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ABSTRACT

A novel method for integrating multi-omics data, including gene expression, copy number variation, 
DNA methylation, and miRNA data, is proposed to identify biomarkers of cancer prognosis. First, 
survival analysis was performed for these four types of omics data to obtain survival-related genes. 
Next, survival-related genes detected in at least two types of omics data were selected as candidate 
genes. The four types of omics data only composed of candidate genes were subjected to dimension 
reduction using an autoencoder to obtain a one-dimensional data representation. The mRMR algorithm 
was used to screen for key genes. This method was applied to lung squamous cell carcinoma, and 20 
cancer-related genes were identified. Gene function analysis revealed that the genes were related to 
cancer. Using survival analysis, the genes were verified to distinguish between high- and low-risk 
groups. These results indicate that the genes can be used as biomarkers for cancer.
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INTRODUCTION

Cancer, as a complex disease, is not only controlled by individual genes and genetic factors but is 
also related to the environment and living habits. These factors affect gene expression and thereby 
influence the occurrence and development of cancer. Biomarkers, such as genes, miRNAs, proteins, 
metabolites, are biological entities that can determine whether cells, tissues, or individuals are 
normal or have diseases (Ideker & Sharan, 2008). In the medical field, biomarkers can help diagnose 
diseases, predict disease development trends, predict the response of patients after treatment, and 
thus achieve precise and effective treatment for patients. To date, no effective diagnosis and treatment 
methods have been determined for many types of cancer. Therefore, identifying biomarkers that 
recognize the early characteristics of cancer and determining the mechanism of cancer occurrence 
and development are vital.

Traditional cancer biomarkers, such as carcinoembryonic antigens and tumor tissue images, can 
only detect cancer in the late stages and are not useful for the treatment of patients with cancer. The 
cure rate and survival rate in patients with cancer are relatively low. Therefore, early detection and 
timely treatment are necessary to improve these rates.
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The emergence of next-generation sequencing technology has greatly accelerated cancer research. 
The use of gene expression data to identify cancer-related genes and biomarkers has accelerated 
the process of individualized treatment (Dancik, 2015). Some studies used gene expression data 
to distinguish between normal and tumor samples (Nannini et al., 2009). Other studies used gene 
expression data to detect different states of cancer development (van’t Veer et al., 2002; Klahan et 
al., 2016). However, because gene expression data often include small sample numbers and noise, 
using only gene expression data limits the discovery of new candidate cancer genes.

In general, gene expression can be regulated by heterogeneous multi-level regulatory factors 
such as copy number, DNA methylation, transcription factors, and miRNAs (Cancer Genome Atlas 
Research N, 2012; 2013). High-throughput sequencing can be performed to accurately obtain various 
biological data at various stages of organism development. These data are collectively referred to 
as multi-omics data (Reuter et al., 2015) and include multiple types of datasets, such as genomics, 
epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics data. Using various 
omics techniques, we are able to understand diseases from a variety of perspectives. Many studies 
have used DNA methylation, micro RNA (miRNA), protein-protein interaction network (PPIN), or 
other data to identify cancer-related biomarkers (Zhao et al., 2017; Capper et al., 2018; Liu et al., 
2017; Zhou et al., 2016; Wu et al., 2014). However, most methods do not effectively integrate multi-
omics data to identify cancer-related genes and biomarkers. Although the use of single-omics data to 
identify cancer-related genes has yielded many valuable results, a single data source does not provide 
complete information for a gene, and the results are significantly affected by noise.

In recent years, researchers have used multi-omics data to excavate biomarkers and have made 
some progress. Moon & Nakai (2018) proposed an integrative analysis of gene expression and DNA 
methylation using an autoencoder and Welch’s t-test to identify candidate cancer biomarkers. Jamal 
et al. (2016) used a machine learning approach, which integrated topological features from protein-
protein interaction networks, to identify candidate Alzheimer’s disease-related genes. Jahid & Ruan 
(2011) integrated gene expression data for breast cancer into the protein-protein interaction networks 
and identified disease causal genes connecting differentially expressed genes in the network. The 
results showed that the proposed biomarkers are more stable than those selected by other methods. 
Cun & Fröhlich (2013) integrated different network information as well as mRNA and miRNA 
expression data for biomarker discovery. They combined multi-omics data into a classifier, leading 
to more reproducible and biologically interpretable biomarkers. Increasing studies have used multi-
omics data to evaluate gene patterns and the pathogenesis of cancer. Nguyen & Ho (2012) presented 
a semi-supervised learning method to predict disease-related genes, including cancer-related genes, 
by integrating genomic and proteomic data. Sanchez-Garcia et al. (2014) integrated many types 
of genomic data such as gene expression and copy number variation to identify driver genes of 
breast cancer. Martínez-Ballesteros et al. (2017) presented the integration of three machine learning 
techniques, including decision trees, quantitative association rules, and hierarchical clustering to 
analyze Alzheimer’s disease genes.

These methods integrate biological data at different levels for different types of diseases. 
Currently, omics data is widely used to identify molecular biomarkers, but with low reproducibility 
(Hu et al., 2011). During cancer formation, development, and deterioration, mutations in key genes 
destabilize the biological network structure, leading to an imbalance in biological systems, driving the 
whole system towards cancer formation. As key gene variants accumulate, the cancer state is further 
aggravated. However, among all mutations, few genes drive cancer development. Therefore, many 
research groups have studied how to integrate multi-omics data to effectively identify biomarkers.

In this study, a novel method for integrating multi-omics data is proposed to identify markers 
of cancer prognosis. Specifically, survival analysis was performed using four types of omics data, 
including gene expression, copy number variation, DNA methylation, and miRNA data, to obtain 
survival-related genes. Then, survival-related genes in at least two types of omics data were selected 
as candidate genes. Next, the four types of omics data composed only of the candidate genes were 
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subjected to dimension reduction using an autoencoder to obtain one-dimensional data representation. 
The maximum correlation relevance minimum redundancy (mRMR) feature selection algorithm was 
used to screen for key genes. Finally, functional analysis and survival analysis of key genes were 
performed to identify prognostic biomarkers.

MeTHODS

Cancer biomarkers, which are useful for the early diagnosis of cancer, have important research value 
in various fields. Although many valuable results have been achieved in identifying cancer-related 
genes using only single-omics data, a single data source does not provide complete information about 
the genes, and using this data for cancer research is greatly affected by noise. Here, multi-omics data 
were used to identify key genes and biomarkers of cancer. The method proposed in this paper mainly 
includes three steps, and the flowchart is shown in Figure 1.

Screening Candidate Genes
We integrated gene expression, copy number variation, DNA methylation, and miRNA data to screen 
for survival-related genes as prognostic markers of cancer. For miRNA expression data and copy 
number variation data, the features were correspond to the genes respectively. Thus, in the miRNA 
data matrices and copy number variation data matrices, rows represent genes and columns represent 
the samples. As the same gene may be connected to multiple miRNAs, the mean values of multiple 
miRNAs were mapped to the gene.

Figure 1. Flowchart for Identifying Prognosis Biomarkers of Cancer
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Survival analysis was performed for each type of omics data. Genes in each omics data were 
screened by univariant Cox proportional hazard regression model (CPH) to obtain survival-
related genes.

If the p-value of the likelihood ratio test of a gene was less than 0.05, the gene was considered 
as survival-related in the dataset. Thus, survival-related genes C1, C2, C3, and C4 corresponding 
to gene expression, copy number variation, DNA methylation, and miRNA data were obtained. If 
a gene was survival-related in at least two types of omics data, this gene was selected and placed in 
candidate gene set Cc.

Integrating Multi-Omics Data Based on the Autoencoder
First, according to the candidate genes, the four types of omics data were organized into the matrix with 
the same genes and same samples, with rows representing candidate genes and columns representing 
samples. Because of the different scales of the data, the data were normalized to the range [0, 1] 
using min-max normalization. To improve data processing, 4-bit significant digit was reserved for 
each standardized data.

An autoencoder was used to reduce the dimension of the four types of omics data to obtain their 
one-dimensional data representation. The autoencoder is an unsupervised neural network trained to 
enable copying of its input to its output. Its core function is to learn deeper or higher representations 
of input data. It has a hidden layer (named as h), which describes the encoding that represents the 
input. The network has two parts:

Encoding function: h = f (x) 
Decoding function for reconstruction: r = g (h) 

When the number of input layer nodes is greater than the number of hidden layer nodes, 
transformation from the input layer to the hidden layer is essentially a process of dimension reduction, 
thereby achieving the effect of compressing the input layer. Figure 2 shows the structure of dimension 
reduction of multi-omics data using an autoencoder. By setting the number of hidden nodes to 1, 
the four-dimensional data can be reduced to one-dimensional data. To reduce the model size, the 
weights of the encoder matrix were bundled with the weights of the decoder matrix so that the 
decoder weight matrix was the transpose of the encoder weight matrix. f and g were the activation 
functions of the encoder and decoder, respectively, and the ReLU activation function was used for 
nonlinear transformation.

Figure 2. Structure of the autoencoder applied for dimension reduction
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Identification of Key Genes as Prognosis Biomarkers
The mRMR algorithm was applied to candidate genes for feature selection to screen for key genes. 
The mRMR algorithm (Ding & Peng, 2005) is a commonly used feature selection algorithm, and 
widely used in the bioinformatics field to classify feature sets by calculating the correlation between 
sample tags and features.

The mRMR algorithm was applied to gene expression data to obtain key candidate genes from 
candidate genes. The sample tag includes two types of survival states of the patients, which are dead 
or alive. The mRMR algorithm requires the feature set to be a discretized value. The expression 
values of the candidate genes were discretized using the mean μ and variance σ calculated based 
on the candidate genes expression values. If the expression value was greater than (μ+σ/2), it was 
converted to 1; if the expression value was less than (μ-σ/2), it was converted to -1; if the expression 
value was between (μ-σ/2) and (μ+ σ/2), it was converted to 0. These three states correspond to 
over-expression (1), low-expression (-1), and normal expression (0). The top 20 candidate genes 
were selected as key genes.

For this study, the CPH and the Kaplan–Meier survival analysis were implemented with the use 
of R package survival. Tensorflow 1.8 was utilized for the implementation of autoencoder. All data 
pre-processing, performance measurements and PCA dimension reduction were implemented using 
Python and Scikit-learn 0.19.2. Hierarchical clustered heatmaps was implemented with the use of 
R package pheatmap.

MATeRIALS AND ReSULTS ANALySIS

Materials
Lung squamous cell carcinoma (LUSC) is a common type of lung cancer, but its mechanism of 
pathogenesis is unclear. In the paper, taking LUSC as the object, the identifying method for prognosis 
biomarkers of cancer based on multi-omics data was applied.

The multi-omics data used in the paper was downloaded from Firebrowse, as shown in Table 1, 
which describes the number of samples and factors including gene expression, copy number variation, 
DNA methylation, miRNA expression data. In addition, it also includes clinical data that provides 
information on the survival time, age, and gender of LUSC patients.

Analysis of experimental Results
Analysis of Gene Function
Using mRMR feature selection algorithm, 20 key genes closely related to survival were obtained 
from the candidate survival genes, namely GOLGA8A, ZNF665, CNGA1, TM6SF1, LMTK3, 
NACC1, TROVE2, PACSIN2, MYLIP, TAOK2, RAD52, AIFM3, CLK1, NEK6, CDC42BPG, 
TNK2, DYNC1I2, SLC36A4, SOHLH2, and GALC. The chromosomal information of each key gene, 
including the chromosome number of the gene and the start site information of the chromosome to 
which the gene belongs, is shown in Table 2.

Table 1. Multi-omics data

Name The number of samples The number of factors (genes)

Gene expression data 552 20531

Copy number variation 1035 19340

DNA Methylation 412 21053

miRNA expression 523 13047
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Among the 20 key genes a total of 18 genes related to cancer or serious diseases could be found 
in GeneCards. The information of the key genes is shown in Table 3.

Distinguish Between Normal Samples and Tumor Samples
To verify the important impact of the genes on development of LUSC, gene expression data 
was downloaded from Firebrowse for distinguishing between normal samples and tumor 
samples. The dataset has a total of 552 samples containing 501 LUSC tumor samples and 51 
normal samples. The performance of the proposed method was measured by the classification 
performance according to gene expression data of these 20 key genes. First, we took into 
account the 20 keys genes from the dataset and calculated four performance measures, i.e. 
the accuracy, precision, recall, and F1 score with five classifiers, i.e. support vector machine 
(SVM), logistic regression, naïve bayes, decision tree, and random forest. In addition, we 
performed hierarchical clustering for the gene expression data of the 20 key genes, and used 
heatmaps to reveal classification results.

10-fold cross-validation test was conducted for performance evaluation. The 20 key genes were 
chosen from the gene expression gene dataset for the test. Five classifiers have been utilized to 
calculate the four performance measures. Table 4 demonstrates the detailed results of the performance 
evaluation. As described in the table 4, these 20 genes can distinguish remarkably between tumor 
samples and normal samples well.

Table 2. Chromosome information of key genes

Gene name Gene ID Chromosome Start site End site

GOLGA8A 23015 hs15 34379068 34437466

ZNF665 79788 hs19 53163299 53193425

CNGA1 1259 hs4 47935015 48016718

TM6SF1 53346 hs15 83107486 83145403

LMTK3 114783 hs19 48485271 48513926

NACC1 112939 hs19 13116848 13141147

TROVE2 6738 hs1 193059422 193091777

PACSIN2 11252 hs22 42869766 43016174

MYLIP 29116 hs6 16129086 16151015

TAOK2 9344 hs16 29973867 29992261

RAD52 5893 hs12 911028 991195

AIFM3 150209 hs22 20965130 20981360

CLK1 1195 hs2 200853009 200864744

NEK6 10783 hs9 124257606 124352442

CDC42BPG 55561 hs11 64823809 64844686

TNK2 10188 hs3 195863364 195909009

DYNC1I2 1781 hs2 171687409 171750158

SLC36A4 120103 hs11 93144171 93386038

SOHLH2 54937 hs13 36168208 36214615

GALC 2581 hs14 87933014 87993665
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We performed hierarchical clustering for the gene expression data of the 20 key genes. Euclidean 
distance was used as distance metric. The clustered heatmaps is shown in Figure 3.

To the first row of the figure, the red represents tumor samples and the green represents normal 
samples. Each row of other parts represents a gene, and each column represents a sample, indicating 
expression value of a gene under a specific sample. The red and blue color indicates the size of the 
gene expression value. According to Figure 3, it could be also found that these 20 key genes could 
distinguish obviously between tumor samples and normal samples.

Table 3. Information of cancer-related key genes

Gene Description Gifts Score

GOLGA8A Golgin A8 Family Member A 35 16.05

ZNF665 Zinc Finger Protein 665 38 16.05

CNGA1 Cyclic Nucleotide Gated Channel Alpha 1 51 16.05

TM6SF1 Transmembrane 6 Superfamily Member 1 38 16.05

LMTK3 Lemur Tyrosine Kinase 3 39 16.05

NACC1 Nucleus Accumbens Associated 1 46 16.05

TROVE2 Ro60, Y RNA Binding Protein 35 16.05

PACSIN2 Protein Kinase C And Casein Kinase Substrate In Neurons 2 45 16.05

MYLIP Myosin Regulatory Light Chain Interacting Protein 45 16.05

TAOK2 TAO Kinase 2 46 16.05

RAD52 RAD52 Homolog, DNA Repair Protein 48 16.05

AIFM3 Apoptosis Inducing Factor Mitochondria Associated 3 42 16.05

CLK1 CDC Like Kinase 1 48 16.05

NEK6 NIMA Related Kinase 6 46 16.05

CDC42BPG CDC42 Binding Protein Kinase Gamma 43 16.05

TNK2 Tyrosine Kinase Non Receptor 2 50 16.05

DYNC1I2 Dynein Cytoplasmic 1 Intermediate Chain 2 43 16.05

SLC36A4 Solute Carrier Family 36 Member 4 39 16.05

SOHLH2 Spermatogenesis And Oogenesis Specific Basic Helix-Loop-Helix 2 37 16.05

GALC Galactosylceramidase 50 16.05

Table 4. Distinguishing normal samples and tumor samples

Performance measures SVM Logistic regression Naive Bayes Decision tree Random 
forest

Accuracy 98.4% 98.2% 90.8% 97.1% 99.5%

Precision 98.4% 98.2% 90.8% 98.2% 99.6%

Recall 99.8% 99.8% 100% 98.6% 99.8%

F1 score 99.1% 98.9% 95.1% 98.4% 99.7%
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Survival Analysis
To demonstrate important roles of the key genes in the development and progression of LUSC, LUSC 
dataset was downloaded from TCGA for survival analysis. The dataset has a total of 205 LUSC samples 
containing 103 low-risk group tumor samples and 102 high-risk group tumor samples.

To validate the effectiveness of the proposed method, the method proposed in this paper was 
compared with PCA dimension reduction, single-omics data including gene expression data and 
DNA methylation data respectively. We obtained key genes using principal component analysis 
(PCA) dimension reduction, gene expression data and DNA methylation data, respectively. For 
gene expression data or DNA methylation data, we first utilized univariant Cox proportional hazard 
regression model to screen candidate genes, and then used mRMR feature selection method to obtain 
20 key genes.

We performed survival analysis on these four groups of key genes using the Cox proportional 
hazards model. The Kaplan–Meier curves of the analysis results are shown in Figure 4-7.

The x-axis represents time (unit: month), and y-axis represents global survival ratio. The red line 
represents the high-risk group and the green line represents the low-risk group. In the upper right 
corner, the number on the left represents the number of people in each group. The number with the 
‘+’ sign in the middle represents the number of lost visitors, and the number on the right represents 
the concordance index (c-index).

By comparing the two curves, we found that differences gradually increased over time, and 
all key genes could significantly distinguish between the two groups of patients (p < 0.05) with 
respect to survival. This illustrates the effectiveness of the framework we propose. From the 
figures, we can see that p-value (p=9.794e-07) of Figure 4 is the lowest. So, compared with the 
key genes using PCA dimension reduction method, gene expression data and DNA methylation 
data to screen, the proposed method has the best performance. Because PCA dimension reduction 
is a linear transformation, using autoencoder dimension reduction can achieve better performance 
than PCA dimension reduction. The regulation of genes is a complex process, and gene expression 

Figure 3. Distinguishing between normal samples and tumor samples
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can be controlled by a variety of regulatory factors. So, integrating multi-omics data has better 
performance than using only a single-multi data.

DISCUSSIONS

According to the paper “Cancer statistics, 2018”, published by the authoritative journal “CA: A Cancer 
Journal for clinicians”, there will be 18.1 million new cancer cases and 9.6 million cancer deaths 
worldwide in 2018, and the morbidity rate and mortality rate are increasing year by year (Siegel et 
al., 2018). Among them, lung cancer, breast cancer and colorectal cancer are the three most common 
cancers in the world, and with the mortality rates being first, fifth and second respectively. In recent 

Figure 4. Survival analysis for the key genes using proposed method

Figure 5. Survival analysis for the key genes using PCA dimension reduction to integrating multi-omics data
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50 years, the incidence rate and mortality rate of lung cancer have increased significantly in many 
countries The cause of lung cancer is still not fully understood. Among various types of lung cancer, 
non-small cell lung cancer (NSCLC) accounts for about 85% of lung cancer. NSCLC mainly includes 
lung squamous cell carcinoma (LUSC), lung adenocarcinoma (LUAD) and lung large cell carcinoma 
(LULC), and LUSC accounts for about 50% of NSCLC. At present, many research groups all over 
the world are studying lung cancer.

In this paper, a new mining method of cancer biomarkers based on multi-oimcs data is proposed. 
Through this method, we get key genes composed of 20 genes. The functions and pathways of these 
genes are closely related to the occurrence and development of cancer. Through survival analysis, 
it is found that the genes can distinguish the high and low risk group of the patient, and have good 
prognosis performance.

Figure 6. Survival analysis for the key genes using gene expression data

Figure 7. Survival analysis for the key genes using DNA methylation data
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In recent years, more and more studies have used multi-omics data to study cancer in order 
to more accurately understand the mechanism of cancer occurrence. According to different using 
methods, integration methods of multi-omics data can be divided into many methods, such as feature 
concatenation-based method, Bayesian-based method, dimension reduction-based method, and 
network-based method. Each of these methods has its own advantages and disadvantages, and can 
be selected according to its characteristics in future research.

Multi-omics data are usually high-dimensional and have the following characteristics: (1) The 
number of features in multi-omics data is much larger than the number of samples. (2) There is noise 
in each dataset. (3) There is information relevance among the multi-omics data.

In this paper, dimensionality reduction-based method was used to integrate multi-omics data. 
Dimensionality reduction-based method is the most effective way to solve clustering and classification 
analysis of high-dimensional data. High-dimensional multi-omics data can be projected into a low-
dimensional subspace containing some major biological processes through dimensionality reduction. 
Matrix decomposition methods, such as PCA, independent component analysis (ICA) and non-negative 
matrix factorization (NMF) are commonly used data dimensionality reduction methods. In recent years, 
the deep learning framework has been applied in various fields and achieved excellent results. Deep 
learning framework is different from traditional machine learning methods in how representations 
are learned from the raw data. Other dimensionality reduction methods than matrix decompositions, 
deep learning framework, such as autoencoder, restricted Boltzmann machine (RBM), and deep belief 
network (DBN), can be applied as well.

Using literature validation, each gene of the cancer biomarkers identified by the proposed method 
is analyzed. Kim et al. (2013) investigated whether dose-dependent alteration in gene expression is 
implicated in clinical outcomes of lung cancer, and found GOLGA8A was clinical association of 
Up-pattern genes regulated by the Ethanol extract of the seeds of Descurainia sophia (EEDS) with 
survival from lung cancer. CpG island methylator phenotype (CIMP) is a major mechanism for 
colorectal cancer. By comparing the CIMP+ and CIMP- colorectal cancer samples with mRMR and 
incremental feature selection (IFS) methods, Zhang et al. (2018) found ZNF665 was highly expressed 
in CIMP- patients. Olfactory receptors (OR) activation has been demonstrated to have influence on 
cancer cell growth and progression. Weber et al. (2017) analyzed the RNA-Seq data of the cell line 
with a focus on the signaling cascade components, and CNGA1 show low expression rates. Using 
significance analysis of microarrays, Zhang et al. (2017) identified TM6SF1 as differentially expressed 
genes (DEG) between LUSC and normal controls. In contrast to the normal lung tissues, increased 
LMTK3 expression was found in the NSCLC tissues, and was mainly located on the cytoplasm and 
the nuclei of cancer cells (Zhang et al, 2015). The rising incidence of oral tongue squamous cell 
carcinoma (OTSCC) in patients prompted researches to develop a new cell line. NACC1 expression 
was a molecular biomarker for OTSCC (Wang et al, 2017). TROVE2 was located at gene expression 
pathway hsa05322 significantly associated with consortium lung phenotype (Deepika et al, 2018). 
Monotonically expressed genes (MEGs) are genes whose expression values increase or decrease 
monotonically as a disease advances or time proceeds. PACSIN2 was a monotonically expressed gene 
in the ascending order across the risk levels of death in NSCLC patients (Tian, 2019). Low level of 
MYLIP was associated with poor survival in patients with lung cancer (Xue et al., 2017). TAOK2 
exhibited deregulation pattern, and was associated with the NSCLC developmental process (Guo et al., 
2015). Recent genome-wide association studies show that RAD52, that is associated with increased 
lung cancer risk, is significantly associated with the development of LUSC. Somatic overexpression 
of RAD52 was confirmed to be significant in LUSC tumors (Lieberman et al., 2016). Zheng et al. 
(2019) investigated the crystal structure, clinical and prognostic implications of AIFM3 in breast 
cancer (BC). AIFM3 was significantly more expressed in BC tissues than in normal tissues, might 
be a potential biomarker for predicting prognosis in BC. Disruption of CLK1 causes pleiotropic cell 
cycle defects and loss of proliferation, whereas CLK1 over-expression is associated with various 
cancers (Dominguez et al., 2016). NEK6 was overexpressed in a subset of human prostate cancers 
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(Choudhury et al., 2017). The mammalian variation analogous to G723S in CDC42BPG was detected 
in LUAD (Ferguson et al., 2015). EGFR-dependent cell migration plays an important role in lung 
cancer progression. NEDD4 is collaborated with TNK2 to regulate transport of the EGFR-loaded 
endosomes to MVBs/lysosomes (Shao et al., 2018). The present study examined the interaction 
between celecoxib and sorafenib in two human liver tumor cell lines HepG2 and Huh7. DYNC1I2 
was differentially expressed in HepG2 and Huh7 cells upon combined sorafenib+celecoxib treatment 
(Cervello et al., 2013). Androgen steroid hormones are key drivers of prostate cancer. SLC36A4 
regulated by androgen was identified in prostate cancer cells (Munkley et al., 2018). SOHLH2 was 
not only identified as a tumor suppressor in the pathogenesis of ovarian cancer, but also observed 
expression downregulated in the metastatic breast cancer (Ji et al., 2016). Peng et al. (2015) performed 
methylation and expression analysis on GALC gene in a panel of lung cancer cell lines, found GALC 
was related to human cancer.

Thus, all these 20 key genes are associated with the occurrence and development of cancer, 
of which 13 genes are associated closely with lung cancer. The result proves to some extent the 
effectiveness of our method. Through the functions and pathways analysis of these 20 genes, we found 
that they were highly correlated with cancer. Through functional analysis and survival analysis, we 
believe that each of these 20 genes is not only related to cancer survival at its corresponding level, 
they are also closely related to cancer survival as a whole and can be used as a biomarker. The number 
of potential biomarkers obtained in the study is very small, which provides great convenience for 
identification. Excavated genes can help researchers design treatments and early diagnosis of cancer.

CONCLUSION

In the field of life sciences, biomarkers helpful for identifying early signs of cancer and understanding 
the biological regulatory mechanisms of the occurrence and development of cancer have been 
evaluated worldwide. As genetic studies become more detailed, increasing evidence indicates that 
gene expression is affected by multiple levels, and interactions between various regulatory factors may 
occur. Researchers have designed various mining methods for cancer-related genes and successfully 
explored a large number of potential cancer-related genes. Among these, integration of multi-omics 
data for mining cancer gene method has become a research hotspot in recent years.

The emergence of next-generation sequencing technology has greatly accelerated cancer research, 
providing a foundation for the discovery of important genes related to cancer and determining 
relationships between these genes. This method integrates multi-omics data from the perspective of 
data integration, comprehensively considers the factors contributing to cancer development and their 
interactions, explores the genes that cause cancer, and identifies prognostic biomarkers. This method 
promotes the application of machine learning and data mining in bioinformatics. In future studies, 
we will develop a survival analysis model to predict and analyze the survival of patients with cancer.
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