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ABSTRACT

This investigation is done during COVID-19 to identify, rank, and classify MOOC (massive open 
online course) key acceptance factors (KAFs) from an Indian perspective. A systematic literature 
review identifies 11 KAFs of MOOC. One more novel factor named ‘contingent instructor’ is proposed 
by the authors considering pandemic and new normal post-COVID-19. The paper implements 
two popular fuzzy MCDM (multiple-criteria decision-making) techniques, namely fuzzy TOPSIS 
and fuzzy AHP, on 12 KAFs. The fuzzy TOPSIS approach is used to rank factors. Affordability, 
performance expectancy and digital didactics are found as the top three KAFs. Fuzzy AHP classified 
KAFs into three groups, namely high, moderate, and low influential. Examination of the literature 
indicates that this study is among the first attempt to prioritize and classify MOOC KAFs using fuzzy 
TOPSIS and fuzzy AHP approach. The results offer managerial guidance to stakeholders for effective 
management of MOOC, resulting in higher acceptance rate. Likewise, this investigation will upgrade 
the comprehension of MOOC KAFs among academicians.
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INTRODUCTION TO THE STUDY

The educational domain is changing quickly due to progressions in the Information and Communication 
Technologies (ICT) (Paliwoda-Pękosz & Stal, 2015; Sharma et al., 2017). Massive Open Online Course 
(MOOC) is one of such provision responsible for changing educational domain. MOOC is an open 
online learning environment that caters the need of learners but significantly differing from earlier 
online education approaches (Alraimi et al., 2015). The features that distinguish MOOC from other 
online approaches are massiveness, openness, free, and quality education. (Liyanagunawardena et al., 
2013; Ebben & Murphy, 2014; Stracke et al., 2018). Despite benefits, MOOC providers are confronting 
with learner’s high attrition rate. The MOOC completion rate is around 10% (Gregori et al., 2018). 
Students’ incessant exit from courses puts learning and education in danger and blocks the formative 
advancement of MOOCs. The legitimate explanations given by researchers for low completion rate 
were: (1) limited self-regulated learning aspects; (2) lack of basic computing skills; (3) clashes with 
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other students during discussion; and (4) the sense of isolation (Hew & Cheung, 2014; Shapiro et al., 
2017). Nevertheless, Laurillard (2016) found mostly MOOC learners as professionally highly qualified 
instead of deprived ones as initially imagined. The primary reason is that mostly courses are offered 
in English language. These aforementioned reasons restrain MOOCs from achieving the objectives of 
inclusive education. Thus, a study is needed to identify factors that are critical for learners to accept 
MOOC. But majority of the literature showed that mostly MOOC studies were conducted from the 
learners’ perspective of developed nations. Based on that true generalisation of the facts cannot be 
done. This motivated researchers to conduct study of MOOC acceptance in a densely populated 
developing nation like India for better generalisation of facts. It was also noticed that very few MOOC 
studies were conducted in Indian context (Nemer & O’Neill, 2019). Hence, researchers examined the 
subject matter with three purposes. First, to identify key acceptance factors (KAFs) from the extant 
MOOC literature. With due consideration to earlier work, the current work reassesses the identified 
KAFs during pandemic for broad generalisation of results. Second, implementing multi-criteria 
decision-making (MCDM) techniques for ranking and classification of MOOC KAFs, which has not 
been widely discussed. Third, the outcome presents a comprehensive KAF list, critical for MOOC 
designers, developers and providers. They need to focus on these KAFs to fulfil the expectations of 
MOOC learners. As a result, the popularity of MOOC among learners will increase.

The remaining portion of the study is as follows. The following section systematically examines 
prior MOOC literature to identify KAFs. The subsequent section conceptual development of adopted 
methodology discusses algorithm of two MCDM techniques namely, fuzzy TOPSIS and fuzzy 
AHP along with their application on MOOC KAFS. The findings and discussion section presents 
the results. Contributions and conclusion section discusses the implications of the study along with 
concluding remarks. Finally, future bearings and shortcomings of this study are briefly discussed 
under the limitations and future direction section.

Identification of MOOC KAFs
To identify MOOC KAFs from the extant literature, Moher et al., (2009) guidelines of PRISMA 
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) were followed. Liberati et 
al. (2009) claimed that these guidelines make literature review process clear and transparent. Various 
studies used them. For example, the study conducted by Hughes-Morley et al. (2015) on factors 
affecting recruitment during depression. Based on them, a review protocol is made that includes 
search strategy, criteria for including and excluding an article, evaluation of quality, extraction of 
data, and data analysis.

a) 	 Search Strategy: Automated search strategy was performed on three different repositories 
‘Scopus’, ‘Web of Science’, and ‘ERIC’. Search query string used were “MOOC acceptance” 
OR “MOOC adoption” OR “Massive open online course” AND “acceptance” OR “adoption”. 
The studies published in English language during the period of January 1, 2010 to July 31, 2020 
were taken for screening. The screening was done by examining their titles and abstracts. Studies 
fully satisfying the criteria mentioned in table 1 were shortlisted.

b) 	 Quality assessment: Full text of shortlisted studies were examined for their quality appraisal based 
on specified criteria adapted from Nguyen-Duc et al., (2015) (refer to table 2). Every criterion 
had four possible scores: entirely fulfilled (3), sufficiently fulfilled (2), little fulfilled (1), and 
completely unfulfilled (0). Now, studies were arranged as per their quality score for analysing 
their rigorousness, credibility, and relevance.
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c) 	 Data extraction: To pull out information like Paper ID, References, Publisher, Theories/ Model 
Studied, and factors taken etc., researchers recorded information in a well-defined format.

d) 	 Data analysis: Studies were critically examined based on factors and theories or models employed.

Initial automated search retrieved 3313 studies from the abovementioned repositories. Their 
detailed lists were exported to excel for reference management and duplicate removal. After removing 
966 duplicate studies, 2347 potential studies were left. After implementing inclusion and exclusion 
criteria on potential studies, 56 studies were selected for quality assessment. Quality assessment 
criteria resulted in 36 studies having average quality score greater than 1.5 (refer to figure 1). For 
reliability check of selected studies Kappa statistic (k) developed by Cohen (1960) was used. It was 
found to be k=0.906. Landis and Koch (1977) claimed that Kappa statistic in the range of 0.81 to 1.00 
informs strong reliability. Extensive review of 36 selected studies leads to identification of 11 key 
factors. Furthermore, authors proposed one new factor considering prevailing pandemic scenario as 
well as post Covid-19 situation. Figure 2 shows the pictorial representation of twelve key acceptance 
factors. Brief explanation of twelve KAFs is as follows:

1. 	 Performance Expectancy (PE): The extent to which learner believes that studying MOOC 
would certainly support in obtaining professional and career benefits (Venkatesh et al., 2003). 
After studying 116 studies, Williams et al., (2015) noticed that in 80% of studies PE was observed 
as strong determinant of behavioural intentions to adopt (BIA). Similar observation was also 
noticed in some studies conducted in educational settings (Chellapalli & Kumar, 2016; Mulik 
et al., 2018; Hooda & Jain, 2018).

Table 1. Inclusion and exclusion criteria

Criteria Inclusion criteria

I1 Scholarly articles published in peer review journals

I2 Scholarly articles described the application of technology acceptance theory or model for 
adoption / acceptance of MOOC

I3 Recent version of study is included if many articles reported the same

Exclusion criteria

E1 Scholarly literature not published in English language

E2 Grey literature such as conference proceedings, book chapter and editorials etc

E3 Duplicate articles

E4 Qualitative studies on MOOC Acceptance or Adoption

Table 2. Quality assessment criteria

Code Criteria

C1 Problem statement: The research objectives are properly explained and well-motivated

C2 Research design: MOOC adoption or acceptance theories used are relevant for supporting the 
systematic review process

C3 Data Collection: Factors used in the study are most relevant for achieving objectives

C4 Data analysis: Data analysis used in the study is properly explained

C5 Conclusions: Findings are clearly reported and supports result
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2. 	 Contingent Instructor: Due to the Covid-19 outbreak studies were suspended abnormally 
due to closure of educational institutes. At that time, many educational institutes opted for 
online education. But still, some institutes were not able to provide online education due to 
lack of resources. Here, MOOCs came as a boon for learners as well as educational institutes. 
March’2020 MOOC enrolment numbers verified the same (Shah, 2020). For instance, in March 
2020, Coursera, The National Law University of Delhi, and some other MOOC providers gave free 
access of their MOOCs to schools and colleges affected by the coronavirus. It is clearly evident 
that sometimes situation demands acceptance of technology. Following the lines, a factor called 
Contingent Instructor is propelled by authors. The contingent instructor works as a substitute 
faculty in case non-availability of subject teacher and helps in completing the leftover syllabus. 
For instance, Abdeen et al. (2008) observed the extraordinary contribution of e-learning in beating 
the troublesome circumstances made by political issues and physical divider boundaries built by 
the Israeli possessing powers in the West Bank, Palestine.

3. 	 Digital Didactics: It is technology enabled teaching method followed in MOOCs for active 
engagement of learners during the course for successfully achieving the learning outcomes 
expressed in the curriculum (Kansanen & Meri,1999). MOOC didactic educational actions 
permits learners to select their personalised learning path for building their interest and motivate 
them to participate in learning activities. It also includes adjustment to new learning modalities 
both as learner and designer utilizing ICT, development of evaluation plans, and understanding 
for collaborative, useful, reflective, dynamic, and reliable learning.

4. 	 Affordability: The extent to which the expense of learning MOOCs fits within the budget 
of learner. It measures the probability of students choosing a paid course, semi-paid course 
(Mohapatra et al., 2015) which shapes learner’s perception (Rao, 2006). In April 2020, the 
UN’s International Labour Organization (ILO) claimed that about 400 million workers doing 
jobs in India’s informal sector are most likely to be pushed deeper into poverty due to Covid-19. 
In addition to this, most of the population belongs to the middle and lower-income groups. 
So, affordability matters to them. Mohapatra & Mohanty (2016) noticed a positive association 
between affordability and behavioural intentions to utilize.

5. 	 Self-Regulation: It refers to learners’ capacity to schedule task, assignments and activities for 
timely completion of MOOC (Onah & Sinclair, 2016). Zhou et al., (2017) noticed that the learner 
with high capacity of self-regulation performs better during the MOOC learning procedure 
because they generally are progressively certain, steady, and persevering. Self-regulation was 
found to apply the most grounded effect on students’ aim to embrace MOOCs (Ma & Lee, 2019).

6. 	 Information Security: It refers to safety from malicious or accidental misuse of resources 
while studying in online mode (Adams & Blandford, 2003). To achieve security of information 
there are three basic requirements: confidentiality, integrity, and availability (Serb et al., 2013). 
There should be no risk of loss of confidential information in order to maintain learners’ trust in 
the web-based learning environment. It impacts learner’s perceptions of a system’s robustness, 
reliability, and trustworthiness (Adams & Blandford, 2003). Hence, it is one of the mandatory 
factors of MOOC acceptance.

7. 	 Facilitating Conditions: The extent to which learners believes that an organizational and 
specialized technical infrastructure is available and supports in completing MOOC (Zhenghao 
et al., 2015). Williams et al., (2015) empirically verified that it impacts behavioural intentions 
to utilize directly. Moreover, its empirical evidence can be seen educational settings also (Fianu 
et al., 2018).

8. 	 Social Influence: The extent to which learner will undertake MOOC for skill enhancement to 
meet changing demands of social environment (Venkatesh et al., 2003). The opinion of others 
such as companions, partners, guardians and instructors would matter with regards to the choice 
of utilizing MOOC (Mulik et al., 2018). Williams et al., (2015) found significant relationship 
between social influence and behavioural intentions to use.
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9. 	 Willingness to Earn a Certificate: It refers to the desire that encourages the individuals to join 
MOOCs with an objective of obtaining the certificates for purposes like career advancement 
and recognition. Various studies demonstrated that one of the core reasons behind registration in 
MOOCs for students is gathering as many as course completion certificates as possible (Macleod 
et al., 2015). The recognition of MOOC certifications by employers and administrative bodies 
is a strong determinant for learners to take up MOOC for professional benefits (Mohapatra & 
Mohanty, 2016).

10. 	Perceived Reputation: Paulsen (1993) noticed that institutes’ reputation impacts the student’s 
choice to enrol in the institution. It is an abstract impression of the MOOC offering institution’s 
quality, impact, student satisfaction, and trustworthiness (Alraimi et al., 2015). Mostly MOOC 
are developed by elite institutions giving necessary believability to the learners (Gefen et al., 
2003). Mohapatra & Mohanty (2016) found that perceived reputation has a strong influence on 
the aim to embrace MOOC.

11. 	Effort Expectancy: The extent to which learner believes that easiness level provided by MOOC 
platform contributes towards effective learning (Zhenghao et al., 2015). To put it simply, a user-
friendly learning environment could be easily accepted by learners..

12. 	Interaction and Engagement: Alghamdi et al. (2011) characterized the MOOC learning activities 
as the connections and coordinated efforts among members and various kinds of learning items 
such as animated videos, quizzes to improve the learners’ understanding of the MOOC content 
and accomplish the learning targets within the learning procedure. Learner engagement in MOOC 
here refers active participation of learner during the course evaluated by an instructor through 
overt behaviours. For example, participation in discussion forums, and queries raised by learners 
etc. (Gewnhi et al., 2013).

Conceptual Development of Adopted Methodology
The literature clearly highlighted the importance of fuzzy multi-criteria decision making (FMCDM) in 
solving problems which are intrinsically imprecise, fuzzy and carries uncertainty (Chang et al.,2014). 
It requires both subjective and objective information. To provide support to the subjective evaluation 
done by experts, FMCDM utilises computational and mathematical tools (Banaitiene et al., 2008). 
Though Quadri et al., (2020) noticed its application in educational domain, but its application for 
understanding key reasons behind MOOC acceptance is still unexplored. The current study proposes 
the application of two popular FMCDM techniques, (1) Fuzzy AHP and (2) Fuzzy TOPSIS for MOOC 
KAFs classification and ranking respectively. The techniques successfully handled issues like the 
selection of best alternative, evaluating and prioritising dimensions (Zhao & Guo,2014).

Fuzzy TOPSIS (FTOPSIS)
FTOPSIS is intuitive, easy to compute, comprehend and contains a sound logic for rational 
representation of human choice. FTOPSIS was used in many studies. For instance, the study conducted 
by Sun and Lin (2009) to evaluate the competitive advantage of shopping sites. The study conducted by 
Agrawal et al. (2015) for prioritisation of critical success factors for reverse logistics implementation.

FTOPSIS Algorithm
The steps applied in the study are outlined as follows (Chen,2001; Zhao and Guo, 2014):

Step 1 A definite 5-point linguistic scale was selected for rating the importance of factors on linguistic 
terms as low (L), fairy low (FL), medium (M), fairly high (FH), and high (H) (Chen, 2001; 
Agrawal et al., 2015) (refer figure 3). Experts rate factors using it. Rating is further converted 
into the triangular fuzzy numbers (TFNs) using transformation rules specified in table 3 (Agrawal 
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et al., 2015). TFNs (Laarhoven and Pedrycz, 1983) �A  can be best understood as triplet 
a a aL M R, ,( ) , having membership function µ �A and is expressed as:
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where a a aL M R, ,  are crisp numbers and their values lies in the range −∞< ≤ ≤ <∞( )a a aL M R . 
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Step 2 Construction of the fuzzy decision matrix with TFNs in every cell.

A

a a a a

a a a a

a a a a

a a a a

in

n

n

i i i i

=

11 12 13

21 22 23 2

31 32 33 3

1 2 3

…

…

…

… … … … …

…
nn

m m m mn
a a a a

1 2 3
…

































	 (2)

Figure 1. Procedure of systematic review
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Here,a x y z
ij ij ij ij
= ( ), ,  is a TFN derived from linguistic term given by the ith expert (DM), to 

the jth KAF. i=1,2,3,.,m are the numbers of expert and j=1,2,3….,n are the numbers of KAFs.

Step 3 Normalization of fuzzy decision matrix A produces fuzzy unweighted matrix R. To produce R, 
equation (3) can be applied. The study considered only benefit criteria to determines acceptance 
(Lai et al.,2010).

R r ri
x

z

y

z

z

zij mxn j

ij

ij

ij

ij

ij

ij

= 

 =











* * *
	 (3)

Figure 2. MOOC Key Acceptance Factors
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where C
j Ci=
* max  i=1,2,3,…..,m; j=1,2,3,….,n (Benefit Criteria)(Agrawal et al., 2015)

Step 4 Compute values for the weighted normalized decision matrix (V) to construct it.

V= v
ij mxn




 ;i=1,2,3,….,m and j=1,2,3,….,n	 (4)

Each weighted normalized value vij is calculated by multiplying each element with its associated 
weight as shown in equation (5).

v r w
ij i j j
= × ;	 (5)

The current work assigns same weight to every expert wj= (1,1,1,1,1) ∀ ∈
j

 𝑛 (Agrawal et al., 
2015).

Step 5 Calculate the ideal P *( )  and negative-ideal P−( )  solution for the KAFs as defined in equation 
(6) and (7).

P v v v v
n

* , , , ..,* * * *= { }1 2 3
……… 	 (6)

Figure 3. Linguistics scales and triangular fuzzy numbers

Table 3. Transformation Rules

Linguistic term Triangular fuzzy number

Low (L) (0.0, 0.1, 0.3)

Fairly Low (FL) (0.1, 0.3, 0.5)

Medium (M) (0.3, 0.5, 0.7)

Fairly High (FH) (0.5, 0.7, 0.9)

High (H) (0.7, 0.9, 1.0)
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P v v v v
n

− − − − −= { }1 2 3
, , , ..,……… 	 (7)

The terms shown in equation (8) and (9) are utilized for positive and negative ideal solutions.

v
j
* , ,= ( )1 1 1 	 (8)

v
j
− = ( )0 0 0, , 	 (9)

Step 6 Computation of the sum of distances from positive and negative ideal solution is done for 
every KAF using the equation 10.

D
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i
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*

=
=( )=∑ 1 , j=1,2,3,..,n	 (10)

where d v v
i j i
−( )*  is the distance between two fuzzy numbers. It is calculated using vector algebra. 

For example, To calculate the distance between two numbers A1(a1,b1,c1) and A2(a2,b2,c2) in vector 
algebra following formula can be used, show in equation 11.
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Similarly using equation 12, the distance from the fuzzy negative ideal solution is calculated.

D
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i
m
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−( )=

−∑ 1 , j=1,2,3,…..,n	 (12)

Step 7 Calculate the relative closeness coefficient to the ideal solution of every KAF. The relative 
closeness coefficient with respect to P* is calculated as specified in equation (13).
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d

d d
j

j j

=
+

−

−*
	 (13)

Step 8 Finally, values of c
j
 for every KAFs are sorted in descending order.
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Fuzzy AHP (FAHP)
FAHP solves complex decision problems based on subjective preference given by expert(s) to factors 
(Saaty, 1980). It utilises fuzzy arithmetic with TFNs and geometric mean approach for normalisation 
of criteria weight (Chen & Chen, 2010). Various studies implemented it for calculating weights 
(Kilic & Cevikcan, 2011). The current study utilised the Buckley (1985) approach to calculate the 
normalised weight of the KAFs for classification.

FAHP Algorithm

Step1: Construct a pair-wise comparison matrix showing the preference of one KAF over other KAF. 
For giving preference, table 4 containing linguistic scale along with TFNs values can be used.

Step2: Now geometric mean method is applied for calculating synthetic pair-wise comparison matrix. 
Geometric mean Q

i
 is defined with the help of formula:

Q a a a a
i ij ij ij ij
= × × × ×( )1 2 3 12

1
12……. 	 (1)

Step3: To compute the weight of every KAF normalisation of synthetic pair-wise comparison matrix. 
The formula follows here.

W Q Q Q Q Q
i i n
= × + + +( )−1 2 3

1
� 	 (2)

Step4: Now, de-fuzzified Wi (Fuzzy number) using centre of area method proposed by Chou and 
Chang (2008) and given in equation (3)

m
lw mw uw

i
i i i=
+ +

3
	 (3)

where l=lower bound, m=middle bound and u=upper bound values of weight W
i
.

Step5: Finally, normalised the de-fuzzified number M
i
 using equation (4)

Table 4. Rules for conversions of linguistic scale to TFNs

Linguistic scale for importance Triangular fuzzy scale Triangular fuzzy reciprocal scale

Equally Important (EI) (1/2, 1, 3/2) (2/3, 1, 2)

Weakly More Important (WMI) (1, 3/2, 2) (1/2, 2/3, 1)

Strongly More Important (SMI) (3/2, 2. 5/2) (2/5, 1/2, 2/3)

Very Strongly More Important (VSMI) (2, 5/2, 3) (1/3, 2/5, 1/2)

Absolutely More Important (AMI) (5/2, 3, 7/2) (2/7, 1/3, 2/5)
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KAFs Prioritization Using FTOPSIS
FTOPSIS algorithm has been applied for MOOC KAFs ranking. To prioritize, a panel of five Indian 
experts were consulted. The panel had three learned academicians with an average experience of 13 
years in the area of consumer behaviour, one MOOC designer having more than 5 years of experience, 
and a MOOC learner who had completed 12 MOOC courses. Expert’s personal and professional 
details are not mentioned to maintain the confidentiality of data. For reference, experts were coded as 
DM1 (first expert), DM2 (second expert), DM3 (third expert), DM4(fourth expert), and DM5 (fifth 
expert). As mentioned in step 1, experts rate all the factors. Table 5 present linguistic assessment 
given by experts.

As discussed in step 2, linguistic assessments were converted into TFNs using table 3 to generate 
fuzzy decision matrix A. Step 3 of the algorithm uses equation 3, to produce normalised unweighted 
fuzzy decision matrix R. Further, equation 5 is applied on unweighted fuzzy decision matrix to 
produce fuzzy normalized decision matrix V. Following step 5, normalised decision matrix Vis being 
used to compute the (P * ) and negative-ideal P−  solution for the KAFs. The step uses equation 6,7,8, 
and 9 for it. Now, the distance D

j
*  and D

j
−  of every KAFs was computed using equations (10) and 

(12). As mentioned in step 7 of the algorithm, closeness coefficient C
j
 is calculated using equation 

(13) for every KAFs. Table 6 presents the values of D
j
* , D

j
−  and closeness coefficient C

j
 of every 

KAFs along with ranking. Closeness coefficient were rank in descending order to obtain the final 
ranks of KAFs.

KAFs Classification Using FAHP
For classification, FAHP technique is used. One Indian expert from academia with more than 14 
years of experience of teaching MCDM techniques was consulted. Expert also possesses knowledge 

Table 5. Decision Matrix using linguistic variables

S.no KAFs for MOOC acceptance DM1 DM2 DM3 DM4 DM5

1 Contingent Instructor (KAF1) FH FH H H M

2 Affordability (KAF2) H H H FH FH

3 Digital Didactics (KAF3) FH H FH FH FH

4 Performance Expectancy (KAF4) H FH FH H H

5 Self-Regulation (KAF5) FH FH FH M M

6 Information Security (KAF6) FL M M L L

7 Facilitating Conditions (KAF7) M L L M M

8 Social Influence (KAF8) M M FH FH L

9 Willingness to earn certificate (KAF9) FH FH M FL FH

10 Perceived Reputation (KAF10) M M M FH H

11 Effort Expectancy (KAF11) FH FH M M H

12 Interaction and Engagement (KAF12) FH H FL FL FH

L Low, FL Fairly Low, M Medium, FH Fairly High, H High
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about e-learning tools. As mentioned in the step1 of FAHP algorithm pair-wise decision matrix 
was created based on the expert input using table 4. For reference purpose TFN values of only one 
KAF(KAF1) is shown in table 7.

S t e p  2  c a l c u l a t e s  ge o m e t r i c  m e a n  u s i n g  e qu a t i o n  ( 1 ) .  F o r  exa m p l e ,

1 1 1
1

2
1

3 3

2
2

5

2
, , , , , ,( )×




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
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× ×
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
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





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1 10 1 51 1 89. , . , . . Step 3 uses equation (2) to computes 

weight. For instance, weight W
1

1
1 10 1 51 1 89 0 82 1 08 1 39 0 91 1 63 2 65= ( )×( ) = ( )−
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Likewise, weights of the remaining KAFs can be calculated. Table 8shows computed weights of all 
KAFs. Now step 4 is applied on the computed weight to defuzzify them using equation 3.

Defuzzified weights were further normalised using equation 4 for classification purpose. To 
classify them based on a criterion, researchers discussed with the same expert. After discussion a 
criterion for classification is finalised and it is as follows. If normalised weight is greater than or 
equals to 0.1 then KAF will be grouped under “High Influential” Category. If it is greater than equals 
to 0.06 but less than 0.1 then it will be considered under “Moderate Influential”. Else it will fall under 
“Low Influential” category.

After successful implementation of FTOPSIS and FAHP on MOOC KAFs results of ranking 
and classification are shown table 9 and table 10 respectively.

Table 6. Closeness coefficient matrix and priority

S.no KAFs for MOOC 
Acceptance

KAFs 
Code D

j
* D

j
− C

j Ranking

1 Contingent Instructor KAF1 0.31485391 0.742954355 0.702352571 4

2 Affordability KAF2 0.246170522 0.812875137 0.767554383 1

3 Digital Didactics KAF3 0.309766858 0.750155238 0.707745636 3

4 Performance Expectancy KAF4 0.302839281 0.812875137 0.728569179 2

5 Self-Regulation KAF5 0.415335466 0.641673624 0.607065379 6

6 Information Security KAF6 0.704393523 0.351739131 0.333044461 12

7 Facilitating Conditions KAF7 0.665832691 0.388624351 0.368553991 11

8 Social Influence KAF8 0.522141469 0.534429404 0.505815008 10

9 Willingness to earn certificate KAF9 0.453896299 0.604788404 0.571263949 8

10 Perceived Reputation KAF10 0.420422519 0.634472742 0.601455676 7

11 Effort Expectancy KAF11 0.383537299 0.673033574 0.63700 5

12 Interaction and Engagement KAF12 0.460658963 0.599263133 0.565384131 9

Table 7. KAF values given by expert

KAF1 KAF2 KAF3 ------ ------ ------- ------ ------ KAF12

KAF1 1,1,1 ½,1,3/2 1,3/2,2 3/2, 2, 5/2
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FINDINGS AND DISCUSSION

Affordability, performance expectancy, and digital didactics have emerged as the top three KAFs. 
Our finding is in-line with Rao (2006). He found affordability to be a prime indicator in shaping 
learner’s perceptions. Tiwari (2017) reported that India is a pioneer in providing innovations to mix 
affordability with excellence. SWAYAM is one such effort initiated by the Indian Government in 
the direction of inclusive education. It provides courses prepared by the best teachers free of cost to 
learners but examination and certification carries a nominal cost. It fits with the country’s current 
economic scenario at the time of the pandemic. In the developing nation like India, affordability 
gives a fertile environment of acceptance. The other two criteria, performance expectancy and 
digital didactics also plays vital role in MOOC acceptance in India. MOOCs would be of great help 
to Indians because it enabled them to achieve learning outcomes such as skills sharpening and better 
performance. Digital didactics empowers online learning by making the learning process simpler and 
user friendly. Contingent instructor, being a novel factor got the fourth position in the ranking and 
grouped under the moderate influential category because it offers learning solutions to many learners 
during pandemic when very limited options of learning are available to them. Information security 
got the least position in the ranking and also grouped under a low influential category. It is driven by 
human factors (Alavi et al., 2013). To learn, people need to register themselves by submitting their 
details at MOOC platforms. It is commonly seen that in India mostly people share their details such 
as personal and professional information on websites without hesitation. It may be due to lack of 
awareness regarding information security. This can be a possible reason for getting the lowest rank 
among KAFs.

CONTRIBUTIONS AND CONCLUSION

Researchers contacted experts for linguistic assessment. All experts belonged to India. Linguistic 
assessment given by experts in decision matrix represents the preference of a particular factor to 
an Indian MOOC learner. Thus, the investigation presents a unique approach to describe MOOC 
acceptance among Indian learner by ranking and grouping MOOC KAFs. The study gives strong 
recommendations to MOOC stakeholders based on KAFs in order to boost acceptance of MOOC 

Table 8. KAFs with Computed Weights

Factor Weight Computed Weights

KAF1 W1 0.91 1.63 2.65

KAF2 W2 1.00 1.82 3.07

KAF3 W3 0.71 1.28 2.15

KAF4 W4 1.07 1.90 3.16

KAF5 W5 0.76 1.29 2.13

KAF6 W6 0.74 1.19 1.88

KAF7 W7 0.69 1.13 1.85

KAF8 W8 0.52 0.81 1.27

KAF9 W9 0.51 0.83 1.37

KAF10 W10 0.65 1.14 2.30

KAF11 W11 0.36 0.56 0.90

KAF12 W12 0.31 0.48 0.78
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among learners. The top three factors in the ranking are affordability, performance expectancy, and 
digital didactics. They are also part of the most influential factors of MOOC acceptance. Affordability 
was a prime factor of MOOC acceptance for Indian learners. Some MOOC platform charges fee for 
their courses. Fee charged for a course sometimes does not fit in the budget of a learner. The reason 
is many Indians falls in the lower and middle-income strata and affordable learning matters to them. 
Sometimes these learners leave their studies due to economic challenges in their lives. Due to economic 

Table 9. KAFs ranking using Fuzzy TOPSIS

S.no KAFs for MOOC Acceptance KAFs Ranking

1 Affordability KAF2 1

2 Performance Expectancy KAF4 2

3 Digital Didactics KAF3 3

4 Contingent Instructor KAF1 4

5 Effort Expectancy KAF11 5

6 Self-Regulation KAF5 6

7 Perceived Reputation KAF10 7

8 Willingness to earn certificate KAF9 8

9 Interaction and Engagement KAF12 9

10 Social Influence KAF8 10

11 Facilitating Conditions KAF7 11

12 Information Security KAF6 12

Table 10. KAFs classification using Fuzzy AHP

S.no KAFs for MOOC Acceptance KAFs
Normalised 

Weight N
i( ) Group

1 Affordability KAF2 0.16

Highly Influential 
(Group-1)2 Performance Expectancy KAF4 0.14

3 Digital Didactics KAF3 0.12

4 Contingent Instructor KAF1 0.09

Moderate Influential 
(Group-2)

5 Effort Expectancy KAF11 0.08

6 Self-Regulation KAF5 0.07

7 Perceived Reputation KAF10 0.06

8 Willingness to earn certificate KAF9 0.06

9 Interaction and Engagement KAF12 0.05

Low Influential 
(Group-3)

10 Social Influence KAF8 0.05

11 Facilitating Conditions KAF7 0.04

12 Information Security KAF6 0.04
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challenges, they cannot spend money on courses for learning. If MOOC stakeholders really want to 
increase the acceptability of MOOC in developing nations, they need to take up call on affordability. 
They must give motivational provision (e.g. monetary and non-monetary benefits) to learners for 
completing their course and earn certificate for free. It can be done using provision of giving badges 
to learners during the course. If a learner consistently performs in the assignments given by instructor, 
then learner would get a digital badge for it. Based on the digital badges earned in a course learner 
would be given an opportunity to appear in the examination and take certificate of the course absolutely 
free. It would motivate learners who are deprived due to economic barriers. This motivational provision 
would generate higher enrolment numbers, help in controlling attrition. It would further support in 
achieving the objectives of inclusive education. As projected by Morgan Stanley, India’s internet 
users will increase to 914 million from 670 million by 2027. There is tremendous scope of MOOC 
acceptance. Thus, the MOOC provider must give due attention to affordability aspect. PE holds the 
second position in the ranking. Venkatesh and Davis (2000) observed PE as a strong determinant 
of acceptance in voluntary settings. MOOC learning is also voluntary self-regulated learning (Park 
et al.,2015). For wider acceptance of MOOC, MOOC developers need to design courses which can 
offer learners professional and career benefits. To match the learning intentions with actual learning 
experience MOOC developers, need to update their curriculum as per changing needs of industry. In 
this way they can increase its usefulness for learners. This finding is supported by the corroboration 
of recent studies which considered it to be a significant factor of adoption in educational settings 
(Mulik et al., 2018; Fianu et al., 2018; Sharma et al., 2017). Since, performance expectancy is found 
to be key factor of MOOC acceptance among Indian learners. MOOC providers and developers 
should concentrate on the themes that are demanded by industry. In this manner, MOOC can support 
learner by two ways. First, it will make the unemployed learner job ready. Second, it will support the 
industry professional in their career advancement. Digital didactics has been ranked among the top 
3 factors. Digital didactics gives positive results in terms of comprehension and enhances learner’s 
motivation in autonomous learning (Chuquín et al.,2020). It gives learners an opportunity to enhance 
individual as well as group knowledge by active engagement. Rodríguez-Ardura and Meseguer-Artola 
(2016) suggested that it gives extraordinary interactivity support in learning and increases learners’ 
willingness to continue with MOOCs. To have widespread acceptance, providers must give digital 
material in a very simple form so that novice learners can easily utilize it for learning purposes. There 
is tremendous scope of improvement in the current practices of MOOCs. These aforementioned 
recommendations give a significant ramification to building and promoting viable MOOC learning 
frameworks in developing nations.

The study identified eleven KAFs from academic literature and proposed one new KAF taking 
into account the perspective of Indian learners. These 12 KAFs are a comprehensive package of 
learner’s characteristics, course attributes, as well as societal and technical attributes. It would 
help developers in designing effective MOOCs. KAFs are ranked and classified using two popular 
FMCDM techniques, FTOPSIS and FAHP respectively. Authors noticed that MOOC acted as a 
contingent instructor giving support to learners in completing their studies during pandemic. The 
procedure adopted in the investigation is a proper mix of literature review, group decision making, 
and mathematical techniques. Thus, the procedure is reasonably effective, pragmatic, and robust. 
The findings will help MOOC providers to redesign strategies of MOOC acceptance for developing 
nations like India.

Limitations and Future Directions
The MOOC scenario in developing nations considering technological infrastructure, literacy level, 
digital divide, political and social scenario is not the same as that of developed nations. There may 
be differences in the findings of this exploration with research that concentrated solely on developed 
nations. So, similar research may be conducted in developed nations to compare the findings with 
this study. KAFs were ranked and classified on the opinion of a limited number of experts. Future 
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studies may include the opinion of a larger number of experts. The authors proposed a “contingency 
instructor” as a novel factor considering the current Covid-19 pandemic and forthcoming new normal 
situation. Further, research may be conducted to verify the importance of this factor. Other multi-
criteria decision-making techniques such as Multi moora, Electre may be used in future research and 
results obtained using those methods may be compared with these research results.
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