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ABSTRACT

Asymptomatic patients (AP) travel through neighborhoods in communities. The mobility dynamics 
of the AP makes it hard to tag them with specific interests. The lack of efficient monitoring systems 
can enable the AP to infect several vulnerable people in the communities. This article studied the 
monitoring of AP through their mobility and trajectory towards reducing the stress of socio-economic 
complications in the case of pandemics. Mobility and trajectory-based technique for monitoring 
asymptomatic patients (MTT-MAP) was established. The time-ordered spatial and temporal trajectory 
records of the AP were captured through their activities. A grid-based index data structure was 
designed based on network topology, graph theory, and trajectory analysis to cater for the continuous 
monitoring of the AP over time. Also, concurrent object localisation and recognition, branch and 
bound, and multi-object instance strategies were adopted. The MTT-MAP has been shown to be 
efficient when experimented with GeoLife dataset and can be integrated with state-of-the-art patient 
monitoring systems.
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1. INTRodUCTIoN

In recent times, the attention of the public healthcare settings has been drawn to the eradication 
of pandemics. As a result of pandemics, patients are often monitored (Crepaldi, et al., 2018) by 
a team of healthcare professionals. This is to allow them to check the daily health status and/or 
record the routine activities (Hassan, et al., 2018; Gonzalez, et al., 2008) of the patients. For 
instance, when patients are visiting and/or travelling to interesting and/or important places, such 
as theatre, tourist centers, local market, shopping mall, airport, and so forth. It has become 
necessary to keep records of these activities in order to obtain relevant data (Smyth, 2018; 
Nogueira, et al., 2018) on the patients to support health research, planning and decision making 
in the society in the case of pandemics. For example, real-time data which contain the whereabouts 
of patients with respect to time (Adu-Gyamfi, et al., 2019) will be more appealing to assist public 
healthcare workers on their decision to derail spreading of contagious diseases. Moreover, there 
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have been several reports on the increasing number of patients who are affected on daily basis 
with chronic health complications (El-Sappagh, et al., 2019). However, managing chronic disease 
is considerably a global issue which places pressure on the patients, healthcare settings, and the 
affected communities at large (Esposito, et al., 2018). Asymptomatic patients (AP) have been 
one of the serious pandemic contributing patients. This is because the AP are usually diagnosed 
with chronic diseases, but they do not show any noticeable symptoms. Therefore, it is hard for 
anyone to casually recognized them as they can equally be seen as active as any ordinary persons. 
Furthermore, irrespective of the health education given to the AP, they can spread diseases 
directly to vulnerable people, such as family members, co-workers, travelers, etc. This situation 
can result to possible pandemic. Therefore, it is prudent to establish compelling novel techniques 
to facilitate the development of efficient mobile health information systems for monitoring the 
AP when they are outdoor in order to derail pandemics. Several techniques have been developed 
over the years towards the advances in patients’ health monitoring strategies (Smyth, 2018). Due 
to the proliferation of outdoor mobile technologies and devices, many people can wear shirts 
equipped with sensors for taken records of their health status (Esposito, et al., 2018). Moreover, 
a comparative study on sensor and real laboratory data in (Smyth, 2018) has revealed that it is 
quite easier to predict the health status of patients with mobile sensor data. According to (El-
Sappagh, et al., 2019), it is also easier to track the fitness of patients using mobile sensor data. 
Nonetheless, in (Or, et al., 2018) it is proposed that most of the modern and/or state-of-the-art 
health information systems still face challenges in terms of their output which is less efficient, 
and that is due to their under-explored techniques (or approaches) underlying the design of the 
systems (Nogueira, et al., 2018). In (Rajkumar, et al., 2018), there is a proposed improved software 
intelligent system towards enhancing the performance of a hearing impairment system in which 
the system is aimed to provide solution to audio logical problems. In (Singh, et al., 2017) is an 
introduced deep learning model towards recognition of human activity in which the model is 
able to learn to classify human activities without prior knowledge. Heuristically, the model will 
be practically not well fit for investigating the AP who are in continuous traveling routine. This 
is because prior to real-time monitoring of the AP, this paper identifies the initial health statuses 
as relevant knowledge to obtain efficient outcome. Moreover, in (Nogueira, et al., 2018) is a 
proposed biofeedback system technique for evaluating the quality of life of patients. In (Crepaldi, 
et al., 2018) is evaluated health information systems based on software engineering metrics. The 
work has laid emphasize on the analyses of system methods and designs, and has proposed that 
many existing techniques (or approaches) are not efficient as a results of over use of resources, 
etc. In (Wu, et al., 2018) is identified peculiar issues on monitoring of general object mobility. 
The first issue is on how to correlate spatial and temporal information on objects such as patients 
towards location predictions. The second issue is on how to develop effective and efficient 
practical oriented predictive systems such as health information decision support systems on a 
large scale. To closely examine the technicalities involved in the two issues. It can be said that 
it is quite harder to find readily available solution to them. Nonetheless, in this paper a strong 
motivation is derived from the proliferation of the current ubiquitous built-in GPS mobile devices 
and the available methods for determining the location of objects (Li, et al., 2015) (Lee & 
Holzinger, 2016). Therefore, with the aid of these devices and technologies, it is quite simpler 
to find the geographical location, spatial position, time stamp, place of visit of mobile outdoor 
patients. In (Pawar, et al., 2012), patient monitoring can be defined as the continuous (or periodic) 
measurement and analysis of a mobile patient bio-signals from a distance by employing mobile 
computing, wireless communications, and networking technologies. To clearly outline the research 
question, supposing we want to monitor the various places where the AP often travel or visit in 
a community. We classify or map this question to that of Maximize Range Sum (MaxRS) problem 
(Amagata & Hara, 2017) which is a common problem in spatio-temporal databases. It is not 
trivial to achieve solution to this problem due to the dynamics and varying degree of interests 
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of the AP. The varying interest could be attributed to either inherent or acquired circumstances 
of the present location of the AP. Therefore, tagging the AP with a particular interest incrementally 
in continuous time intervals is a challenge. This challenge is associated with the excessive 
computational needs to execute the high dimensional data (Lee & Holzinger, 2016) as well as 
the software and hardware resource requirements needed to be met. The focus of this paper is 
mainly to delve into mathematical modelling coupled with that of trajectory data mining 
techniques in order to establish the MTT-MAP (i.e. Mobility and Trajectory based Technique 
for Monitoring Asymptomatic Patients) as an efficient data dependent monitoring technique to 
be used in the healthcare settings. The general objective of MTT-MAP seeks to ensure proper 
and efficient monitoring of the AP in a community. Whereas the specific objective seeks to 
facilitate the stay place (SP) detection of the AP via place of interests (POIs). Therefore, the 
POIs are determined based on the spatio-temporal trajectories (Yu, 2015) of the AP which consists 
of their routine activities during mobility. To determine the POIs, there exist two categories of 
SP (Yu, 2015) to be considered. These are single-point location (SPL) which refers to a location 
where the AP travelled or visited and spent inordinate amount of time as illustrated in Figure 1, 
and multi-point location (MPL) which refers to a location where AP travelled or visited and 
spent relatively a short time as illustrated in Figure 1. Heuristically, both types of SP can 
significantly contribute to trajectory analysis towards monitoring and predicting of object’s 
location (Yu, 2015). This article offers a considerable novelty in healthcare as a contribution 
towards improving state-of-the-art mobile patient monitoring system applications in order to aid 
informed decision towards pandemic eradication. MTT-MAP has been experimented using 
GeoLife big dataset and proven efficient for monitoring the AP. The remainder of this paper is 
as follows. The method underlying the MTT-MAP is detailed under Materials and Methods 
section. Under Results and Discussion section, we present plotted graphs of the simulation results 
of the MTT-MAP algorithm and highlight on the discussions of the findings and possible 
improvement. Finally, we conclude the paper with some future research directions under 
Conclusions section.

Figure 1. Category of Stay place (SP). Showing SP1: single-point location (SPL), and SP2: multi-point location (MPL) of patient based 
on POIs. Ui represents user identifier for the AP, whereas p and t represent the spatial position (POIs) and time-stamp respectively.
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2. MATeRIALS ANd MeTHodS

This section outlines the materials and methods that are used to establish the MTT-MAP. Given a 
set of POIs, unit weight and user-specified rectangle r . Suppose that we want to monitor the various 
places where the AP will travel or visit in a community. This problem can be map to that of MaxRS 
problem which is a commonly occurring problem in spatio-temporal databases (Amagata & Hara, 
2017). Especially, when analyzing mobility patterns to determine SP. An example of MaxRS approach 
includes the G2 algorithm (Amagata & Hara, 2017). This present paper tries to find an enclosing r 
which contains the maximised weighted-sum of POIs, and locates a centroid of r as SP. The SP is 
combined with other methods to determine the disease spreading potentials of the AP. Concurrent 
object localisation and recognition, branch and bound formalism, and multi-object instance (Yeh, et 
al., 2009) are adopted as far more efficient methods to ensure proper monitoring of the AP in any 
streaming environments. Where the current position and the time-stamp of the AP are considered in 
a monitoring location. Further, spatio-temporal trajectory analysis which is a sub field of trajectory 
data mining has been applied to find solution to many real life problems (Lettich, et al., 2015; Costa, 
et al., 2017; Yang, et al., 2013; Giannotti, et al., 2009; Adu-Gyamfi, et al., 2019) including this present 
study, and hence making this study not an entirely new research in computing. 

We used GeoLife (Yu, et al., 2010) dataset for the experimental evaluation. It is a GPS based 
dataset which is open source provided by the Microsoft Asia, Beijing. The details as to how to find it 
can be obtained in the reference (Yu, et al., 2010). The dataset consists of trajectory of mobile users’ 
outdoor mobility and social networking. Upon testing the algorithms with the dataset, a single AP 
was emulated as ordinary mobile user. The AP was considered as performing daily life activities, 
such as spotting, travelling, shopping, hiking, sight-seeing, visiting, and so forth (Adu-Gyamfi, et al., 
2019). Together with the AP, the neighborhood and which corresponds to the specific location was 
represented in the model as rectangle r. Whereas the entire community was represented as R. The 
default size of the R was 1000 x 1000. The other parameters are defined in Table 2. The graphical 
results of the simulation are provided in Figure 8, Figure 9, Figure 10, Figure 11, and Figure 12. In 
the various graphs legend, the compared G2 algorithm has been indicated as G2, and TMAXWS for 
the proposed MTT-MAP.

2.1 Trajectory

First of all, we define trajectory as a sequence of tuple given by T x y ta ts x y ta ts
k k k k

= ( ) … ( ){ }1 1 1 1
, , , , , , , , . 

Such that ta ta ta
k1 2

< <… <, ,  and ts ts ts
k1 2

< <… <, , , where k  denotes length (size) of data. 
The x  and y  are the location (or spatial position) coordinates, whereas ta  and ts  represent arrival 
time and stay time respectively. It is essential to note that T  is subject to a unit positive weight, and 
other effects such as altitude. However, altitude is insignificant so far as trajectory analysis is concerned 
(Yu, 2015). Here, we refer to spatio-temporal trajectory as the time bounded spatial activity carried 
out by outdoor mobile object such as AP. Trajectory monitoring instances. Assume that P n( )  are 
countably-infinite POIs. If p i( )  is any identified POIs then it follows that p i x y w( ) = { }, , , such 
that p i P n( ) ∈ ( )  and p i w( ) ∈ +* � , where x and y are spatial position coordinates respectively, 
and w is a positive weight defining the features of the monitoring location. Supposing we want to 
find SP, this can be done by considering the most visited and stay place within the monitoring location. 
In that regards the monitoring location becomes the community where AP lives. Using Eq.1, we can 
obtain p i w( )  is any weighted identified POIs. Let’s represent m as search space and n as large 
location under monitoring, such that i m= …1, ,  and m n∈ . This implies that, if m n=  then the 
task is not relevant to execute, and thus m , which represents the search space is equal to n which 
represents the entire monitored location. Moreover, if m n>  then this condition cannot be satisfied 
as it is not practical to execute such a task:
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p i w P i w( ) = ∑ ( )*  (1)

Assuming R is a community. Let’s denote r as monitoring location (i.e. specific) within location 
R  (i.e. general) and p(i) as individual POIs, such that r ∈ R. Therefore, we can heuristically monitor 
r continuously to obtain POIs. Let p i w P n( ) ∈ ( )  be the weighted-sum of POIs. We need to ensure 
that the weighted-sum of POIs is maximised in r . Therefore, we heuristically establish the objective 
function in Eq. 2. Where p(i)w represents a weighted POIs. As a result, monitoring r w( )  is the same 
as monitoring the SP. We have illustrated the process in Figure 2:

r w
i n R

p i w( ) = ∈ ∩ ( )
argmax

 (2)

2.2 Concurrent Localisation and Recognition of PoIs
In this section, we present how to locate, recognise and monitor AP in any community. Such that we 
can identify the POIs in order to obtain SP which will intern be used to guide the decision making 
on pandemic eradication. By so doing, we adopt concurrent localization and recognition (Yeh, et al., 
2009) strategy to find a bounding rectangle r (i.e. localization) that encloses the various POIs. Also, 
we try to find a model, say p i( )  that maximizes a prediction score L  for the POIs (i.e. recognition). 
Assuming there are n location features and s models. At any instance of predicting the POIs, there 
would be prediction partial score L

i( )  which can either be an output of support-vector machine (SVM) 
classifier (i.e. identification) or tree-based index (i.e. categorization). Alternatively, L  can be obtained 
by accumulating only the L

i( )  considering those from various POIs. We approach that by computing 
the L  incrementally when the POIs has been discovered (or where any POIs get obsoleted or 
discarded). Assuming we have an anticipated prediction score of s(k) when searching for subsequent 

Figure 2. A derived SP. Showing the trajectory of asymptomatic patient based on POIs, where SPs and SPr are the obsolete and 
updated centroid indicating SP respectively. Base station ensures the acquisition, storage and management of the monitoring 
data from the GPS device.
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POIs (i.e. evolution). We compute s(k) by creating an upper bound. Therefore, we employ branch and 
bound formalism (Yeh, et al., 2009; Lampert, et al., 2008) to enable us to obtain an argmax

k
s k( )  

for all the POIs. Drawing on the method of plane-sweep mechanism (Yeh, et al., 2009; Lampert, et 
al., 2008), we create an interval that captures all the POIs. An iteration is then performed to split the 
interval into two disjoints. Using the two disjoint intervals, we apply bounding strategy to decide on 
the next POIs location. The iteration is terminated when k  becomes a singleton, and hence we 
consider that at this stage the optimal location is found indicating the POIs. Now let’s express as input 

the n  location features given by the triplets, F ax by cL k n
k k k

= ( ) …( ): { , , | : , , }1 , where L corresponds 

to the location feature which is an M-dimensional vector. Whereas a b,  and c  are constant coefficients. 
If L

i( )  becomes the ith element of L
k( ) , and thus i < k, then we can now find the partial scores of L

i( )  
which the various POIs contribute to the total L . Heuristically, we can establish the objective 
optimization in Eq.3, where r(w) is any specified location. It follows from Eq.2 that F(r) represents 
the POIs that are spatially bounded by r . Therefore, we can obtain the POIs by computing 

�
L
k( ) , 

where, r  and R  correspond to the search space (e.g. neighborhood) and large monitored location 
(e.g. community) respectively, such that r R∈ . This implies that we can have more than one 
neighbourhood within a community, such that the AP is being monitored whenever moving from one 
neighborhood to another within the same community, and based on the SP in the community:

r w L i
i r R

k F r
k( ) = ( )

∈
∈ ( )

( )∑argmax
,

�
 (3)

Suppose we want to train SVM classifier for any POIs. The POIs is taken as input to evaluate 
the SV M classifier margin by comparing the testing sample to each of the training sample. We 
compare the weighted POIs that has the support vector with other aggregated partial scores in order 
to obtain a set of similarity scores. We sum up the similarity scores based on a certain SVM offset 
value δ  and express the margin as weighted-sum (i.e. all the partial similarity scores). This approach 
is very similar to the one used in the reference (Yeh, et al., 2009). Let �µ

p i( )  be any vector with support 

vector weights for sth training set of POIs, such that w w k∈ ( ) , where w is the positive weight 
attributed to the location. Assuming there is ith element of s which corresponds to the weight of the 
ith SVM. Heuristically, consider any p i( )  selected from the POIs. It implies that the model label 
and feature score can respectively be given as l

p i( )  and c
p i( ) . Therefore, the anticipated partial score 

can be computed using Eq.4. Note that h ·( )  evaluates to 1 when ·( )  is true, and thus it implies that 
there is a solution. Otherwise h ·( )  evaluates to 0, and thus it implies that there is no solution:

� �
L i h l i c i
k

p i w
p i p i p i

k

( )
( )∈

( ) ( ) ( )( ) = =( ) ( )
( )

∑ µ  (4)

where:

�
L i
k( ) ( )= any identified partial score of position data 

p i( )= any identified position data of the AP 
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w = any selected support vector weight based on the monitored location 
w k( )= aggregated support vector weight based on the monitored location 

l
p i( )= any identified model label 

c
p i( )= any identified feature score  

�
µ
p i( )= any single/identified vector considered in the position data 

2.3 Branch and Bound Formalism
Drawing on the concept of branch and bound formalism (Yeh, et al., 2009), we ensure that search 
space is disintegrated into disjoint subspaces. Through that we discover optimal value to represent 
the POIs. Heuristically, we assume w0 and w1 as maximum weighted-sum POIs and weight of 
monitored location respectively. Let tol represents user error tolerance, we conjecture that 
w w tol0 1 1≥ −( ) . Therefore, there would be trade-off between query efficiency and tol . However, 
tol  can be tuned such that it will be slightly higher than the realistic (or actual) error rate.

2.4 Branch Technique
In this section, we discuss how our algorithm applies the branch technique, see algorithm 1 to find 
the optimal location as POIs. Let d  be a subspace, and d1 and d2 be any two smaller subspaces. Base 
on upper bound estimation, and thus by considering the x and y coordinates of the general monitoring 
location (i.e. R , and m object models, we obtain Z1 and Z2 as two subsets of equal-size (i.e. as 
candidates). We transform subspace d as:

d i x i x i y i y i m i( ) = − ( ) + ( )( ) − ( ) + ( )( ) ( ){ }: , , , ,  

such that i = 1 2,  (i.e. binary), and y  is split as d
1

 (i.e. points in Z
1
 are removed from −y  as well 

as all x
1
.

2.5 Bound Technique
In this section, we discuss how our algorithm applies bounding operation in order to determine 
the largest and smallest bounding locations. We do that by considering a given subspace d using 
the −x , +x , −y , +y  and m  parameters. Considering the x  and y  extremities, we obtain 
+b  (i.e. + ( )L i j, ) and −b (i.e.− ( )L i j, ) as the largest and smallest rectangle (i.e. location) sizes 
respectively. Let a represent label for object model m , such that a m∈ . Using the dimension 
of a, we consider −b  and +b  intervals, and locate a space which includes as many positive 
weighted POIs (i.e. 

�
Z a
k ( ) > 0 ), and thus excluding as many negative weighted POIs (i.e. 

�
Z a
k ( ) < 0 ). At this stage the Eq. 2 can heuristically apply. If there are more positive values than 
+b  and few negative values than −b  in the rectangle (i.e. location), then optimal solution can 
be assumed for POIs. Otherwise it will be irrelevant to compute or query any new rectangle (i.e. 
as optimal or best location to be assumed as the POIs). We can heuristically compute the upper-
bound say +J  via Eq. 5. Similarly, lower-bound say −J  can be computed via Eq. 6, and thus 
by adding many negative values, and subtracting many positive values. Both +J  and −J  are 
assumed to have object model a as a function of subspace d :
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+ ( ) = ( )( )+ ( )( )
∈ +( ) ∈ −( )
∑ ∑J d h Z a h Z a

a
j d b

k
j d b

k

� �
 (5)

− ( ) = ( )( )+ ( )( )
∈ −( ) ∈ +( )
∑ ∑J d h Z a h Z a

a
j d b

k
j d b

k

� �
 (6)

where + ( )h x  and − ( )h x  are functions. If x is positive then + ( )h x  is evaluated. On the other hand, 
if x is negative then − ( )h x  is evaluated. Otherwise, the function evaluates to 0 when x  is neither 
positive nor negative. Finally, based on the subspace d we compute the overall upper bound +J  and 
lower bound −J  for the object model a  as given in Eq. 7 and Eq. 8. Therefore, any SV M classification 
problems can be trained by adjusting the bounding estimates using offset values, say δ

a
 if the respective 

SV M classifier via Eq.7. We have constructed the algorithmic pseudocode for the POIs execution 
in Algorithm 1:

+ = +J J
a a a

δ  (7)

− = +J J
a a a

δ  (8)

where:

+J
a

= overall upper bound 

−J
a

= overall lower bound 

J
a

= bounded space with object model 

δ
a

= Offset value with object model 

2.6 Graph Analysis and Index data Structure
Graph theory and network topology (Lee & Holzinger, 2016) have been used in various domain of 
researches to find solution to complex and dynamic network related problems. Thus, graph base and 
topological data mining provide knowledge representation base on graph analysis to construct novel 
queries for the analysis of complex and dynamic network related problems. Such as analyses of 
network connectivity behavior (Hu, et al., 2019), patterns and impacts of network systems, continuous 
spatio-temporal trajectory joins (Bakalov & Tsotras, 2006), etc. Here we discuss the construction of 
a generalised index data structure for processing the trajectory of AP based on graph analysis. Let’s 
consider Figure 3 which is an illustration of tracking instances of POIs. Assuming there are ten positions 
instances of the AP representing POIs enclosed within rectangles A, ..., H (i.e. representing individual 
places of visit or neighborhood). As shown in Figure 3, it can be seen that red broken-line rectangle 
provides the optimal solution for having three of the total POIs as the maximised weighted-sum.

Let G V E= ( ),  denote a dynamic graph. Vertices V represents the position data leading to the 
discovery of POIs. As shown in Figure 3, vertices are further transcribed as rectangles. An overlap 
of two vertices generate edges E. Therefore, one-to-one mapping of vertices corresponds to edges. 
As shown in Figure 3, we perform transformation of POIs into vertices. As a result, we can now 
construct the dynamics of monitoring POIs in continuous time intervals via graph analysis. Following 
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the dynamic process, we can derive the trajectory instances of AP based on Figure 4. Therefore, we 
construct a tree graph to represent the dynamics of trajectory instances of AP (Feng, et al., 2015) 
based on POIs as shown in Figure 5. Further, we construct a tree data structure by concentrating on 
the core or usual trajectory of AP as shown in Figure 6. It should be noted that graph G V E= ( ),  is 
dynamic, hence it can be reconstructed to reflect the dynamics of mobility. Therefore, if r r V

i j
, ∈  

Figure 3. Example of tracking position instance of asymptomatic patient. Showing the various instances of POIs in monitoring 
location or neighborhood identified by A, B, C, D, E, F, G and H. The neighborhood D has the maximised weighted-sum of 3 POIs 
and it is classified as the optimal solution (or neighborhood) to represent SP of the patient. Base station ensures the acquisition, 
storage and management of the monitoring data from the GPS device.

Figure 4. Transformation of POIs into rectangles. Showing rectangles r1, …, r8 and intersection generated by p(i,j) and p′(i,j).
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is generated, then by convention r
i
 is older than r

j
. We present the relationship of graph G V E= ( ),  

in Table 1. We apply the concept of Origin-Destination (OD) matrix to construct a list adjacency 
matrix. By so doing, it is now possible to design a generalised grid based index data structure to cater 
for the continuous evolution of POIs leading to discovery of SP. Thereby, we construct a grid based 
index data structure as shown in Figure 7.

Drawing on the study of graph theory, three properties can be defined based on Figure 6 (Amagata 
& Hara, 2017). Firstly, if r r V

i j
, ∈ , then p i p j( ) ≠ ( ) . Thus, if and only if there exists an overlap 

between V r
i( )  and V r

j( ) . For instance, where V r
i( )  is older than V r

j( ) , there exists 

V r V r r e i E
i j ij( ) ( )( ) = = ( ) ∈, . Also, if e i e j( ) ≠ ( ) , then NV r NV r

i j( ) ≠ ( ) , and thus making 

p i( ) , a subspace of V r
i( ) . Secondary, if P grid cells or spaces contain a set of pi enclosed in r

i
, 

then Eq. (2) is verifiable. It means any obsoleted vertices are no longer needed to undergo maintenance 
as a result of the corresponding edges being held by the existing vertices. Thirdly, if r V

i
∈ , then 

vertex r
i
 is considered as obsoleted in circumstances where there are other older vertices, and hence 

any pi becomes the current position of AP. When AP moves from one place to another, the position 
data need to be updated, and thus represented Ru . Therefore, we compare Ru  with all the existing 
POIs so as to update the grid cell or data structure accordingly via Figure 5. If m  represents newly 

Figure 5. A tree graph of POIs. Showing trajectory instances of AP based on POIs. Ui represents user identifier for AP, whereas 
p and t represent the spatial position (POIs) and time-stamp respectively.

Table 1. A relationship of vertices, edges, and next neighbour vertices based on graph G

Vertex (V(ri)) Edge (e(i)) Next Neighbour Vertex(NV(ri))

1 e1,e2 2,3

2 e3 3

3 e4 4

4 e6 6

6 e7 7

7 null null
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generated POIs and n  represents the rate, then the time complexity for the process becomes O mn( ) , 
and that is quite high. Therefore, we need to find more suitable solution to improve on the complexity. 
By so doing, we modify G V E= ( ),  as illustrated in Figure 5 to obtain G i j V i j E i j, , , ,( ) = ( ) ( )( )  
as illustrated in Figure 6. Thereby, cell g i( )  or g j( )  can be maintained in the graph G i j,( ) . As a 
result, if m  new vertices are generated and added to G i j,( ) , then overlaps need to be checked with 
the corresponding gi and gj in order to update the grid cell data structure by a factor of G iu ( ) . 
Therefore, the time complexity improves from O mn( )  to O m( )  for the total overlap at this stage. 

Therefore, the overall time complexity of the proposed algorithm becomes O G i m nu u u( )( ), , which 
is now reasonable. Where m  is the average number of vertices undergoing overlap, and n  is the 
average number of overlap. It should be noted that m mu <<  and n nu << . Hence, the cost of 
storage becomes O V E+( )  for all G i j V i j E i j, , , ,( ) = ( ) ( )( ) , and for every r

i
 to maintain p i( ) . 

Also, the worst space complexity becomes O V
2







.or n  sounds of overlap, and that is almost equal 

to O O
2





  which is quite impractical to evaluate as worst space (Amagata & Hara, 2017). 

2.7 Continuous Monitoring of PoIs
Making use of Figure 7, we can perform real time monitoring of POIs towards achieving SP. This is 
done by following the trajectory of the AP (Ebadi, et al., 2017). We deduce the maximised weighted-
sum of POIs and obtain a centroid as SP. Knowing the SP at some instance, we can compute newer 
SP by understanding AP mobility pattern (Gonzalez, et al., 2008; Cho, et al., 2011). Let l w( )  and 
p i( ) '  represent new SP and new POIs respectively. Supposing there is an existing cell g G∈ . If 
g w l w* '> ( ) , then all the vertices in V i j,( )  (i.e. R ) do not contain l w( ) . Therefore, no need to 
compute the exact solution for p i( ) . Moreover, with g G∈  and g w l w* ≥ ( ) , where vertices (or 
rectangle) r V i j

i
∈ ( ), , if l w p i w'( ) < ( )  (i.e. in term of time of generating position data), then any 

newly generated ri '  does not contain p i w( ) . Therefore, it is not necessary to compute the exact 

Figure 6. A tree data structure of POIs. Showing the core or usual trajectory instances of AP based on POIs.
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solution for p i w( ) . Therefore, Eq. 11 can be used to evaluate evolving SP. Intuitively, set k-th largest 
weight as threshold upon continuously monitoring the top k of the POIs. Also it is important to bound 
any error rate based on a defined user-tolerance (tol). Heuristically, establish the optimization function 
of that as follows:

l w l w p i
i

k

'( ) = ( )+ ( )∑  (9)

l w l w l w
i

k

( ) = ( )+ ( )∑ '  (10)

g
g G R

g w
i j

=
∈ ∩
argmax

*
,

 (11)

where:

l w'( )= updated location data 

l w( )= current location data 

Figure 7. A schematic view of data structure for maintaining any answers for a Patient’s POIs query in continuous case
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p i( )= any identified position of the AP 

The algorithmic pseudocode for monitoring the POIs is given in Algorithm 2 and Algorithm 3.

3. ReSULTS ANd dISCUSSIoN

3.1 Results
Heuristically, a compelling grid based index data structure as shown in Figure 7 and algorithm as 
shown in Algorithm 1, Algorithm 2 and Algorithm 3 have been provided in the present study to be 
used for monitoring AP. Relatively, MTT-MAP has generally proven better for monitoring naturally 
occurring phenomena in mobile objects spatial and temporal databases.

3.2 experimental Setup
The MTT-MAP algorithm was implemented on Windows 10 OS personal computer with Intel Core 
i5, CPU 4.1 GHz and 8.00 GB RAM. Programming and simulation were done with Python language 
using Python version 2.7 software. Scikit library, Numpy, Microsoft Visio, and among others were 
mounted. Experimental parameters are provided in Table 2.

The parameters n, d and m as shown in Table 2 were used for the simulation and evaluation. The 
average computation times were measured for each of the parameters with simulation results shown 
in Figure 8, Figure 9, Figure 10, Figure 11, and Figure 12. As a limited study, there were other similar 
approaches and/or properties that the MTT-MAP was not compared with them due to the massive 
size of the dataset and the huge computing resources involved.

3.3 Analysis and discussion
The previous techniques most often over use resources, concepts, and among others (Costa, et al., 
2017), as they do not consider the natural dynamics of objects mobility in a case of continuous spatial 
data streams. In the present study, the MTT-MAP approach was mainly evaluated on the execution 
time of continuous queries of the location and position of the AP. The results have proven fruitful and 
also have testified that MTT-MAP is very efficient to be used for monitoring a continuous outdoor 
mobile patient that is regarded as a maximised range-sum problem.

The impact of the number of spatial positions defined as n in Table 2 was tested. The computation 
time for finding each position data increased linearly with increasing position data as shown in 
Figure 8. That resulted to several overlaps of the POIs, whereby the OverlapComputation(.) and 
ExactWeightComputation(.) functions of the MTT-MAP algorithm heavily got overburdened to 
execute. That implied the larger the size of monitoring location, the more time will be needed to 
produce all the position data for the AP and to subsequently obtain the various POIs.

Table 2. Experimental parameters

Param Default Variables Indicators

n 500 100; 250; 500; 750; 1000 No. of position

d 1000 100; 500;1000; 1500; 2000 Rectangle sizes

m 100 50; 100; 200; 500; 800 Generation rate

tol - 0; 0.10; 0.20; 0.30; 0.40 User tolerance

k - 10; 20; 30; 40; 50 Query answers
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The impact of rectangle size defined as d in Table 2 was tested. A skewed distribution was observed 
as shown in Figure 9. There was a proportionate increased in the running time of the algorithms with 
more overlaps when the rectangle size was increased. That implied how appropriate it was to monitor 
the AP in a sizeable location.

The impact of rate of generating the position data defined as m in Table 2 was tested. Less than 
50 position data were generated per second by the algorithms as shown in Figure 10. That implied 
how faster the algorithms completed the POIs queries execution for the AP.

The impact of user tolerance defined as tol in Table 2 was tested. This was done only with the 
MTT-MAP to observe the error rate and computation time required for executing the queries as shown 
in Figure 11. The tol was indirectly proportional to the running time of the algorithm. That implied 
a trade-off between the query processing efficiency and result quality. The more the user fine tune 

Figure 8. A graph of running time against position size. Showing the impact of n as amount of position data available for execution.

Figure 9. A graph of running time against rectangle sizes. Showing the impact of d as the increasing size of location data.



Journal of Information Technology Research
Volume 15 • Issue 1

15

the POIs queries towards quality result, the more time the algorithm took to efficiently produce the 
expected outcome for obtaining the SP and vice versa.

Finally, the impact of generating top−k position data as defined in Table 2 was tested. This 
was done only with the MTT-MAP to obtain the optimal SP for the AP. When k was increased, the 
execution time was proportionately increased as shown in Figure 12. That implied the k as directly 
proportional to the execution time for obtaining newer updates of SP. Therefore, it will always be 
advisable to approximate the queried results based on marginal error rate determined by the user as 
tolerance (tol). In effect, it will not be necessary to examine exact query solution of the SP so far as 
real life applications are concerned. Thus an approximated SP will be enough to an informed decision 
as to whether the AP can be a disease spreading potential in the present location and position.

Figure 10. A graph of running time against user generation rate. Showing the impact of m as the rate of increasing position data.

Figure 11. A graph of error rates against user tolerance. Showing the impact of varying user tolerance tol for approximate solution.
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4. CoNCLUSIoN

This paper has established a Mobility and Trajectory Technique for Monitoring Asymptomatic Patient 
(MTT-MAP). The Asymptomatic Patients (AP) were monitored through their mobility and trajectory 
in order to reduce the stress of socio-economic complications so far as pandemic is concerned. Notably, 
the AP were people of potentially spread chronic diseases and may cause pandemic. As such, the 
POIs of outdoor mobile AP who traveled through different neighborhoods in a specific community 
were studied. The mobility patterns of the AP were analyzed with the goal of finding the places where 
they spend most of their time known as stay place (SP) in order to determine possible pandemics. The 
problem of mobility patterns analysis and determining SP was mapped to that of Maximize Range Sum 
(MaxRS) problem which is a commonly occurring problem in spatial and temporal databases so far 
as queries of objects location are concerned. MTT-MAP as a data dependent technique was derived 
from the methods of concurrent localisation and recognition, branch and bound formalism, graph 
theory and network topology that were intertwined with spatial and temporal (i.e. spatio-temporal) 
trajectory data mining. The MTT-MAP algorithm was fundamentally produced from a grid based 
index data structure to cater for the continuous monitoring of mobility dynamics of AP. The study 
provided an overview of the technicality of monitoring the AP as a clue for enhancing the design 
and efficiency of prospective mobile health monitoring systems in the case of pandemics. The MTT-
MAP algorithm was rigorous simulated with an open source GeoLife big dataset and it was proven 
efficient with respect to computation time of execution over that of the previous G2 algorithm which 
has similarly been applied to spatial data streams. The present study was devoted to the healthcare 
settings in particular and the computing community at large. The motive was to establish a compelling 
technique to aid the health professionals to find efficient solution to the challenges involved in patients 
monitoring in the case of pandemics.

The subject of future work will include further improvement and test of scalability of the MTT-
MAP to cater for extra computation and storage of POIs by considering tight upper bound. It will 
be useful to also intensify the study of trajectory data mining techniques, as they involve natural 
processes and artificial intelligence concepts to achieve better and efficient solution to present societal 
challenges in general.

Figure 12. A graph of running time against query answer. Showing the impact of top k query results.
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