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ABSTRACT

Though various ranking methods in the data envelopment analysis (DEA) context have emerged 
since the conventional DEA was introduced, none of them has not been accepted as a universal or 
a superior method for ranking decision-making units (DMUs). The DEA-based ranking methods 
show some shortcomings as the numbers of inputs and outputs for DMUs increase. To overcome 
such shortcomings, this paper proposes a two-step procedure of ranking DMUs more effectively and 
consistently. In the first step, the multi-objective programming (MOP) is applied for the multiple 
criteria DEA to transform the original DMUs into the new simpler DMUs with two inputs and a single 
output, regardless of the numbers of inputs and outputs that the original DMUs use and produce. With 
the transformed DMUs, some conventional DEA-based methods for ranking DMUs are applied in the 
second step. A numerical example demonstrates the efficient performance of the proposed method.

Keywords
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INTRODUCTION

The conventional data envelopment analysis was first introduced in 1978 by Charnes, Cooper, and 
Rhodes (1978), in evaluating the efficiency of a set of peer organizations called decision-making units 
(DMUs) that consume multiple inputs to generate various outputs. DEA methods have been widely 
accepted as an effective technique in identifying and separating efficient DMUs from inefficient ones. 
But the conventional DEA intrinsically aims to identify efficient DMUs and the efficient frontier, 
so the use of DEA is not enough for discriminating between efficient DMUs. In terms of ranking 
DMUs, many authors show that conventional DEA is not an appropriate method in many situations. 
Consequently, the researchers and practitioners have faced a question, “Which DEA method should 
we use for ranking DMUs effectively and consistently?” Publication and research work have grown 
substantially, resulting in significant advancements in its methodologies, models, and real-world 
applications (see Cook and Seiford, 2009; Chen et al., 2019).
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Charnes et al. (1978) demonstrate how to change a fractional linear measure of efficiency into 
a linear programming (LP) format to measure efficiency scores (ESs) of DMUs. In the conventional 
DEA (C-DEA), a relative efficiency is defined as the ratio of the sum of weighted outputs to the sum 
of weighted inputs. The C-DEA solves an LP formulation for each DMU to be rated, and the weights 
assigned to each linear aggregation are obtained by solving the corresponding LP. The DMUs in 
the C-DEA to be assessed should be relatively homogeneous. As the whole technique is based on a 
comparison of each DMU with all the remaining ones, a considerable large set of DMUs is necessary 
for the assessment to be meaningful (Ramanathan, 2006). The C-DEA eventually determines which 
of the DMUs make efficient use of their inputs and produce most outputs and which DMUs do not. 
The significant function that the conventional DEA model can do is to separate efficient DMUs 
from inefficient DMUs. For the inefficient DMUs, the analysis can quantify what levels of improved 
performance should be attainable. Also, the study indicates where an inefficient DMU might look 
for benchmarking help as it searches for ways to improve. Recently, Cao et al. (2020) introduce the 
concept of the anti-strike ability of a single DMU and provide a new ranking method of DMUs. 
Shahghobadi (2020) presents a method for performance assessment of units so that a large number of 
units are not evaluated as efficient, but there is at least one efficient unit. Toloo et al. (2020) contend 
that the number of performance factors (inputs and outputs) plays a decisive role when applying 
DEA to real-world applications.

The C-DEA produces a single, complete measure of performance for each DMU. The highest 
efficiency score among all the DMUs would identify the most efficient DMU(s), and every other 
DMU would be evaluated by comparing its ratio to the DMU with the highest one. A significant 
weakness of the C-DEA-based assessment comes out because a considerable number of DMUs out 
of the set of DMUs to be rated can be classified as efficient, and all efficient DMUs are considered to 
be equal. The nature of the self-evaluation of C-DEA allows each DMU to be evaluated with its most 
favorable weights. Thus, to maximize the self-efficiency, the conventional DEA model intentionally 
ignores unfavorable inputs/outputs. The DEA-based methods are developed to measure the relative 
efficiency of DMUs with multiple inputs and outputs. If DMUs have a single output and a single 
input, any DEA ranking method is necessary. As the number of inputs and/or outputs of DMUs to 
be rated increases, the weaknesses of DEA-related methods become more apparent since the DEA 
method can overlook the weights assigned to unfavorable inputs or outputs

Since the weakness of C-DEA results from its pure self-evaluation, a DEA extension is suggested 
by Sexton et al. (1986), which is called the cross-efficiency (CE) DEA method. The CE-DEA with 
the main idea of using the conventional DEA to add the peer evaluation to the pure self-evaluation 
enhances the discrimination power, and the efficient DMUs treated equally by the conventional 
DEA can be ranked by their cross-efficiency scores (CESs). Sexton et al. (1986) construct a CE 
matrix consisting of two rating results, the self-evaluation and the peer-evaluation. The CE-DEA 
can provide a full ranking for the DMUs to be evaluated and eliminates unrealistic weight schemes 
without requiring the elicitation of weight restrictions from application area experts (see Anderson 
et al., 2002). Due to its enhanced discriminating power, especially for the simple DMUs with few 
inputs and outputs, There are a significant number of applications using the CE evaluation in the 
DEA literature (see Gavgani and Zohrehbandian, 2014; Hou et al., 2018; Lee, 2019; Liang et al., 
2009; Liu et al., 2019; Wang and Chin, 2010).

There have been some crucial issues facing the CE method application. The first issue is the 
ratio of self-evaluation to peer-evaluation in computing the CES. Doyle and Green (1994) exclude 
the proportion of self-evaluation by eliminating the diagonal elements in the CE matrix to compute 
CESs. Some researchers suggest that the percentage of self-evaluation be 1/N, where N is the total 
number of DMUs to be evaluated. The second issue is that the non-uniqueness of CESs due to the 
often-present multiple optimal DEA weights. It implies that the CES produced by the CE method 
is not unique, but flexible, depending on the optimization software used. They (1994) suggest that 
secondary goals such as aggressive and benevolent models for the CE evaluation. Later, Wang and 
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Chin (2010) propose a neutral CE model that determines one set of input and output weights for 
each DMU without being aggressive or benevolent to the others. Thus, the resulting CESs would 
be more neutral.

Li and Reeves (1999) propose multiple criteria (MC) model under the framework of multiple 
objective linear programming (MOLP). The DEA model involves a broader definition of relative 
efficiency than conventional DEA. In other words, three different efficiency measures, which is to be 
maximized or minimized, are defined under the same constraints. They (1999) claim that efficiency 
criteria that are more restrictive than the DEA one will yield fewer efficient DMUs and will allow less 
flexibility for input/output weight distribution. However, there is no way to rank efficient DMUs if 
multiple DMUs turn out to be efficient. They (1999) merely show which DMUs are more consistently 
efficient than other DMUs by solving the DEA sequentially with one objective out of three objective 
functions. The question of how to rank efficient DMUs in terms of efficiency remains to be answered.

Anderson and Peterson (1993) mainly propose the super-efficiency (SE) method, whose central 
idea is that a DMU under evaluation is not included in the reference set of the conventional DEA 
models, and then with its inclusion. The resulting super-efficiency scores (SESs) are used to rank 
the efficient DMUs with ES of 1 generated by the conventional DEA. Notably, the SE method has 
significance for discriminating among efficient DMUs. See also Nayebi and Lotfi (2016) and Deng et 
al. (2018) for further applications of the SE method. Guo et al. (2017) and Tran et al. (2019) develop 
an integrated model for slacks-based measure simultaneously of both the efficiency and the SE for 
DMUs. But the critical issue of using the model is that the SE score (SES) of an efficient DMU is 
decided by the adjacent DMUs, so it would be unreasonable for DMUs to be ranked by the SESs.

As mentioned before, these DEA methods generally tend to show their weaknesses. This paper 
proposes a new procedure of transforming DMUs by multi-objective programming (MOP) approach 
so that DMUs with multiple inputs and/or outputs are transformed into the simpler DMUs with two 
inputs and one output. Then, those DEA methods are integrated for evaluating DMUs to generate 
more robust and consistent rankings.

LITERATURE REVIEW

There have been several review papers on ranking methods in the DEA context as an attempt to fill the 
gap in the literature of DEA ranking methods, such as Adler et al. (2002), Jahanshahloo et al. (2008), 
Markovits-Somogyi (2011), Lotfi et al. (2013), and Aldamak and Zolfaghari (2017). These review 
papers with titles and the number of references reviewed by each paper are listed chronologically in 
Table 1. The methods or models that each paper reviews and the major findings of each paper are also 
briefly described. These papers reveal that there have existed a variety of papers that apply different 
ranking methods, seeking to improve the discriminating power of DEA methods and to fully rank 
all DMUs whether they turn out to be efficient or not.

The common ranking methods/models reviewed by these review papers are cross efficiency, 
super efficiency, benchmarking, multi-criteria decision making, and statistical analysis. Adler et al. 
(2002) conclude that many mathematical and statistical techniques have been presented, all with the 
objective of increasing the discriminating power for the DEA-based methods and ranking the DMUs. 
But, while each method may be useful in a specific area, no one methodology can be prescribed 
as the panacea of all ills. They (2002) expect the ultimate DEA model to be developed to solve all 
weaknesses or problems and to be easy to solve by practitioners in the field and academics alike. After 
15 years since Adler et al. (2002) expect the ultimate DEA model to be developed as a conclusion, 
Aldamak and Zolfaghari (2017) find that none of the proposed DEA ranking categories is optimum 
for every evaluation assessment. They review one hundred and twelve (112) articles published in 
various scholarly journals with the subject of DEA-based ranking methods and conclude that no 
ranking method has been found to be either a universal or a superior method for ranking the efficiency 
of DEA models. They also say that the absence of global assessment criteria makes it impossible to 
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evaluate all the presented methods reviewed by their paper. They insist that each method could be 
better than others according to the decision-makers’ preferences and evaluation objectives, which 
depends on the nature of the evaluation.

As mentioned before, each method mentioned in the previous section has shown its 
own weaknesses. In fact, conventional DEA-based methods sometimes rank efficient DMUs 
very differently (see Hong and Jeong, 2017). Decision-makers usually are interested in 
selecting the top-ranked DMU(s) before they make final decisions of selecting the most 
efficient DMUs among efficient ones. If the #1 ranked DMU by the CE method is ranked 
very low by other methods, it would confuse the decision-makers or practitioners. The 
proposed method might not be a universal or a superior method, which can answer the 
question, ‘which DEA ranking method one should use?’. However, it attempts to eliminate 
or at least weaken each method’s weakness by transforming the original DMUs into new 
DMUs with a single output and two inputs, regardless of the numbers of inputs and outputs 
that the original DMUs have. If the proposed method as well as the other DEA methods 
can rank the DMU as #1 consistently after the inefficient DMUs from the whole group of 
DMUs to be rated are removed, it would be an ideal case for the proposed method to be 
considered a robust ranking method.

Table 1. Summary of the review papers related to the ranking methods in DEA

Authors Title # of Reviewed 
References Reviewed Ranking Methods/Models Major Findings

Adler et al. 
(2002)

“Review of ranking 
methods in the 
data envelopment 
analysis context”

59

Cross efficiency, Super efficiency, 
Benchmarking, Multivariate statistics, 
Proportional measures, Multi-criteria 
decision-making method

Many mathematical and 
statistical techniques have been 
presented to increasing the 
discriminating power of DEA 
and fully rank the DMUs.

Jahanshahloo et 
al. (2008)

“Review of ranking 
models in the 
data envelopment 
analysis”

22

Super efficiency-based AP, MAJ, 
Revised MAJ, Slack adjusted, Gradient 
line models, Using Common set 
of weights, L1 Norm, Concept of 
advantage model, Tchebycheff Norm. 
Monte Carlo method and Slack based 
model (SBM).

Some models are infeasible 
for special data. Monte Carlo 
method is suggested to rank all 
efficient DMUs because it ranks 
extreme and non-extreme DMUs.

Markovits-
Somogyi (2011)

“Ranking efficient 
and inefficient 
decision-making 
units in data 
envelopment 
analysis”

43

Cross efficiency, Super efficiency, 
Benchmarking, Minimum weight 
restriction, Statistical analysis, Slack 
based DEA, Multi-criteria decision-
making methods, Application of fuzzy 
logic, Shadow prices.

The full ranking is achievable 
through several ways in DEA, 
and the choice of a specific 
method would depend on the 
particular needs of the study in 
question.

Lotfi et al. 
(2013)

“A review of 
ranking models in 
data envelopment 
analysis”

104

Cross efficiency, Super efficiency, 
Optimal weights in DEA, 
Benchmarking, Multivariate Statistics, 
Multi-criteria decision-making method, 
Stratification, Gradient line.

The DEA ranking is reviewed 
and classified into seven general 
groups. 
Some of the reviewed models 
are applied to the example, and 
none of the DMUs is ranked 
consistently.

Aldamak and 
Zolfaghari 
(2017)

“Review of 
efficiency ranking 
methods in data 
envelopment 
analysis”

112

Cross efficiency, Super efficiency, 
Benchmarking, Statistics, Common 
weights, Multi-criteria decision-making 
method, Inefficient frontier, Virtual 
DMU, DM interference, Fuzzy concept.

The absence of universal 
assessment criteria makes it 
impossible to evaluate the 
presented methods. Each method 
could be better than others, 
according to decision-makers’ 
preferences and evaluation 
objectives.
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TRANSFORMATION OF DMUS

Charnes et al. (1978) establish a CRS (Constant Returns to Scale) m-DEA model to find an efficiency 
score (ES) for DMUk, which is formulated as the following LP problem:

max θ
k
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where:

N = number of DMUs to be rated in the DEA analysis
θ
k

 = efficiency rating of the DMUk being evaluated by DEA
yrj = amount of output r produced by DMUj, j= 1, 2, …, k, …N
xij = amount of input i used by DMUj
i = number of inputs utilizied by the DMUs
r = number of outputs produced by the DMUs
ur = coefficient or weight assigned by DEA to output r
vi = coefficient or weight assigned by DEA to input i.

The MC DEA model is proposed by Li and Reeves (1999), using the LP model given in (1)-(3):

Max u y
k

r

s

r rk
�θ =

=
∑
1

	 (4)

MinD d
k

j
j

  =∑ 	 (5)

MinM Maxd
k j

   =( ) 	 (6)

subject to:



International Journal of Applied Industrial Engineering
Volume 8 • Issue 1 • January-June 2021

6

i

m

i ik
v x

=
∑ =

1

1 	 (7)

r

s

r rj
i

m

i ij j
u y v x d j

= =
∑ ∑− + = ∀
1 1

0, 	 (8)

M d j
k j
− ≥ ∀0, 	 (9)

u v r s i m andd j k N
r i j
, , , ; , ; , , , , , ,≥ = … = … ≥ = … …0 1 1 0 1 2 	

There are three performance criteria in the MC DEA model, θ
k

, ES in (4), M
k

 given in (6) 
represents the maximum quantity among all deviation variables, d

j
, and D

k
 given in (5) is equivalent 

to the sum of deviation variables. Solving the MC model sequentially with one objective out of three 
objective functions. The DMUs, whose efficiency score, θ

k
,  remains the maximum value of 1 

regardless of the objective function used, are considered more efficient than other DMUs. Similar to 
conventional DEA, the MC method treats all efficient DMUs equally. The advantage of the MC 
method over the conventional DEA is MC method would select less efficient DMUs than the 
conventional DEA.

To rank the evaluated DMUs effectively, this paper proposes the following procedure (see 
Ragsdale, 2017). Let the nonnegative deviation variables, δ δ
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+,  and δ
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+ , denote the amounts 
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k

, D
k

, and M
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Now, the following MOP for the MC DEA model is formulated:

MinimizeW 	 (13)

subject to Constraints (7)-(12):
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Solving the above MOP for a given set of α α α α= { }− + +
1 2 3
, ,  yields one alternative with the 

optimal values of three performance measures. Thus, there will be many alternatives generated 
by solving the MOP model for various sets of α . But the question remains how the DMUs are 
ranked after various alternatives are generated by solving the above MOP model with different 
set values of α .

Note that the three performance measures for each DMU would be classified as one output, h
k

, 
to be maximized and two inputs, M

k
 and D

k
, to be minimized. Thus, each DMU, after solving the 

above MOP model for a given set of α , can be transformed into a new DMU with a single output, 
θ
k

, and two inputs, D
k

 and M
k

. Now, to apply DEA methods, there should be nonnegative 
relationships between the output, θ

k
 and the inputs, M

k
 and D

k
, which is called an isotonicity 

condition. Consider the following Lemma (see Hong, 2020).

Lemma: For a specific efficient DMUk, (i) the relationship between D
k

 in Eq. (6) and M
k

 in Eq. 
(5) is nonnegative, (ii) the relationship between D

k
 and θ

k
 in Eq. (4) is nonnegative, and (iii) 

the relationships between θ
k

 and M
k

, and θ
k

 and D
k

 are nonnegative.
Proof: See Appendix 2.

The above Lemma satisfies the isotonicity condition (see Charnes and Cooper, 1985), so each 
DMU, after solving the above MOP model for a given set of α , can be transformed into a new DMU 
with one output, θ

k
, and two inputs, M

k
 and D

k
. Figure 1 depicts such a transformation of DMU 

with ‘s’ outputs and ‘m’ inputs into a new DMU with a single output and two inputs. This process is 
called as the multiple-criteria with transformed DMUs (MCWTU) method. After all of the DMUs 
are transformed, various DEA methods could be applied to find the efficiency of these transformed 
DMUs. The transformed DMUs with two inputs and a single output is the simplest DMUs that any 
DEA-related methods start to be applied. Hence, the purpose of transforming the original DMU into 
a new DMU with a single output and two inputs is to increase the strengths of any DEA-related 
methods, regardless of the number of inputs and outputs that the original DMU has. Thus, with the 
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transformed DMUs have a single output and two outputs, each DEA method’s weaknesses are expected 
to be minimized.

PROPOSED RANKING METHOD

Solving the MOP given in (13)-(17) for a given set value of α  transforms a DMU with two inputs 
and a single output. Repeating it with different values of α  would generate various alternative DMUs. 
Let N denote the total number of alternatives for a DMU after solving the MOP N times. Computing 

the average efficiency score, � � / ,θ θ
k

n

N

kn
N=

=
∑
1

 is the first step, where θ
kn

 is the efficiency score of 

nth configuration, n= 1, 2, …, N. As Li and Reeves (1999) suggest, if the average efficiency scores 
of DMUk is a perfect score of 1, DMUk should be ranked as #1, and all other DMUs are ranked based 
on its own average efficiency score.

The second step is to apply several DEA methods for ranking DMUs to the transformed DMUs. 
The most popular standard ranking methods are cross efficiency, super-efficiency, and stratification 
methods. The CE method was suggested as a DEA extension to rank DMUs with the main idea of 
using DEA to do peer evaluation, rather than in pure self-evaluation. It consists of two phases. The 
first one is the self-evaluation phase (Phase I), where DEA scores are calculated using the model by 
(1)-(3). In the second phase (Phase II), the weights/multipliers arising from phase I are applied to all 
DMUs to get the cross-efficiency score (CES) for each of DMUs. In Phase I, let CE

kk
 represent the 

DEA score for DMUk, the kth option generated by the MOP model in (13) with (7)-(12) and (14)-(17), 
which is obtained from the following LP model:

maxCE u
kk k k
= θ 	 (18)

subject to:

Figure 1. The Transformation process of DMUs through solving MOP model for multiple-criteria DEA
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Now, the cross efficiency of DMUj, using the weights that DMUk has chosen in the model by 
(18)-(20), is given by:
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DMUj is called a rated DMU, whereas DMUk is called a rating DMU. Then, Doyle and Green 
(1994) use Eq. (21) to set up the CE matrix that consists of the self-evaluation value, CE

kk
, in the 

leading diagonal and peer-evaluation value, CE
kj

, in the non-diagonals. By averaging CE
kj

 in (21), 
the CES for DMUk is defined as:

CE
N

CEk

j

N

jk
=

=
∑�
1

1

	 (22)

As mentioned before, especially the CE-DEA method of ranking the DMUs with many inputs 
and outputs shows very inconsistent results. But with transformed DMUs with just two inputs and a 
single output, the CE method would generate more robust or consistent rankings.

A super-efficiency (SE) DEA would generate a super-efficiency score (SES), which is obtained 
from the conventional DEA model after a DMU under evaluation is excluded in the reference set. In 
the SE method, the frontier line generated from the remaining DMUs changes for each efficient DMU 
to be evaluated, so the SESs of efficient DMUs can have higher values than 1, which is the maximum 
value in ES obtained by other DEA methods. The SE model, which has been applied significantly 
for ranking efficient DMUs, is given by:

maxSES u
k k k
= θ 	 (23)

subject to:

v D v M
k k k k1 2

1+ =� 	 (24)

u v D v M j k
k j k j k j
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1 2
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Seiford and Zhu (2003) propose the stratification method in this context so that all DMUs are 
classified into several levels. Level 1 consists of all efficient DMUs found by the conventional DEA 
method. Then, after removing the DMUs in level 1, the DMUs that are found to be efficient are 
classified and belong to level 2, and so on. DMUs are stratified into different efficiency levels. Let 
J DMU j N

j
1 1 2= = …{ }� ,� ,� ,� ,�  be the whole set of DMUs. Then, define J J E� � �+ = −1 � ,  iteratively, 

until J �+1  becomes empty. E �  consists of all the efficient DMUs on the �th  level, that is, 
E DMU J k

k
� � �= ∈ ( ) ={ }| , ,*σ 1  and σ* ,� k( )  is the optimal value to the following model for 

DMU
k

 under evaluation:

σ σ
λ σ

*

, ,
, min ,� �

�
k k

j k
( ) = ( )

( )
	 (26)

subject to:

j F J

K

j j j k k
M D k M D

∈ ( )
∑ + − ( ) + ≤

�

�λ σ( ) , ( ) 0 	 (27)

j F J

K

j j k

∈ ( )
∑ − ≥

�

λ θ θ 0 	 (28)

λ
j

j n� ,� ,�≥ = …0 1 	

where j F J∈ ( )�  means DMU J
j
∈ � . The ES of the DMUs in the �th  level is equal to 1 if all 

DMUs in the all the higher levels are removed from the whole set of DMUs. The DEA stratification 
model given by (26)-(28) partitions the set of DMUs into different frontier levels characterized by 
E � .  The attractiveness score for each DMU in the �th  stratification (E � ) is computed against DMUs 

in the � +( )1 th  and lower levels as the evaluation context (Zhu, 2014).

Procedure

Step 1: [Stratifying DMUs into levels]
(i) 	 Setting �  =1, let J �  be the whole set of DMUs.
(ii) 	Using the DEA method, evaluate all DMUs in J �  by solving an LP given in (1)-(3).
(iii) 	Identifying efficient DMUs where their ESs are equal to 1, stratify them into a set Θ� .
(iv) 	Let J J� � �+ = −1 � Θ  and set � �= +� 1 .
(v) 	 If J � = φ , set τ = −� 1,  and go to Step 2. Otherwise, go to (ii).
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Step 2: [Transforming DMUs by solving MCONVENTIONAL DEA model using MOP model]
(i) 	 Set �  =1 and let Ψ Θ� �= .
(ii) 	Set various values of the weight set, α α α α= { }− + +

1 2 3
, , , each weight changes with an 

increment of ∆ and between 0 and 1.
(iii) 	Solve the C-DEA model with the objective function in (13) subject to constraints (7)-(12) 

and (14)-(17) for each given weight set for the DMU set, Ψ � .
(iv) 	Compute θ

k
, where k ∈ Ψ � .

Step 3: [Computing ESs for the transformed DMUs]
(i) 	 Obtain the efficiency scores (ESs) using CE and SE models for the transformed DMUs with 

one output and two inputs, which are generated in (ii) of Step 2.
(ii) 	Set R j

� ( )  to be the rank of DMUj based on the values of ESs found in (i).
(iii) 	Let Ψ Ψ Θ� � �+ += +1 1  and set � �= +� 1 . If � ≤ τ , go to Step 2-(ii). Otherwise, calculate 

the average rank, R j
R j

�
� �( ) =

( )
=∑� 1

τ

τ
 and rank the DMUj in Θ� .

NUMERICAL EXAMPLE

To investigate the performance of MCWTU-DEA methods, the data of Zhu (2014, p. 21), which 
are presented in Table 2, is used. In Table 2, there are fifteen (15) companies from the Top Fortune 
Global 500 list in 1995, three inputs: (i) assets ($ millions), (ii) equity ($ millions), and (iii) number 
of employees, and two outputs: (i) revenue ($ millions) and (ii) profit ($ millions). The stratification 
DEA (S-DEA) classifies all 15 DMUs into four levels, as shown in Table 3

As shown in Table 3, there are seven DMUs in Level 1, three in Level 2, two in Level 3, and three 
in Level 4. As expected, all seven DMUs in Level 1, ‘Mitsui,’ ‘Itochu,’ ‘General Motors,’ ‘Sumitomo,’ 
‘Exxon,’ ‘Wal-Mart,’ and ‘Nippon Life,’ have an efficiency score (ES) of 1.000 by conventional 
DEA. The DMUs at a higher level have lower CESs and rankings than the DMUs of a lower level, as 
both CE method and MCWTU-based methods rank several DMUs in Level 1 lower than the DMUs 
of the lower levels. There are three different top-ranked DMUs. These are DMU #5, ‘Sumitomo,’ 
DMU #9, ‘Exxon,’ and DMU #13, ‘Nippon Life,’ which are ranked by CE, all MCWTU-based DEA 
methods, and SE method, respectively. The SE DEA is the only method that ranks DMUs following 
the levels generated by the stratification DEA. But the notable result is that the top two ranked DMUs, 
‘Nippon Life’ and ‘Wal-Mart,’ by SE method, are ranked very low by some other methods. Note that 
the lowest ranks of ‘Nippon Life’ and ‘Wal-Mart’ are #13 and #14 by the CE method and MCWTU-
based methods. These rankings are lower than even the rankings of some DMUs in Level 2, 3, and 
4. These results would tend to make the ranking power of SE-DEA questionable. It is also observed 
that DMU #15, ‘AT&T,’ is bottom-ranked by all methods. Now the question is which company is 
really a top-ranked DMU, ‘Sumitomo’ or ‘Exxon.’

Now, after removing DMU #12, DMU #14, and DMU #15 of Level 4, all methods are applied, 
and the results are reported in Table 4 for the DMUs of Level 1, 2, and 3. Note that the rankings 
generated by the SE method are not affected by removing the DMUs in Level 4. Regarding the second 
rank, two MCWTU-based methods consistently select ‘General Motors by CES and SES, while the 
CE method chooses ‘Sumitomo.’ To further see the behavior of rankings, with the DMUs in Level 
3 and 4 removed, apply all methods for DMUs of Level 1 and 2 only, and the results are reported in 
Table 5. A notable observation is that CE-DEA changes the top-ranked DMU from ‘Sumitomo’ to 
‘Exxon,’ which all MCWTU-based DEA methods consistently rank as No. 1. In fact, except for the 
SE method, all methods identify DMU #9, ‘Exxon,’ as the top-ranked DMU. SE DEA method does 
not change any single ranking. Finally, only the DMUs in Level 1 are considered, and the results are 
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reported in Table 6. Surprisingly, the SE method finally ranks ‘Exxon’ as the top DMU and ‘Nippon 
Life’ as #2.

As the procedure suggests, the average rankings are computed for the efficient DMUs in Level 1 
for each method and rank them based on the average rankings. To compare the regular DEAs (R-DEA: 
conventional, CE, and SE methods) with the proposed MCWTU-based DEA methods, the averages 
of average rankings are computed and reported in Table 7. Both methods identify the same DMUs, 
‘Exxon,’ as the top-ranked one, and ‘Nippon Life’ as the #6 ranked DMU. For many decision-makers, 
identifying the top-level rated DMU among many evaluated DMUs would be an essential thing for 
them to make the final decision. For the top-level DMUs, applying CE-DEA or SE-DEA would 
mislead the decision-makers, as shown in this numerical example. CE and SE methods initially select 
‘Sumito’ and ‘Nippon Life’ as the top-ranked DMU out of all 15 DMUs. As the inefficient DMUs of 
the lower levels from all DMUs to be evaluated are eliminated, these two R-DEA methods eventually 
choose ‘Exxon’ as the most efficient DMU. In contrast, the MCWTU-based CE and SE methods 
consistently identify ‘Exxon’ as the top DMU whether inefficient DMUs are included in the DMUs to 
be rated. An additional advantage for MCWTU-based methods comes from the observation that two 
generated rankings are almost identical, whereas R-DEA methods produce quite different rankings.

SUMMARY AND CONCLUSION

Several problems have appeared as the conventional DEA (C-DEA) has been applied to a wide 
variety of evaluation areas. The C-DEA evaluates DMUs in terms of self-evaluation, which allows 
each DMU to rate its efficiency score with the most favorable weights to itself. Consequently, the 
problems related to weak discriminating power have arisen as the applications of C-DEA advance, 
since multiple DMUs frequently turn out to be efficient with ES of 1. Many authors point out the lack 
of discrimination power as the major weakness for C-DEA. To remedy this weakness and increase 

Table 2. Fifteen (15) Companies from Fortune Global 500 Companies list in 1995

DMU Company
Input Output

Assets Equity Employees Revenue Profit

1 Mitsubishi 91,920.6 10,950.0 36000 184,365.2 346.2

2 Mitsui 68,770.9 5,553.9 80000 181,518.7 314.8

3 Itochu 65,708.9 4,271.1 7182 169,164.6 121.2

4 General Motors 217,123.4 23,345.5 709000 168,828.6 6,880.7

5 Sumitomo 50,268.9 6,681.0 6193 167,530.7 210.5

6 Marubeni 71,439.3 5,239.1 6702 161,057.4 156.6

7 Ford Motor 243,283.0 24,547.0 346990 137,137.0 4139

8 Toyota Motor 106,004.2 49,691.6 146855 111,052.0 2662.4

9 Exxon 91,296.0 40,436.0 82000 110,009.0 6470.0

10 Royal Dutch/Shell 118,011.6 58,986.4 104000 109,833.7 6904.6

11 Wal-Mart 37,871.0 14,762.0 675000 93,627.0 2740.0

12 Hitachi 91,620.9 29,907.2 331852 84,167.1 1468.8

13 Nippon Life 364,762.5 2,241.9 89690 83,206.7 2426.6

14 Nippon T & T 127,077.3 42,240.1 231400 81,937.2 2209.1

15 AT&T 88,884.0 17,274.0 299300 79,609.0 139.0
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the discrimination power, the cross-efficiency (CE) evaluation method, and the super-efficiency (SE) 
DEA, and the multiple criteria (MC) DEA method have emerged. As described before, these methods 
have also exhibited some weaknesses; especially, when the DMUs to be evaluated have many inputs 
to use and many outputs to produce.

This paper proposes an innovative procedure of ranking the DMUs in the DEA context by 
transforming the original DMUs with multiple inputs and outputs into new DMUs with two inputs 
and a single output, the simplest DMUs. The proposed procedure is called as the multiple-criteria 
with transformed DMUs (MCWTU) method. With these transformed DMUs, three regular DEA 
(R-DMU) methods are applied to see the performance of the MCWTU method. Using the stratification 
DEA, all DMUs are classified into multiple levels, depending on the efficiency scores, where the 
DMUs in Level 1 have a perfect ES of 1. After removing the DMUs in Level 1, the DMUs with ES 
of 1 belong to Level2, and so on.

To demonstrate the proposed procedure, this paper uses the well-known examples. The S-DEA 
is applied to classify all 15 DMUs, which generates four levels. In the first round, R-DEA methods, 
along with MCWTU-based DEA methods, are applied to evaluate all DMUs in four levels. Then, 
after removing the DMUs in the lowest level, Level 4, the DMUs of Level 1 through Level 3 are 
evaluated in the second round, and this process is continued. It is observed that all methods eventually 
end up identifying the same DMU as the most efficient one, while MCWTU-based DEA methods 
identify the most efficient one from the beginning. R-DEA methods identify a different DMU as a 
top-ranked one when all DMUs are evaluated and tend to detect the most efficient one as inefficient 
DMUs are removed from evaluation. Especially, SE DEA turns out to be the only method that ranks 

Table 3. Ranking table for DMUs at all Levels.

Level DMU Company
Efficiency Score Cross Efficiency Score Super Efficiency Score

Conventional 
DEA [R] MCWTU [R] CE DEA [R] MCWTU [R] SE DEA [R] MCWTU [R]

1

2 Mitsui 1.0000 [1] 0.9116 [3] 0.6239 [7] 0.2459 [8] 1.0092 [7] 0.2737 [8]

3 Itochu 1.0000 [1] 0.8182 [5] 0.8470 [3] 0.1905 [12] 1.2856 [6] 0.1999 [12]

4 General 
Motors 1.0000 [1] 0.8913 [4] 0.5366 [8] 0.8705 [2] 1.3704 [3] 1.0046 [2]

5 Sumitomo 1.0000 [1] 1.0000 [1] 0.9312 [1] 0.2412 [10] 1.3188 [5] 0.2561 [9]

9 Exxon 1.0000 [1] 1.0000 [1] 0.8987 [2] 0.9345 [1] 1.3416 [4] 1.1829 [1]

11 Wal-Mart 1.0000 [1] 0.1635 [14] 0.6383 [6] 0.2273 [14] 1.3792 [2] 0.1410 [14]

13 Nippon 
Life 1.0000 [1] 0.2286 [13] 0.4091 [10] 0.2458 [9] 3.9176 [1] 0.2389 [11]

2

6 Marubeni 0.9719 [8] 0.7229 [7] 0.7689 [4] 0.1748 [13] 0.9719 [8] 0.1832 [13]

7 Ford Motor 0.7372 [10] 0.5886 [9] 0.3820 [11] 0.5743 [4] 0.7372 [10] 0.6530 [4]

10
Royal 
Dutch/
shell

0.8414 [9] 0.7454 [6] 0.7049 [5] 0.8684 [3] 0.8414 [9] 0.9479 [3]

3

1 Mitsubishi 0.6628 [11] 0.6587 [8] 0.5044 [9] 0.2784 [7] 0.6628 [11] 0.2958 [7]

8 Toyota 
Motor 0.5246 [12] 0.3882 [10] 0.3668 [12] 0.4067 [5] 0.5246 [12] 0.4246 [5]

4

12 Hitachi 0.3861 [13] 0.2885 [12] 0.2585 [14] 0.2273 [11] 0.3861 [13] 0.2437 [10]

14 Nippon T 
& T 0.3486 [14] 0.3322 [11] 0.2600 [13] 0.3239 [6] 0.3486 [14] 0.3525 [6]

15 AT&T 0.2704 [15] 0.1367 [15] 0.1523 [15] 0.0778 [15] 0.2704 [15] 0.0809 [15]

[R]: Ranking
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Table 4. Ranking table for DMUs in Level 1, 2, and 3

Level DMU Company
Efficiency Score Cross Efficiency Score Super Efficiency Score

Conventional 
DEA [R] MCWTU [R] CE DEA [R] MCWTU [R] SE DEA [R] MCWTU [R]

1

2 Mitsui 1.0000 [1] 0.9213 [4] 0.5672 [6] 0.2479 [7] 1.0092 [7] 0.2850 [7]

3 Itochu 1.0000 [1] 0.9674 [3] 0.8505 [3] 0.2314 [9] 1.2856 [6] 0.2502 [9]

4 General 
Motors 1.0000 [1] 0.8884 [5] 0.5177 [8] 0.8901 [2] 1.3704 [3] 1.0376 [2]

5 Sumitomo 1.0000 [1] 1.0000 [1] 0.9140 [1] 0.2406 [8] 1.3188 [5] 0.2604 [8]

9 Exxon 1.0000 [1] 1.0000 [1] 0.9051 [2] 0.9291 [1] 1.3416 [4] 1.1207 [1]

11 Wal-Mart 1.0000 [1] 0.2105 [9] 0.5479 [7] 0.1526 [12] 1.3792 [2] 0.1820 [12]

13 Nippon 
Life 1.0000 [1] 0.2452 [10] 0.4584 [10] 0.2085 [11] 3.9176 [1] 0.2105 [11]

2

6 Marubeni 0.9719 [8] 0.8408 [6] 0.7789 [4] 0.2159 [10] 0.9719 [8] 0.2334 [10]

7 Ford 
Motor 0.7371 [10] 0.6132 [8] 0.3798 [11] 0.5284 [4] 0.7372 [10] 0.6406 [4]

10
Royal 
Dutch/
Shell

0.8414 [9] 0.7464 [7] 0.7105 [5] 0.8094 [3] 0.8414 [9] 0.9519 [3]

3

1 Mitsubishi 0.6628 [11] 0.6589 [8] 0.4741 [9] 0.2776 [6] 0.6628 [11] 0.3003 [6]

8 Toyota 
Motor 0.5246 [12] 0.3918 [10] 0.3469 [12] 0.3707 [5] 0.5246 [12] 0.4244 [5]

[R]: Ranking

Table 5. Ranking table for DMUs in Level 1 and 2

Level DMU Company
Efficiency Score Cross Efficiency Score Super Efficiency Score

Conventional 
DEA [R] MCWTU [R] CE DEA [R] MCWTU [R] SE DEA [R] MCWTU [R]

1

2 Mitsui 1.0000 [1] 0.8768 [5] 0.6325 [7] 0.1993 [7] 1.0092 [7] 0.2054 [7]

3 Itochu 1.0000 [1] 0.9826 [2] 0.8733 [3] 0.1741 [9] 1.2856 [6] 0.1827 [8]

4 General 
Motors 1.0000 [1] 0.9677 [3] 0.6432 [6] 0.8995 [2] 1.3704 [3] 1.1225 [2]

5 Sumitomo 1.0000 [1] 0.8984 [4] 0.8858 [2] 0.1761 [8] 1.3188 [5] 0.1820 [9]

9 Exxon 1.0000 [1] 1.0000 [1] 0.9876 [1] 0.9062 [1] 1.3416 [4] 1.2698 [1]

11 Wal-Mart 1.0000 [1] 0.6182 [9] 0.5676 [9] 0.4243 [5] 1.3792 [2] 0.4290 [5]

13 Nippon 
Life 1.0000 [1] 0.4798 [10] 0.6072 [8] 0.3159 [6] 3.9176 [1] 0.3304 [6]

2

6 Marubeni 0.9719 [8] 0.8654 [6] 0.7830 [4] 0.1702 [10] 0.9719 [8] 0.1789 [10]

7 Ford 
Motor 0.7371 [10] 0.7172 [8] 0.4769 [10] 0.5843 [4] 0.7372 [10] 0.6607 [4]

10
Royal 
Dutch/
Shell

0.8414 [9] 0.7459 [7] 0.7657 [5] 0.7649 [3] 0.8414 [9] 0.9265 [3]

[R]: Ranking
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the DMUs following the levels that the stratification DEA generates. But the top-ranked DMU by 
SE method is ranked very low by all other methods, including CE method, another kind of R-DEA 
method, until only efficient DMUs of Level 1 are evaluated. It shows that the proposed approach 
would be used as an important tool for decision-makers to identify the top-rated DMUs that the 
R-DEA methods may miss.

Various ranking methods, as shown in Table 1, other than R-DEA methods considered in this study, 
could be applied for the transformed DMUs created by modeling MC DEA as the goal programming. 
For future research, it would be motivating to verify if it is worthwhile and adequate to transform the 
DMUs to rank the original DMUs effectively.

Table 6. Ranking table for DMUs in Level 1.

Level DMU Company
Efficiency Score Cross Efficiency Score Super Efficiency Score

Conventional 
DEA [R] MCWTU [R] CE DEA [R] MCWTU [R] SE DEA [R] MCWTU [R]

1

2 Mitsui 1.0000 [1] 0.8774 [4] 0.6657 [6] 0.1923 [5] 1.0092 [7] 0.1963 [5]

3 Itochu 1.0000 [1] 1.0000 [1] 0.8066 [3] 0.1606 [7] 1.5531 [3] 0.1665 [7]

4 General 
Motors 1.0000 [1] 1.0000 [1] 0.7322 [4] 0.9218 [2] 1.3704 [5] 1.1138 [2]

5 Sumitomo 1.0000 [1] 0.8762 [5] 0.8409 [2] 0.1680 [6] 1.3252 [6] 0.1712 [6]

9 Exxon 1.0000 [1] 0.9648 [3] 0.9823 [1] 0.9236 [1] 5.8757 [1] 1.1179 [1]

11 Wal-Mart 1.0000 [1] 0.6760 [6] 0.7000 [5] 0.4236 [3] 1.3792 [4] 0.4298 [3]

13 Nippon Life 1.0000 [1] 0.5563 [7] 0.5995 [7] 0.2778 [4] 3.9176 [2] 0.2957 [4]

[R]: Ranking

Table 7. Ranking table for average rankings of efficient DMUs in Level 1

Level DMU Company
Efficiency Score Cross Efficiency Score Super Efficiency Score Average

Conventional 
DEA [R]

MCWTU 
[R]

CE DEA 
[R]

MCWTU 
[R]

SE DEA 
[R]

MCWTU 
[R]

R-DEAs 
[R]

MCWTU 
[R]

1

2 Mitsui 1.0 [1] 4.0 [5] 6.5 [4] 6.7 [4] 7.0 [7] 6.7 [3] 4.8 [7] 5.8 [5]

3 Itochu 1.0 [1] 2.7 [2] 3.0 [3] 9.2 [7] 5.2 [5] 9.0 [7] 3.0 [3] 6.9 [4]

4 General 
Motors 1.0 [1] 3.2 [4] 6.5 [4] 2.0 [2] 3.5 [3] 2.0 [2] 3.6 [5] 2.4 [2]

5 Sumitomo 1.0 [1] 2.7 [2] 1.5 [1] 8.0 [3] 5.2 [5] 8.0 [5] 2.5 [2] 6.2 [3]

9 Exxon 1.0 [1] 1.5 [1] 1.5 [1] 1.0 [1] 4.0 [4] 1.0 [1] 2.1 [1] 1.1 [1]

11 Wal-Mart 1.0 [1] 9.5 [6] 6.7 [6] 8.5 [6] 2.5 [2] 8.5 [6] 3.4 [4] 8.8 [7]

13 Nippon 
Life 1.0 [1] 10.0 [7] 8.7 [7] 7.5 [5] 1.2 [1] 7.0 [4] 3.6 [6] 8.5 [6]

[R]: Ranking, R-DEAs: Regular DEAs, Conventional, CE, and SE DEA.
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APPENDIX 1

Acronyms

•	 C-DEA: Conventional Data Envelopment Analysis
•	 CE: Cross Efficiency
•	 CES: Cross Efficiency Score
•	 CRS: Constant Returns to Scale
•	 DEA: Data Envelopment Analysis
•	 DMU: Decision Making Unit
•	 ES: Efficient Score
•	 LP: Linear Programming
•	 MC: Multiple Criteria
•	 MCWTU: Multiple Criteria with Transformed DMU
•	 MOP: Multi-Objective Programming
•	 R-DEA: Regular Data Envelopment Analysis
•	 SE: Super Efficiency
•	 SES: Super Efficiency Score
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APPENDIX 2
Proofs of Lemma

(i) 	 Set   D d
k

j
j

=










∑  equal to some constant. If d Max d
w j
= { }   increases, both D andM Max d

k k j
   = { }( )  

increase. If d Max d
w j
≠ { }  increases, M Max d

k j
= { }( )  does not decrease, while D

k
 increases. 

Thus, the fact that as D
k

 increases, M
k

 does not decrease completes the proof.
(ii) 	If DMUk is efficient, it implies that θ

k
= 1.  That is:

i

m

i ik
v x

=
∑ =

1

1 	 (1)

and:

r

s

r rj
u y

=
∑ =

1

1 	 (2)

From Eq. (8), d
j
 can be expressed as:

d v x u y j
j

i

m

i ij
r

s

r rj
= − ∀

= =
∑ ∑
1 1

, 	 (3)

Let the current sum of the slack variables D d
k
c

j
j

=∑ . Now, for DMUh, h k≠ , to reduce d
h

, 

the first term of (B.3), 
i

m

i ih
v x

=
∑

1

, should be reduced, subject to the constraint, 
i

m

i ik
v x

=
∑ =

1

1 . Let v
i
'  

and u
r
'  denote the revised weights for inputs and outputs to reduce D

k
c , respectively. From (B.1), v

i
'  

and u
r
'  must satisfy the following constraints:

i

m

i ik
v x

=
∑ =
1

1' 	 (4)

i

m

i ih
i

m

i ih
v x v x

= =
∑ ∑≤
1 1

' 	 (5)

Since (B.3) should be nonnegative:
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r

s

r rh
i

m

i ih
u y v x

= =
∑ ∑≤
1 1

�� �� ’ 	 (6)

Thus, if 
r

s

r rj
u y

=
∑ ≤
1

'  
r

s

r rj
u y

=
∑

1

, D
k

 is further reduced, (B.6.) is rewritten as:

r

s

r rj
i

m

i ij
u y v x

= =
∑ ∑≤
1 1

' ' 	 (7)

From (B.7), the revised efficiency score, θ
k

r

s

r rk
i

m

i ik
u y v x' ' '/=

= =
∑ ∑
1 1

, can’t be greater than 

θ
k

r

s

r rk
i

m

i ik
u y v x=

= =
∑ ∑
1 1

/ .  The fact that θ
k

 can’t increase as D
k

 decreases completes the proof.

(iii) 	Due to the nonnegative relationship between D
k

 and θ
k

 and the nonnegative relationship between 
D
k

 and M
k

, the fact that the relationship between θ
k

 and M
k

 is nonnegative completes the 
proof.


