

Setiono et al. (2000) proposed a method that improves WBCD classification performance with 
an accuracy of 98.10%. Before applying the classifier, the dataset is first pre-processed. Attributes 
with missing values are ignored and a Neural Network classifier is trained on most predictive features 
selected by one hidden layer of neural networks. This technique reduces the training time and enhances 
the accuracy of the model. A classification modal least square support vector machine (LS-SVM) was 
proposed by Polat et al. (2007) to detect breast cancer in women using cross-validation and attained 
an accuracy of 98.53%. Yeh et al. designed a breast cancer detection model with an accuracy of 
98.71% by using machine learning techniques with swarm optimization (Yeh, 2009). For breast cancer 
detection, Akay, M. F. (2009) proposed a new method using SVM and attained the classification 
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accuracy of 99.02%. Another hybrid method for breast cancer diagnosis was developed where the size 
of the training dataset was reduced by using an artificial immune system (AIS) artificial intelligence 
algorithm. The fuzzy weighing technique was adopted to consolidate the effect of using a distance-
based algorithm. The above-proposed model was then trained using a K- Nearest Neighbor (KNN) 
classifier. The fuzzy-AIS-KNN model with 10-fold Cross-Validation (CV) achieving an accuracy of 
99.14% (Şahan, 2007). The classification accuracy for breast cancer is further improved to 99.26% by 
utilizing Artificial Neural Network (ANN) over biological metaplasticity (Marcano-Cedeño, 2011).

The aforementioned state-of-art methods work for only the structured dataset and fail to capture 
and utilize the information available with mammographic screening. It gained the attention of many 
researchers and became the area of interest.

A number of statistical models were developed where mammogram images are enhanced to 
extract the most predictive features and then became the input for the statistical learning model to 
classify benign and malignant tumors (Sharma, 2006; Tang, 2009; Anitha, 2016). Burnside et al. 
developed a probabilistic model to classify mammography reports (Burnside, 2009). Wieneke et al. 
gave a solution for abstracting free text structured data from the breast pathology report. The SVM 
classifier was used in combination with appropriate NPL techniques to analyze the data and recognize 
hidden patterns. A total of 6,965 manually abstracted pathology reports (2009-2011) were divided 
into 80% of the training sample and 20% of the test sample. The most relevant features were obtained 
through the chi-square statistical test, which fed to the classifier for learning produces promising 
results with an 80.0 F1 score and 77.0% precision value (Wieneke, 2015). Gao et al. developed a 
rule-based NLP system to extract mammographic findings from free-text mammography reports 
accurately. Mass, calcification, asymmetry, and architectural distortion were the findings extracted 
from 93,705 mammography reports using a dictionary lookup method on the SAS platform for ensuring 
portability and ease of implementation. The developed system coded 96-99 samples correctly out of 
100 samples and performed better than earlier studies (Gao, 2015). Thiebaut et al. analyzed 14,029 
textual clinical reports from breast cancer patients from 2000 to 2017. They developed an innovative 
NLP-based solution that allows for a multi-targeted analysis of free-text medical records. They used 
many techniques such as automatic synonyms detection and typographic error corrections to get 
several indicators such as tumor size, type, hormonal response to create various statistical studies on 
the corpus (Thiebaut, 2017).

Gupta et al. proposed an unsupervised information extraction system using the dependency-based 
parse tree with distributed semantics to generate controlled relation about observations from the 
mammography reports (Gupta, Automatic information extraction from unstructured mammography 
reports using distributed semantics, 2018). Rani et al. developed an automated system to extract 
the breast tumor details using pattern matching rules and applied a PTNM protocol to generate the 
pathological classification of breast tumors. The extracted and classified breast tumor value was 
analyzed against the gold standard values obtained from manually scrutinized reports. The developed 
system has showcased an average accuracy of 79.53% (Rani, 2015). Bozkurt et al. proposed a model 
to extract breast cancer diagnostic information from free text mammography narrative reports by 
combining NPL with the Bayesian network to provide decision support (Bozkurt, 2016). BI-RADS 
descriptors and diagnostic breast cancer information have been extracted from mammography reports 
and supplied as an input to the decision support system, which helps dictate the report as an output.

The state-of-art methods reported in the literature considered either structured or semi-structured 
data associated with breast cancer classification and analysis. Therefore, an advanced breast cancer 
prediction model is required to work with both structured and semi-structured datasets. Additionally, 
present state-of-art methods aim to improve the classification accuracy and little efforts have been 
made to reduce false-negative cases, i.e., the missed cancer rate. This study proposes an automated 
decision support system to provide a reliable and quick recommendation from screening sample 
analysis to address the above issues. The proposed system supports both FNA (Structured dataset) 
and mammography breast cancer screening (semi-structured) techniques. The approach relied on a 
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strong amalgamation among standard NLP and supervised machine learning methods that present an 
effective trade-off between required manual effort and generalizability of the system. The objective 
of the work is to provide real-time support to radiologists’ to accurately predict malignancy, reducing 
the number of false negatives and the chance of human error. Consequently, it endows with a process 
that could integrate decision support into the radiologist and pathologist analysis process, devoid of 
the need for equivalent data entry processes.

MATERIALS AND RESEARCH METHODOLOGY

This section presents the different materials and methods applied in the proposed study. The 
architecture of the proposed work has been illustrated in Figure 1. The breast cancer screening 
practices generate two types of the dataset, one is structured and the second one is semi-structured. 
The proposed model can handle both types of datasets and provide a reliable recommendation to the 
radiologist during decision-making. The detailed functionality of the processing blocks is illustrated 
in the following subsections.

Datasets
In this work, two datasets, i.e., WBCD and free text mammography reports, have been used to work 
upon structured and semi-structured datasets.

Corpus-I (Structured breast cancer dataset): Data was collected from the precise domain to 
facilitate learning during analysis. The Original WBCD was obtained from the UCI [58] for 
this experiment. This dataset comprises nine numeric-valued continuous data type attributes. 
The statistical properties of all the attributes have been computed to gain better insight into the 
dataset, as shown in Table 1. The target attribute for this dataset is a dichotomous variable, i.e., a 
binary response variable. The 2 and 4 value of the target attribute represents benign and malignant 
cancer, respectively. The dataset has a total of 699 instances; among them, 35.0% are malignant 
and 65.0% are benign instances. The dataset suffers from a considerable number of missing 
values. Sixteen examples with missing values are identified, which are represented by “?” in the 

Figure 1. Proposed system architecture
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data set. These unknown or missing values could have a significant effect on the interpretations 
derived from the data. The detailed descriptions of all nine attributes are shown in Table 1.

A heat map chart is also created to understand the correlation between dataset features and given 
in figure 2. Heat map chart is the most effective statistical test to visualize the association between 
different dataset features. The correlation score between each feature with every other feature is 
calculated and represented in the heat map chart. The correlation score ranges between -1 and +1. The 
features with a correlation score close to 0 indicate no linear relationship between the two attributes. 
Moreover, the features that are strongly correlated are having correlation values close to 1.

Corpus-II (Unstructured data from mammography reports): For this study, a total of 357 
mammography reports are collected from one of the reputed hospital in Northern India. 
An example of a mammography report is given in Figure 3 and documents the following 
information: patient’s personal information (name, age, sex, address); referred by (physician’s 
name, designation); specimen type; instrument specification (a brief description of the screening 
instrument); observations (dictations of the observed findings); impression (a conclusion about 
the lesion status based on radiologist observation during a screening).

Radiologist dictated impressions of lesions found in each mammogram from 0 to 6: incomplete 
screening, negative, benign, probably benign, suspicious, highly suggestive for malignancy and 
malignant, respectively, as per the ACR BI-RADS. The BI-RADS terms facilitated uniformity of 
terminology used in the text about the named entity through the ontologies and became the typical 
approach for mapping observations to canonical meaning. The mammography reports are further 
analyzed to understand the data distribution among different BI-RADS categories. According to the 
BI-RADS categories, the distribution of data samples in the mammography dataset is shown in Figure 
4. It is observed that BI-RADS-1 and BI-RADS-2 account for 68 percent of dataset samples, while the 
remaining 32 percent are distributed among BI-RADS-3, BI-RADS-4, BI-RADS-5, and BI-RADS-6.

Pre-Processing Module
Data gathered for the analysis was raw and contained missing and superfluous values. This data was 
inappropriate for the analysis and significantly affected the performance of the classifier. Therefore, 
it was important to pre-process the dataset under consideration before training it on a classifier in 
order to enhance the ability to learn the unseen patterns in the dataset. Two different pre-processing 

Table 1. Detailed description of WBCD dataset

S.No. Features name Values Mean Value Standard deviation

1 clump_thickness 1 to 10 4.44 2.83

2 unif_cell _size 1 to 10 3.15 3.07

3 unif_cell_shape 1 to 10 3.22 2.99

4 marg_adhesion 1 to 10 2.83 2.86

5 single _epith_cell_ size 1 to 10 2.23 2.22

6 bare _nuclei 1 to 10 3.54 3.64

7 bland _chromatin 1 to 10 3.45 2.45

8 norm_nucleoli 1 to 10 2.87 3.05

9 mitoses 1 to 10 1.60 1.73



International Journal of Information Retrieval Research
Volume 12 • Issue 1

7

architecture was proposed for the corpus-I and corpus-II. A detailed explanation of the proposed 
pre-processing architecture is given in the below sections.

Corpus-I: Structured Breast Cancer Dataset
The dataset suffers from missing values and these values can adversely degrade the classifier’s 
performance. To address this concern, this paper proposes a pipelined pre-processing module that can 
adequately handle the aforementioned challenge. The proposed pre-processing pipeline is illustrated 
in Figure 5. It comprises of filling missing values, standardizing data and selection of features.

•	 Filling Missing values: The dataset is processed for the imputation of missing values. The dataset 
is scanned for missing values that were represented by”?”. Such values can significantly influence 
the results derived from the data. In this study, the regression algorithm is used for finding and 
filling the missing values. The correlation between features contains valuable information which 
is required during the feature selection process and must be preserved. Therefore, the missing 
values are filled with the regression algorithm as it maintains the original correlation between 
features of the dataset. Pseudo-code for filling up the missing values is given in algorithm 1. It 
replaces all those null values initially with “nan”. Each missing value is calculated and imputed 
by using all other values of the specific feature in the dataset.

•	 Standardization: Data in a medical setting is collected for a wide range of purposes and may be 
stored in different formats. Data standardization is used to remove all such internal inconsistencies 

Figure 2. Statistical correlation between all the WBCD features
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Figure 3. Sample mammography report

Figure 4. Data distribution in the mammography dataset according to the BI-RADS categories
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and bring all the data in a consistent format. The proposed work uses the min-max normalization 
technique to standardize the entire dataset into one standard range. Algorithm 2 contains the 
pseudo-code of the min-max standardization algorithm.

•	 Feature Selection: The most predictive features improve accuracy and reduce the overall 
complexity of the prediction system. The most predictive features in this dataset are retrieved 
using the filter method. The filter method uses a mathematical function given in equation 1 
to find the correlation among independent and dependent (target) variables. The features are 
selected based on their correlation coefficient values. This technique is known as Pearson’s 

Figure 5. Proposed pipelined pre-processing module for WBCD

Algorithm 1. Pseudocode for filling missing values



International Journal of Information Retrieval Research
Volume 12 • Issue 1

10

linear correlation. Highly correlated features with the target variable are included in the final 
set. Pearson’s linear correlation: Consider the n-dimensional dataset Dn, where f ϵ Dn and target 
outcome, t ϵ D. Pearson’s linear correlation coefficient is defined as:

r = i

n

i i i i

i

n

i i i

n

i i

f f t t

f f t t

=

= =

∑
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where fi and ti are the ith value of f and t, respectively. The value of r = +1 signifies a positive 
correlation among the independent variables and the target variable and r= -1 represents a negative 
correlation among the independent variables and the target variable. Table 2 shows the correlation 
score between independent features and the target variable. Based on the correlation coefficient score, 
the top five (bare_nuclei, unif_cell_size, unif_cell_shape, bland_chromatin, norm_nucleoli) features 
are selected for model building.

Corpus-II: Unstructured Data From Mammography Reports
Mammography pdf reports are narrated by the radiologist in free-text natural language. It 
contains all the necessary diagnostic information about the sample, such as the interpretation 
of mammography screening, its evaluation and its findings. The mammography report data 
are highly unstructured and complex and thus not suitable for the machine learning model. 
Therefore, to effectively extract and utilize the valuable information from this rich source of 
available data, an efficient information extraction module named “NLP parser” is proposed 
using NLP techniques.

NLP is the application area that offers compelling exploration, understanding, and extraction 
of valuable information from natural language datasets for building machine learning models. The 
detailed architecture of the NLP parser is given in figure 7 and explained in detail below:

Algorithm 2. Pseudo-code for min-max normalization
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•	 NLP Parser: The mammography reports are divided into different sections; for example, 
section 1 contains personal information of the patient, section 2 contains the specification of an 
instrument used, observations and impression and section three contains radiologist information 
(name, signature etc.) and some other information. Only radiologist observations regarding the 
lesion and impressions, including the textual findings and corresponding BI-RAIDS ratings, are 
required for the learning. Therefore, a python-based section splitter is developed to separate the 
different sections of mammography reports. To extract the information from the mammography 
reports, a Python-based module is developed.

The PyPDF2 library was used to extract the specific information from the mammogram pdf and 
stored in a structured format to be consumed for learning. An object of pdf file reader was created 
and initialized by giving the path of the mammogram pdf files. Each page from the pdf was retrieved 
by providing the page number. The observations and impressions are identified and extracted into a 
separate text file(mamodata.txt).

Figure 6. Correlation between independent and dependent target variable of WBCD dataset features

Figure 7. The architecture of the proposed NLP parser for information extraction from mammography reports
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The structured file extracted from the pdf mammography report was still not suitable for the 
statistical model as the observations and impressions were in the free text format narrated by the 
radiologist and flooded with many irrelevant and noisy terms. This document firstly required cleaning 
and pre-processing before applying any learning. The various phases involved in the NLP parser are 
tokenization, normalization and stop word removal and feature extraction.

Firstly, a free text dictated mammography reports, consisting of a sequence of characters, words, 
codes etc., required segmentation into linguistic units such as words, punctuation, numbers, alpha-
numeric codes etc. and this was completed by tokenization. Here, the sequence of string from the 
medical records was segmented into smaller pieces, termed tokens. These tokens are methodologically 
helpful in recognizing patterns displaying significant collocation. Here, we have used a standard white 
space approach for tokenization. Normalization was a process of standardizing the document in one 
uniform format. Mammography narrative reports were not in the uniform format; therefore prior to 
any learning application, tokens derived from the mammography reports were converted into lower 
case. The final step was to remove stop words. Stop words are frequently occurring insignificant 
words used as connectors in sentences and do not contain any meaningful information. These words 
were removed to boost the performance of the feature selection practice.

•	 Class Balancing: During the statistical analysis of the mammography dataset, it was observed 
that the dataset is unbalanced. 68% of the dataset samples belong to the BI-RADS-1 and BI-
RADS-2, and the rest 32% data samples are distributed among BI-RADS-3, BI-RADS-4, BI-
RADS-5 and BI-RADS-6. This imbalanced data distribution can cause biasness against some 
BI-RADS categories and adversely affect the classifier’s performance. To address this concern, 
the SMOTE technique is applied to balance the dataset. SMOTE counteracts the dataset by 
generating synthetic samples of the minority class.

•	 Feature Selection: Selecting appropriate features to construct vector space was a crucial step 
in pre-processing. High dimensional feature space consists of a high proportion of redundant, 
irrelevant, and noisy features that affect classifier performance. Thus, identifying and extracting 
only the relevant features by ignoring the others was essential for the learning algorithm. Hence, 
feature selection is widely used to reduce the dimensionality of the feature space and enhance 
the classifier’s accuracy and efficiency. Selecting the most promising features from the original 
document should consider the domain and algorithm characteristics. All the features in the 
document were rated according to the predetermined measure of relevance of word importance. 
In feature selection processes, only the highest scored features were kept. The selected features 
preserve the original meaning and provide a clear and improved understanding of the data and the 
statistical algorithm. The most relevant features enhance the accuracy of the classifier, efficiency 
of the model and improve scalability. Interesting features can be found by simply including 
words with the highest word count in each document, but the problem with this approach was 
that it gave higher scores to longer documents when compared to shorter ones. To overcome this 
barrier, term frequency (TF), defined as #count (word)/number of total words, was used for each 
document. We could also reduce the score of more common words like (the, is, an, etc.), which 
occur commonly in all documents. This was termed term frequency time’s inverse document 
frequency (TF-IDF). Here, we have used a TF-IDF approach to extract the most relevant features.

The frequency of bi-grams was represented by numerical values in the document for reckoning 
on the attribute variable. All the equivalent frequencies formed a document vector, which later refers 
as a dictionary in the document. For the classification task, all terms were considered as features and 
participated in the learning process.

TF(t, d) represents the term frequency. It is measured as the number of times term (t) appeared 
in the document (d). A high TF value only indicates that the particular term frequently appears in the 
document and does not provide any information about the term’s significance. However, many times 
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the term with high term frequency was found least significant for the learning process. To understand 
the significance of the term in the document, the inverse document frequency was calculated. Free text 
mammography reports were narrated by a radiologist depending on the observation derived during 
the screening process. Therefore, identifying the most significant and important terms for learning 
was essential. Inverse document frequency for each term in the document was calculated in order 
to distinguish between significant terms for the learning process and commonly used insignificant 
terms. The calculation considered the frequency of terms across the whole document:

IDF t
D

DF t
( ) =

( )( )












log 	 (2)

D/DF (t) was the total frequency of all documents under consideration having term (t). The 
calculated value was normalized by using a logarithm. The significance of a particular term was 
evaluated by calculating the TF-IDF score by taking the product of TF(t) and IDF(t):

TF IDF TF t d IDF t− = ( ) ( ), * 	 (3)

The significance of any term in the document is evaluated on the basis of their corresponding 
TF-IDF score. The highest TF-IDF score achieved here was 4.7. Figure 8 demonstrates the TF-IDF 
score per token and the corresponding pseudo-code is given in algorithm 3.

Model Building
The proposed model is built on optimized K-NN(corpus-I) and SGD(corpus II) . The methodology 
is further explained in the subsequent sections.

Corpus-I: K-Nearest Neighbors (KNN)
K-NN is a versatile algorithm that performs extremely well for binary classification problems (Kumari 
M. &., 2018; Şahan, 2007). It is a non-parametric classifier and does not make any assumptions on 
the data under consideration. This non-parametric behavior of KNN makes it a low bias classifier. 
Therefore, the K-NN classifier is utilized to build the proposed machine learning model for corpus-I. 
The K-NN classifier is trained on the most relevant features identified in the previous sub-section to 

Figure 8. Term frequency-inverse document frequency per token of mammography dataset



International Journal of Information Retrieval Research
Volume 12 • Issue 1

14

predict the presence of diabetes for unknown samples automatically. The pseudo-code of the same is 
given in algorithm 4. K-NN classifier calculates the similarity distance among each labeled training 
sample and the unknown test samples. It can use different distance metrics for identifying the nearest 
neighbors such as Euclidean distance, Manhattan distance, Minkowski distance for a continuous 
variable and hamming distance for categorical variables. In this study, the Euclidean distance metric 
is applied to calculate the relationship among the data samples which is termed as similarity distance. 
The formula for the same is given below:

SimilarityDistance x y
i

k

i i
= −( )

=
∑

1

2
	 (4)

where xi and yi are two data points in the feature space.
The computed similarity distance is used to identify the K nearest neighboring data samples. 

The K-NN classifier returns the class of the majority of K nearest data samples as the class of the 
test sample.

Algorithm 4. Pseudo-code for optimized K-NN model for structured FNA dataset

Algorithm 3. Pseudo-code for TF-IDF feature extraction technique



International Journal of Information Retrieval Research
Volume 12 • Issue 1

15

•	 Optimizing K-NN classifier: The performance of KNN is significantly dependent on the value of 
K. Higher value of K brings more bias, whereas a too low value makes it more sensitive to noise.

To find the optimal value of K, a validation set is created from the existing training data set. 
Therefore, the original training data set is divided randomly into a new 80% of the training set and 
20% of a validation set. This validation set is used to evaluate the K-NN classifier’s performance 
for all K values from 1 to 100. This experiment showed that the K-NN attained the highest accuracy 
with the value of K as 15. Therefore, the final model is trained with K=15.

•	 k- Fold Cross-Validation (CV): k fold CV is a statistical method that minimizes the biasness 
associated with random training data samples. It involves splitting data samples into mutually 
exclusive k identical size subsamples. This approach takes k iterations. Each iteration takes 
one subsample to validate the model and the remaining k-1 subsamples for training the model. 
Therefore, every kth subsample is used just once for training or validating the model. The value 
of k is set to 10 for this study. The final accuracy of the model is the average accuracy achieved 
in all the k iterations. Mathematically, it can be given as:

CrossValidationAccuracy a
i

k

i
=

=∑ 1
	 (5)

Corpus 2: Stochastic Gradient Descent
A supervised statistical classifier, stochastic gradient descent (SGD) has been used successfully for 
learning the insights and relationships among the high-dimensional dataset and to make predictions 
based on acquired learning (Bottou, 2010; Kabir, 2015; Kumar, 2015; Nguyen, 2016). Therefore, the 
SGD classifier is utilized to carry out the text classification under the proposed setting. Moreover, 
SGD is an improvement over simple gradient descent, which is quite slow for large training examples. 
The gradient descent algorithm scans all training samples to calculate the gradient and find the update 
required for the optimization parameter. This is a slow process for large dataset problems. SGD is an 
improvement over standard gradient descent as the optimization parameter is updated by calculating 
the gradient of only one randomly selected training instance each time, rather than considering the 
complete training sample each time. The SGD process by choosing w to minimize loss function Q(w). 
To make an initial guess for w, a search algorithm is used, and the value of Q is modified repeatedly 
to generate output from Q. Mathematically, formulation of the update process is given as:

w t +1 = wt − η
δ
δw

 Q(w;xi;yi)	 (6)

where w is the parameter that determines its behavior. Therefore, with some given wt and considering 
one example at a time at constant step size, the next move (w t +1) is calculated to reach the solution. 
xi;yi is the training example and h  is the step size for the algorithm. SGD was initiated by randomizing 
the data sample to avoid any biasness. It randomly selected one training sample each time and updated 
the weights on the basis of the calculated gradient for that sample only, instead of using a complete 
gradient as in simple gradient descent. As a result, the algorithm converges faster by taking large 
numbers of tiny steps. The pseudo-code of the SGD is given in algorithm 5.

•	 Optimizing SGD by hyper-tuning the parameters: The SGD algorithm performs well with 
sparse and high dimensional data. Moreover, the performance of the SGD is greatly influenced 
by choice of hyper-parameter of the algorithm. For example, a large learning rate would converge 
faster but may overshoot the minima, whereas smaller learning rate results are more stable with a 
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high chance of converging into minima, but the performance was slow. Therefore, to select the best 
set of hyper-parameters for the algorithm grid-search technique was applied. Grid-search method 
search and return the specific subset of the hyper-parameter where the algorithm performs best. 
The final algorithm (optimized SGD) was then implemented on the same set of hyper-parameters.

Integrating FNA and Mammography Models
The amalgamation of two proposed methodology presents an intelligent information extraction and 
decision support system that can provide decision support for both two most widely used breast cancer 
screening practices, i.e., FNA and mammography. Figure 9 shows the organizational workflow design 
of the proposed model. To integrate both the proposed model, an interface was developed, allowing 
the radiologist to choose the screening practices for which the decision support is required.

Figure 9. The proposed architecture of the complete Breast Cancer Classification Model

Algorithm 5. Pseudo-code for SGD classifier for semi-structured mammography model
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The radiologist can choose any of the two, FNA or mammography or can choose both 
simultaneously. If the radiologist wants the decision support for only one screening practice at a time, 
by selecting that screening practice when prompted. The corresponding module will be called and 
executed, which provides the results in the form of benign or malignant or its associated BI-RADS 
category. In some cases, in order to ensure the diagnosis, both screening tests are recommended. The 
proposed system can handle such events also. To address the above-mentioned event, the first module 
for FNA screening will be called and executed. The result of the first FNA module is stored in a 
separate file (Intermediate Result#1) to contribute to the final decision in the future. Afterward, the 
second Mammography module will be called and executed. The result of the second Mammography 
module is again stored in a separate file (Intermediate Result#2) to participate in the final result. The 
intermediate file, Intermediate Result#1 and Intermediate result#2 are then called and processed to 
give the final result. The result provides quick recommendations and decision support to the radiologist 
during decision-making about the diagnosis.

Hence, in the presented study, an intelligent information retrieval system was developed that 
automatically extracts the most useful and relevant information from the two different types of datasets 
and further utilizes it to build the decision support system based on the machine learning approach. As 
the system was completely automated, diagnostic errors during the screening process due to human 
error can be avoided. The proposed model could be used to assist during the decision-making process 
for FNA and mammography screening, individually or in parallel.

EXPERIMENTAL ANALYSIS

Experiments are executed on a PC with Intel(R) Core (TM) i7-8565U at 1.80 GHz CPU with 8 
GB RAM. Scientific Python Development Environment (SPYDER) is used with Python 3.7.3 
for implementing the machine learning algorithm. It is an open-source Integrated Development 
Environment for writing and executing python codes.

Evaluation Metrics
The performance of the proposed model is assessed on the basis of the following assessment metrics: 
classification accuracy, recall, precision and F1-score. Details of the performance assessment measures 
are given in Table 2.

Table 2. Evaluation metrics

Measures Explanation Mathematical Formulation

Accuracy The percentage of correctly categorized data samples from 
the total number of data samples.

Accuracy
TP TN

=
+

+ + +TP TN FP FN
×100

Recall The percentage of correctly classified positive samples 
from the total positive samples

Recall
TP

=
+TP FN

×100

Precision
The percentage of correctly labelled positive samples that 
the classifier has found from the total number of positive 
samples that have been identified.

Precision
TP

=
+TP FP

×100

F1-score The subcontrary mean of accuracy and precision F score
TP

1
2

2
 

TP FP FN
=

+ +
×100

Note: TP, TN, FP, FN are True Positives, True Negatives, False Positives and False Negatives, respectively.
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Experimental Results and Discussion
The proposed experiments were coded in Python 3.7.3 and implemented on the SPYDER environment. 
In order to evaluate the efficiency of the proposed model, a range of comparative tests were carried 
out. The experimental results are further presented and analyzed in the section below.

Corpus-I Analysis: WBCD Structured Dataset From FNA Screening
The contribution of the proposed pipelined pre-processing module is evaluated by analyzing the 
performance of the classification model. Classification models have been trained and tested to 
understand the impact of pre-processing techniques on the fundamental (with random K value) and 
optimized K-NN classifier (with tuned K value). The details of the performance of each model variant 
are given in table 3. It is evident from the results that effective pre-processing techniques and optimized 
K-NN classifier improve classification accuracy and other performance metrics to a great extent.

The classification accuracy achieved by the fundamental K-NN classifier on the raw dataset is 
87.27%. Optimizing the K-NN classifier for the best K value shows an improvement of 4.15% in the 
classification accuracy. The raw dataset is not suitable for learning as it suffers from missing values, 
unstandardized data and irrelevant features. Thus, the classifier was not able to attain good performance 
results with the raw dataset. To address this concern, different pre-processing practices were applied 
to refine the raw dataset. It is clear from table 3 that the optimized K-NN classifier’s performance 
improved significantly after applying pre-processing techniques, i.e., missing value imputation, 
data standardization, and feature selection. Accuracy, precision, recall and F1-score of optimized 
K-NN improved by 9.46%, 7.57%, 5.53% and 3.86% with fundamental K-NN classifier. Further, 
accuracy, precision, recall and F1-score improved by 7.86%, 4.4%, 4.38% and 5.01%, respectively, 
with the tuned K-NN classifier for the pre-processed dataset in comparison to the raw dataset. In 
addition to the accuracy precision, recall and F1-score are also the necessary measures to calculate 
the classifier’s performance on an imbalanced medical dataset. The proposed model under this study 
can attain significant improvement in recall and precision value. The high precision value of 99.38% 
indicates a low false-positive rate. The false-positive rate is the number of samples/patients that are 
falsely identified as malignant by the classifier. This situation could lead to unnecessary procedures 
or treatment. Furthermore, the classifier’s missed positive cancer samples/patients is a critical and 
severe issue measured by the recall value. It induces patients to forego required care, resulting in 
severe effects that may be fatal. The recall value for the proposed model is 99.36% which is evidently 
good to reduce the possibility of missed positive samples. 99.36% is the F1-score, the harmonic 
mean of recall and precision. Therefore, it is clearly apparent that the proposed classification and 
prediction model performed really well. Table 4 present the performance of the proposed approach for 
WBCD classification in comparison to other state-of-art methods. Compared with the present state-
of-art methods, the proposed model shows a significant improvement in the classification accuracy 
ranging from 10.28% to 0.02%. The proposed work is able to achieve these results due to efficient 
pre-processing techniques and effective classifier learning. The different classification techniques 

Table 3. Evaluating the effect of classifier performance under different experiment setup

Input Dataset K-NN 
classifier Accuracy (%) Precision (%) Recall (%) F1-score (%)

Raw Dataset
Random K value 87.27 86.59 83.27 84.21

Tuned k to 15 91.42 94.98 94.98 94.35

Dataset + missing value 
imputation + feature 
selection

Random K value 89.82 91.81 93.83 95.50

Tuned k to 15 99.28 99.38 99.36 99.36
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and validation approaches adopted in the compared studies may affect the classifier performance, 
but the dataset used for the experiment and the objective of improving the classification accuracy 
is the same. Therefore, it is apparent that the proposed model under this study achieves the best 
classification accuracy in comparison to the other work reported in the present literature. The receiver 
operating characteristic (ROC) curve illustrates the diagnostic ability of a binary classifier system of 
the proposed model given in figure 10.

Corpus-II Analysis: Semi-Structured Dataset From Mammography Report
The number of features extracted from text datasets was highly uncertain. Thus, the proposed model 
has been evaluated to study the effect of unigrams and bigrams on accuracy. Bigram-based models 
performed better than unigram-based models, with the average accuracy improved from 86.47% to 
97.40%, a statistically significant accuracy increase of 9.15%. Unigrams fail to capture the structure 
of a particular language and do not contain much information about a term’s context. However, 
when the same term is combined with the next successive term, it becomes more powerful for 
learning as it contains defined, concise information about the context and structure of the term. For 
example, “fatty” was the highest TF-IDF scoring term in the dictionary, but it did not provide much 

Table 4. Performance evaluation of this study with present state-of-art methods

Dataset Authored By Approach Accuracy 
achieved

This study 
Accuracy

WBCD 
(Original)

(Chen, 2011) Rough set theory and SVM 89.20%

99.28%

(Karabatak, 2009) Association rule and Neural 
Network 95.6%

(Setiono, 2000) Feature selection and neural 
network 98.10%

(Şahan, 2007) Fuzzy, AIS and KNN 99.14%

(Marcano-Cedeño, 2011) Metaplasticity Neural Network 99.26%

Figure 10. ROC graph for FNA model using K-NN
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information about its context. However, “fatty hilum” is bigram, having the same TF-IDF score but 
is more informative than the unigram “fatty”. Bigrams provide more concise information about the 
importance of consecutive terms, giving the frequency of occurrence of a particular term X followed by 
term Y. The terms were combined according to their proximity in the document, therefore preserving 
the semantic relationship of the terms and decreasing the bias. They incorporate knowledge into the 
purely statistical task of text categorization. Tables 5 and 6 contain some of the highest generated 
unigram scores and bigrams. Accuracy fluctuations when using unigrams or bigrams for training 
the model are shown in figure 11.

Figure 11. Classifier performance w.r.t uni-grams and bi-grams

Table 5. Some of the unigrams with the highest TF-IDF score

axillary heterogeneity macrocalcific significant

circumscribed hilum lactating microlobulated

fatty lymph inflammatory distal

evidence large insinuating lesions

extending prominent periareolar hyperechogenecity

Table 6. Some of the Bigrams with the highest TF-IDF score

ovoid lobulated thickening measuring area insinuating contour lesion

anechoic lesion surrounding perilesional axilla heterogenously fatty hilum

breast anechoic tissue hyperechogenecity echoes seen fibroglandular tissues

surrounding 
fibroglandular suggestive mastitis dilated mammary perilesional 

hyperechogenecity

tall masses seen subareolar calcific foci fibroadenoma axillae

transducer 
heterogenous reveals hypoechoic axillary lymph cyst noted

vascularity noted abscess subareolar breast macrocalcific cystic lesions
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The proposed method produced an F1 score of 0.981 to classify the mammography reports 
into benign and malignant classes. The precision and recall were both higher than those from 
the existing rule-based system. The proposed model’s performance was compared with those 
from other research groups and summarized in table 8. Others have previously reported on the 
classification of mammography reports and various statistical techniques had been used to attain 
high classification accuracies. The proposed model outperformed state-of-the-art rule-based 
systems. The major limitation of a rule-based system is that the model is domain-specific and 
lacks generalizability with the problem of reporting local variation. Moreover, in these models, 
rules need to be defined explicitly by the domain expert for the detection of cancer. Therefore, 
the rule-based approach is very time-consuming and needs constant revisions to meet the 
changing symptoms and detection rules. Thus, in the proposed study, an intelligent information 
system was proposed to develop an automated complete cancer classification model that does 
not require expensive text annotation and learns readily from the large pool of unannotated 
corpora. To reduce the rate of false negatives, the recall value must be high. The proposed 
system successfully extracted more comprehensive information from the reports than the rule-
based system described previously by Bozkurt et al. (Bozkurt, 2016). We also noted that the 
generic state-of-the-art regular expression-based NLP tools failed to detect negation of findings 
from report sample sentences. Furthermore, our model reduces the rate of false positives and 
increases the precision value.

It is clearly evident that the proposed system outperforms existing state-of-art methods for 
the classification of breast cancer samples for the structured data from FNA(WBCD) and free text 
mammography reports. Therefore, integrating both the proposed system presents a complete breast 
cancer decision-support for the classification and prediction.

Table 7. Performance evaluation of SGD classifier for semi-structured mammography reports

Accuracy(%) Precision(%) Recall(%) F1-score(%)

Proposed study 97.53 98.82 98.88 98.82

Table 8. Evaluation of proposed system architecture with the present state-of-art methods

Year of 
study Objective Approach Performance Limitation

Gupta, 2018 To derive relationships from radiology 
records in an unsupervised manner

Rule-
based + unsupervised 
clustering

Precision = 95% 
Recall = 94%

Not able to classify in BI-
RADS categories.

Hussam, 
2013

Developed a features extraction 
algorithm BI-RADS categorization Rule-based Precision =97.7%, 

Recall =95.5%
Not able to classify in BI-
RADS categories.

Bozkurt, 
2016

Providing decision-support by 
automatically extracting information 
from mammography reports

Rule-
based + supervised ML Accuracy = 97.58% Lack generalizability.

Castro, 2017 Extracting BI-RADS categories from 
the reports

Rule-
based + supervised ML

Precision = 98% 
Recall = 93%

The category BI-RADS 
can only be extracted if 
the radiologist records the 
category BI-RADS

Sippo, 2013 Extracting final evaluation categories for 
BI-RADS from the reports Rule-based Precision = 99.6% 

Recall = 100%

The model could classify the 
BI-RADS category only if it 
is reported in the report.
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LIMITATIONS

The proposed system provides complete breast cancer decision support to the radiologist during 
crucial decision-making. The model performed statistically well compared with the present state-of-
art methods by showing good improvement in accuracy and recall value, but the proposed approach 
has certain limitations. Firstly, both the structured and semi-structured datasets utilized for the study 
are from different but single institutional datasets, which might bias the classification performance of 
the proposed model. Secondly, the mammography report dataset’s size is limited to only 356 reports; 
thus, the model tends to overfit and can give misleading results.

CONCLUSION

An automated complete decision support system for clinical practice is a useful artificial intelligence 
tool to assist medical experts in making informed diagnoses in the case of ambiguity or inadequate 
information. It may reduce the overall cost of treatment. FNA and mammography screening are two 
of the most widely used techniques for the detection and diagnosis of breast cancer. The proposed 
support system is a hybrid model capable of analyzing structured FNA observations and unstructured 
mammography observations within one system. An effective information extraction system was 
presented to extract valuable information from the dataset. Information extraction systems use efficient 
pre-processing techniques that increase data quality. It involves handling missing values, standardizing 
data, balancing unbalanced datasets, reducing dimensionality by selecting the most appropriate and 
best features for model learning in the feature selection process. The machine learning model is then 
built on the extracted information. The FNA structured model is trained and tested with a K-NN 
classifier with an optimum value of K. The semi-structured mammography model is trained and 
tested with an SGD classifier by hyper-tuning the parameter through the grid-search technique. It was 
evident that a KNN classifier for FNA analysis and the SGD classifier for mammography analysis 
performed best when used with the most predictive features. Our model is intended to assist medical 
experts by providing quick, precise and reliable recommendations that can be applied during crucial 
decision-making stages and has the potential to improve patient survival rates and overall quality of life.
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