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ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic is an ongoing concern that requires research 
in all disciplines to tame its spread. Nine classification algorithms were selected for evaluating the 
most appropriate in predicting the prevalent COVID-19 transmission mode in a geographic area. 
These include multinomial logistic regression, k-nearest neighbour, support vector machines, linear 
discriminant analysis, naïve Bayes, C5.0, bagged classification and regression trees, random forest, 
and stochastic gradient boosting. Five COVID-19 datasets were employed for classification. Predictive 
accuracy was determined using 10-fold cross validation with three repeats. The Friedman’s test was 
conducted, and the outcome showed the performance of each algorithm is significantly different. 
The stochastic gradient boosting yielded the highest predictive accuracy, 81%. This finding should 
be valuable to health informaticians, health analysts, and others regarding which machine learning 
tool to adopt in the efforts to detect dominant transmission mode of the virus within localities.
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INTRODUCTION

In December, 2019, the first coronavirus disease 2019 (COVID-19) case was detected in the city of 
Wuhan, China (Cortegiani, Ingoglia, Ippolito, Giarratano, & Einav, 2020; Khan & Atangana, 2020; 
Shereen, Khan, Kazmi, Bashir, & Siddique, 2020). The COVID-19 is a highly contagious infection 
caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) (Shereen et al., 2020; 
Rothan & Byrareddy, 2020), which symptoms include fever, coughing and problems with breathing. 
According to the report by the World Health Organization (WHO), as of 29th June, 2020, a total 
of 10,021,401 COVID-19 cases were confirmed across the world (WHO, 2020). Out of the total 
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confirmed cases, a total of 499,913 deaths were recorded from the viral infection from inception of 
the pandemic to 29th June, 2020.

Literature evidence suggests that artificial intelligence (AI) is a valuable tool in the efforts to 
contain the pandemic. Vaishya, Javid, Khan, and Haleem (2020) identified several ways in which AI 
can be applied in the fight against COVID-19. According to Vaishya et al (2020), AI has capabilities 
to detect early infection of the virus in an individual, monitoring of COVID-19 patient’s condition, 
and contact tracing of exposed persons. Mei et al. (2020) deployed AI to develop a rapid system for 
diagnosing COVID-19 patients. The diagnostic system uses AI algorithms to integrate chest computed 
tomography (CT) findings with exposure history, laboratory testing and clinical symptoms to diagnose 
COVID-19 positive persons. Among other merits of the AI-enabled diagnostic system such as enhanced 
accuracy, the system is reported to produce test results faster than the regular virus-specific reverse 
transcriptase polymerase chain reaction test, which takes two days to complete (Mei et al, 2020). 
In another study, Muhammad, Islam, Usman, and Ayon (2020) investigated the best classification 
algorithm for use in constructing a model for predicting the possibility of recovery from COVID-19 
infection by patients. The experiments were conducted using COVID-19 data in South Korea and 
the predictive accuracies of support vector machines, decision tree, logistic regression, naïve Bayes, 
random forest, and k-nearest neighbor models were noted. The study concluded that the decision 
tree, which achieved 99.85% predictive accuracy, is the best classification algorithm for use in the 
prediction of whether or not a patient is going to recover from the infection (Muhammad et al., 2020). 
The research by Tuli Shreshth, Tuli Shikhar, Tuli Rakesh, and Gill (2020) integrated machine learning 
with cloud computing to develop a model that can predict the growth and trend of COVID-19 across 
countries of the world. The study used the iterative weighting in fitting a generalized inverse Weibull 
distribution, which served the purpose of developing a predictive model. The prediction framework, 
which can be deployed on a cloud computing platform, is capable to perform real-time prediction of 
the growth pattern and trend of the epidemic across the world (Tuli Shreshth et al., 2020).

One of the effective ways of controlling the spread of coronavirus is to determine the prevalent 
transmission mode from person-to-person within a geographic area. Knowledge of the dominant 
transmission mode specific to an area is vital so that experts can advise on strategies to be put in place 
to tame the spread. Against this backdrop, this study was aimed at determining the most appropriate 
classification algorithm to be adopted for predicting the prevalent transmission mode of coronavirus 
in a given area. Several classification algorithms are in existence, but not all of these can be deployed 
in every problem domain. The question of which machine learning algorithm will produce optimum 
results has to be determined experimentally through spot-checking. In the end of this study, the 
classification algorithm that offers the highest performance in predicting the dominant COVID-19 
transmission mode within an area is advised.

CLASSIFICATION ALGORITHMS RELEVANT TO THIS STUDY

Class prediction is a technique of data mining concerned with development of models, decision trees 
and IF-THEN rules to predict class labels of observations (Alola & Atsa’am, 2020; Atsa’am, 2020; 
Bodur & Atsa’am, 2019; Kantardzic, 2011). Let D x y x ym m= { ( , ),...,( , ) }1 1 be a dataset containing 
m observations, where x x xn= ( ,..., )1  are independent variables of dimension x Rn∈ ; and y C∈
whereC is the outcome variable. Classification or class prediction is the mapping t R Cn: → where 
t  is a predictive model (Bodur & Atsa’am, 2019; Genuer, Poggy, & Tuleau-Malot, 2010). In situations 
where C consists of only two categories, the prediction problem is termed binary class prediction; 
and where C has more than two categories, it is termed multinomial class prediction (Kleinbaum & 
Klein, 2010). The classification algorithms relevant to this study are described in this section.
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Multinomial Logistic Regression
This variant of the logistic regression models the relationship between a dependent, multi-level, 
nominal variable and independent variable(s) (Anderson & Rutkowski, 2008). When fitting a 
multinomial logistic regression model on a dataset with n independent variables and one categorical 
outcome variable with k categories (j = 1, 2,…,k), one of the categories is usually set aside as the 
reference or baseline category (Anderson & Rutkowski, 2008; El-Habil, 2012). It should be pointed 
out that all logits are computed relative to the baseline category. Let the kth category denote the 
baseline category, and let Pj denote the multinomial probability that an observation belongs to the 
jth category. Then, the multinomial logistic regression is given as in Equation (1) (El-Habil, 2012).
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where, j = 1, 2,…,k-1; b0j is the intercept of the jth category, b1j, b2j,…,bnj are parameter estimates 
for each jth category, X1, X2,…,Xn are data values for each variable in the dataset. The Equation (1) 
effectively models the natural logarithm of the probability of an observation belonging to a particular 
category versus the probability of belonging to the baseline category. All the probabilities in Equation 
(1) sum to one, and the equation can be written in terms of probabilities as shown in the Equation 
(2) (El-Habil, 2012).
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When predicting the class of an observation, all probabilities are computed and the jth category 
with the maximum probability is predicted as the class of the observation.

K-Nearest Neighbour (KNN)
In order to predict the class of a vector, the KNN searches the entire training set for K instances that 
are most similar to the vector being classified, and then classifies it to the category with the highest 
probability (Harrison, 2018; Kim, Choi, Moon, & Mun, 2011). Consider a training set with N samples 
and n categories, c1, c2,…,cn. Let di represent a neighbor in the training set, and X be a vector to be 
classified. Then, y(di, ck) shows whether di is of class ck, and S(X, di) is a function that evaluates the 
similarity between X and di. The probability that the vector X belongs to class ck, denoted by P(X, 
ck), is given in Equation (3) (Kim et al., 2011).

P X c S X d y d ck i
d KNN

i k
i

( , ) ( , ). ( , )�
�
� 	 (3)

Depending on the type of data, the similarity, S(X, di), can be evaluated using distance measures 
such as Euclidean, Manhattan, and Minkowski.

Support Vector Machines (SVM)
The SVM is a classification algorithm that uses a hyperplane to separate input data points according 
to their class (Qi, Silvestrov, & Nazir, 2017). The task of the learning algorithm is to find coefficients 
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that yield the best separation of the classes by the hyperplane. The objective is that the hyperplane 
should be at the maximum margin from the various classes. This makes the classifier stable and 
unaffected by noise within the data (Harrington, 2015). One of the implementations that extend the 
SVM from just a binary classifier to a multi-class classifier is the one-against-all scheme (Harrington, 
2015). In this approach, an SVM model is built with one class while all data objects within other 
classes are grouped into a single opposing class. In the prediction problem, the model that produces 
the largest output represents the predicted class of the input vector.

Linear Discriminant Analysis (LDA)
With this classification algorithm, the data is assumed to follow multivariate normal distribution. To 
predict the class, i, of an observation, X; the vector mean, µ

i
, and prior probability, P i( ), for each 

class, and the common covariance matrix, C, are computed from the data. Then, the formula in 
Equation (4) is evaluated to predict the class to which the observation belongs (Teknomo, 2019).

f X C X C P i
i i

T
i i

T( ) ln( ( ))= − +− −µ µ µ1 11

2
	 (4)

From the Equation (4), the conditional probability of X belonging to class i, denoted by f X
i
( ) , 

is computed and the vector is assigned to class i if f X f X i j
i j
( ) ( )> ∀ ≠ .

Naïve Bayes
The naive Bayes classification is built on the Bayes theorem. The theorem assumes that the set of x1, 
x2,…,xn variables are independent, given the class, y. With this assumption, the classifier is given as 
in Equation (5) (Bishop, 2006; Duda, Hart, & Stork, 2003).

P X y P x y P x y P x y
n

( | ) ( | ) ( | ) ... ( | )= × × ×
1 2

	 (5)

In the classification problem, the probability of an observation belonging to each class, y, is 
computed as shown in Equation (6); and the class that maximizes this probability is predicted as the 
class of the observation (Bishop, 2006; Duda et al., 2003).
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C5.0 Algorithm
The C5.0 is one of the classification algorithms that implement the decision tree. At the initial step, 
the algorithm uses entropy to evaluate the mix of class values within the dataset (Han & Kamber, 

2006; Yobero, 2018). Entropy is computed as; Entropy S
i

i

C

i
( ) log ( )= −

=
∑ π π
1

2
where S is a given 

data segment, C is the number of class levels, and π
i
is the proportion of values within the class level 

i (Yobero, 2018). The algorithm then uses the purity obtained from entropy to compute information 
ga in  fo r  each  fea tu re .  I n fo r ma t ion  ga in  fo r  a  fea tu re ,  F ,  i s  compu ted  a s
InformationGain F Entropy S Entropy S( ) ( ) ( )= −

1 2
, which is the difference between entropy 

before the split (S1) and the entropy in the partitions after the split (S2) The Entropy(S2) is computed 
by evaluating the total entropy in all the partitions. This is achieved by weighing the entropy in each 
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partition by the proportion of observations within that partition, which can be obtained as shown in 
Equation (7) (Han & Kamber, 2006; Yobero, 2018).
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A feature that produced the highest information gain is selected for splitting. The C5.0 algorithm 
has been designed to automatically decide when to prune the decision tree and provide generalization 
for unobserved data.

Bagged Classification and Regression Tree (Bagged CART)
Bagging is a bootstrapping approach that constructs several decision trees by iteratively selecting 
random subsets of the original training data (Lawrence, Bunn, Powell, & Zambon, 2004). The Bagged 
CART is a specific implementation of bagging where multiple samples are taken from the training 
data and decision trees are fitted on each sample. During classification of a new observation, each 
decision tree performs a prediction and the averages of the predictions are obtained to determine the 
class of the observation (Lawrence et al., 2004; Le, 2020). It is on record that in most cases, bagging 
algorithms produce higher classification accuracies than single decision tree algorithms (Optiz & 
Maclin, 1999).

Random Forest

Random forest is an ensemble of several independent decision tree predictors{ ( , ), ,..., n }h X v k
k

= 1 , 

where X  is an input vector and { }v
k

 are independent random vectors within the same distribution 
across all trees in the forest (Breiman, 2001; Genuer et al., 2010). In the task of predicting the class 
of an input vectorX , each tree in the forest casts a single vote and the class with highest number of 
votes is predicted as the class to which X belongs (Breiman, 2001).

Stochastic Gradient Boosting (SGB)
Boosting is an ensemble method that constructs a strong classification model from a number of weak 
models (Friedman, 2001; Friedman, 2002; Le, 2020). The stochastic gradient boosting, also called 
generalized boosting modeling, is an implementation of boosting that builds a tree from the training 
data, then creates another tree that corrects the errors observed from the previous model. At every 
iteration, the algorithm randomly fetches a subsample from the training dataset and uses the same to 
construct a tree classifier. The algorithm keeps adding models until predictive accuracy is maximized 
on the training set or optimum number of models has been added (Friedman, 2002; Lawrence et al., 
2004). Unlike single decision tree classifiers, the SGB is not prone to overfitting.

METHODOLOGY

Experimental Datasets
Following the outbreak of COVID-19, the WHO set up a global surveillance system to gather essential 
information to monitor the pandemic. On a daily basis, national authorities of member-states send in 
count of confirmed cases and deaths, in addition to other set of information vital to monitoring the 
progression or otherwise of the pandemic. The WHO collects these data from the national authorities 
and then makes the same available on the internet in form of COVID-19 situation reports. For the 
purpose of this study, five datasets on COVID-19 situation reports on five different days as reported 
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by WHO were randomly selected and employed for experiments. The datasets, described below, are 
freely available on the WHO website (WHO, 2020). 

•	 COVID-19_May4: This dataset consists of COVID-19 cases across 214 countries, territories 
and areas as of 4th May, 2020. The WHO presents the data as coronavirus situation report – 105.

•	 COVID-19_May20: This dataset consists of COVID-19 cases across 215 countries, territories 
and areas as of 20th May, 2020. The WHO presents the data as coronavirus situation report – 121.

•	 COVID-19_May31: This dataset consists of COVID-19 cases across 214 countries, territories 
and areas as of 31st May, 2020. The WHO presents the data as coronavirus situation report – 132.

•	 COVID-19_June1: This dataset consists of COVID-19 cases across 214 countries, territories 
and areas as of 1st June, 2020. The WHO presents the data as coronavirus situation report – 133.

•	 COVID-19_June2: This dataset consists of COVID-19 cases across 213 countries, territories 
and areas as of 2nd June, 2020. The WHO presents the data as coronavirus situation report – 134. 

Each datasets is composed of seven variables as follows:

Reporting Country/Territory/Area: This holds the name of the country, territory or area whose 
COVID-19 situation data is being reported.

Total confirmed cases: This reports the total number of confirmed cases in a particular country, 
territory or area from inception of the pandemic. According to WHO, a confirmed case is when 
laboratory test result shows that someone is infected with the coronavirus even when they do 
not show the symptoms.

Total confirmed new cases: This variable records the total number of confirmed new cases on the 
reporting date in a country, territory or area.

Total deaths: This variable keeps track of the total number of deaths caused by the coronavirus 
disease in a particular country, territory or area from inception of the pandemic.

Total new deaths: This records the total number of new deaths from COVID-19 on the reporting 
date in a particular country, territory or area.

Days since last reported case: This holds the total number of days between the last confirmed 
COVID-19 case in a particular country, territory or area and the reporting date when another 
case is confirmed.

Transmission classification: This consists of four categories that indicate the prevalent COVID-19 
transmission mode from person-to-person in a particular country, territory or area. The categories 
include; sporadic cases, clusters of cases, community transmission, and pending. The sporadic 
cases transmission category indicates where one or more cases are imported or detected locally. 
The clusters of cases transmission category is where several cases take place which are clustered 
in time, geographic location and or by common exposures. The community transmission category 
includes larger outbreaks of local transmission resulting from multiple unrelated clusters in 
several areas of the country, territory or area. The pending category, also referred to as unknown, 
indicates when the transmission mode has not been reported to WHO. Where multiple modes of 
transmission have been reported, the mode with the highest cases is adopted by WHO.

The Table 1 shows the distribution of records by transmission category in the various COVID-19 
experimental datasets.

Analytical Approach
The analytical approach followed in this study to determine the best machine learning algorithm for 
use in predicting the prevalent COVID-19 transmission mode is presented in this section.
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Data Preparation: The first step towards preparing the datasets for experiments was attribute 
selection. The variable that holds the name of the geographic entity where COVID-19 cases 
are reported has no relevance in classification modeling. Therefore, the variable was eliminated 
from all the experimental datasets.

Selection of Classifiers for Spot-Checking: Nine classification algorithms were selected for spot-
checking on the five COVID-19 datasets. These include; the multinomial logistic regression 
(Log), k-nearest neighbour (KNN), support vector machines (SVM), linear discriminant analysis 
(LDA), naïve Bayes (NB), C5.0 (C5O), bagged classification and regression trees (CART), 
random forest (RF), and stochastic gradient boosting (SGB). The choice of these algorithms 
was deliberate such that the major classification methods including linear, non-linear, trees and 
rules, and ensemble of trees, have been represented.

Building and Evaluating the Models: As noted, the task is to determine which machine learning 
algorithm provides the highest accuracy in predicting the prevalent transmission mode of 
coronavirus within a geographic area. This is a multi-class prediction problem as there are four 
categories of transmission mode (sporadic cases, clusters of cases, community transmission, 
and pending). For each of the five COVID-19 datasets, the following procedures were followed:
1. 	 The prepared dataset was loaded into the R programming language environment
2. 	 The “train” function in the Caret package (Kuhn et al., 2018) was invoked to fit a classification 

model using each of the nine machine learning algorithms.
3. 	 The repeated k-fold cross validation method (Atsa’am, 2020) was used as the technique for 

testing the predictive accuracy of the classifiers. Specifically, the 10-fold cross validation 
with three repeats was used.

4. 	 The predictive accuracy produced by each classifier was noted.

The results of the various classification accuracies produced by each classifier on the five datasets 
are shown in Table 2.

Table 1. number of records in datasets per transmission class

Dataset #Sporadic #Clusters #Community #Pending Total

COVID19_May4 50 91 52 21 214

COVID19_May20 38 87 74 16 215

COVID19_May31 36 83 83 12 214

COVID-19_June1 36 82 84 12 214

COVID-19_June2 35 82 84 12 213

Table 2. Predictive Accuracies of Classification Algorithms on Five Covid-19 Datasets

Dataset
Accuracy

Log KNN SVM LDA NB C5O CART RF SGB

COVID-19_May4 0.73 0.60 0.50 0.55 0.54 0.63 0.62 0.63 0.84

COVID-19_May20 0.70 0.56 0.40 0.52 0.34 0.54 0.54 0.59 0.78

COVID-19_May31 0.71 0.53 0.51 0.49 0.49 0.60 0.55 0.55 0.81

COVID-19_June1 0.73 0.52 0.49 0.48 0.48 0.56 0.54 0.56 0.80

COVID-19_June2 0.72 0.53 0.51 0.49 0.46 0.58 0.56 0.55 0.82

Average 0.72 0.55 0.48 0.51 0.46 0.58 0.56 0.58 0.81
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The repeated cross validation is a robust technique of testing predictive accuracy of models when 
there is class imbalance in the datasets, such as the datasets used in this study. As could be observed 
in Table 1, the records distributions in the datasets per COVID-19 transmission mode category are 
not the same across categories. To determine classification accuracy with 10-fold cross validation 
with three repeats, it means that in each case, the dataset was randomly split into 10 groups and the 
classifier was trained on nine groups, while one group was set aside for testing the predictive accuracy 
of the model. At the end of the procedure, each observation must have been part of the training set 
nine times, and part of the test set at least once. The procedure was repeated three times before the 
average value was obtained to represent the predictive accuracy of a classifier.

It should be pointed out that some classification algorithms such as LDA, SVM, and KNN 
perform better on normalized data. Consequently, the preprocess function in the Caret package was 
included in the arguments of these classifiers to transform the data to uniform scales before modeling.

RESULTS AND DISCUSSION

The results in Table 2 show that the stochastic gradient boosting algorithm performed better than 
other algorithms, with average accuracy of 81%. Furthermore, the Naïve Bayes produced the least 
accuracy compared to other algorithms, with average accuracy of 46%.

The performances of the nine algorithms on five different COVID-19 datasets are represented 
by the boxplot in Figure 1. 

In Figure 1, the predictive accuracies of each algorithm on the five datasets are represented 
in a box. These show how accurate each algorithm can predict the prevalent transmission mode of 
coronavirus within an area.

The Friedman test was conducted on the predictive accuracies in Table 2 to determine if there 
is a statistically significant difference in the performances of the nine algorithms. The following 
result was obtained; Friedman chi-squared = 35.1, df = 8, p-value = 0.00, thus confirming that the 
performances of the algorithms are different generally. The Friedman test is a nonparametric statistic 
that assesses whether the differences in the distributions of paired groups are statistically significant 
(Riffenburgh, 2012).

To confirm further whether the predictive accuracy performances of the nine algorithms on the 
five COVID-19 datasets are different, the effect size of the Friedman test was evaluated on Table 
2, using the Kendall’s W (Tomczak M. & Tomczak E., 2014). Irrespective of whether or not the 
differences in the distributions among groups are statistically significant, the goal of effect size 

Figure 1. Boxplot of algorithms performance on COVID-19 datasets
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evaluation is to test if the differences between the groups’ averages are meaningfully large (Lakens, 
2013; Tomczak M. & Tomczak E., 2014). The Kendall’s W effect size yielded 0.88, indicating a 
large effect size among the average predictive accuracies of the classification algorithms. It should 
be pointed out that Kendall adopts the Cohen’s guidelines for interpreting effect sizes as follows; 0.1 
to < 0.3 (small effect), 0.3 to < 0.5 (medium effect), 0.50 and above (large effect) (Tomczak M. & 
Tomczak E., 2014).

The outcome of the Friedman test indicated that the predictive accuracies of the nine classification 
algorithms are different on a general note. However, a follow-up pairwise test was conducted to 
determine which pairs of algorithms specifically produced different predictive accuracies. The post-
hoc Conover’s pairwise comparisons test (Conover, 1999) was conducted and the results in Table 3 
were produced.

The results in Table 3 show that the differences between the predictive accuracies produced 
by LDA and SVM, NB and LDA are not statistically significant. The overall performance of each 
algorithm on the five COVID-19 datasets in terms of the average predictive accuracy is shown in 
Figure 2.

Table 3. Pairwise Comparisons of Predictive Accuracies using Conover’s tests

Log KNN SVM LDA NB C5O CART RF

KNN 0.000 - - - - - - -

SVM 0.000 0.000 - - - - - -

LDA 0.000 0.000 0.672 - - - - -

NB 0.000 0.000 0.019 0.058 - - - -

C5O 0.000 0.000 0.000 0.000 0.000 - - -

CART 0.003 0.011 0.000 0.000 0.000 0.002 - -

RF 0.001 0.000 0.000 0.000 0.000 0.003 0.003 -

SGB 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure 2. Average predictive accuracies per classifier
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The mean accuracies show that the stochastic gradient boosting algorithm offers better prediction 
of the prevalent transmission mode of the coronavirus within an area.

CONCLUSION

It cannot be decided in advance which classifier to use for a prediction problem until experiments 
are conducted through spot-checks. In the present study, nine classification algorithms that support 
multi-class prediction were selected for evaluating which is the most appropriate for predicting the 
prevalent coronavirus transmission mode in a geographic area. The algorithms deployed for spot-
checking include; the multinomial logistic regression, k-nearest neighboour, support vector machines, 
linear discriminant analysis, naïve Bayes, C5.0, bagged classification and regression trees, random 
forest, and stochastic gradient boosting. These algorithms cut across linear models, non-linear models, 
trees and rules, and ensemble of trees. Five COVID-19 datasets were employed and classifiers were 
fitted using these algorithms. The average predictive accuracies indicated that the stochastic gradient 
boosting algorithm is the best model for predicting the transmission mode of coronavirus (81% 
accuracy). Accuracy was determined using the 10-fold cross validation with three repeats. Though 
the datasets used for experiments were obtained from the WHO website, where data is reported at 
the national level of countries, the outcome is equally applicable to data obtained at the level of 
villages, towns, cities, states or regions. The outcome of this study is a valuable contribution in the 
efforts of using data mining and machine learning in the quest to tame the COVID-19 pandemic. The 
research finding has resolved the question of which machine learning algorithm to deploy in the task 
of predicting the prevalent coronavirus transmission mode within a specific geographic area. This 
knowledge should be valuable to health informaticians, epidemiologists, health analysts and other 
stakeholders. There are numerous classification algorithms in existence, but this study deployed only 
nine. Further research should deploy more classifiers for spot-checking. In future research direction, 
the possibility of developing a mobile or computer application that implements the stochastic gradient 
boosting algorithm for predicting the dominant transmission mode of the coronavirus from person-
to-person should be explored.
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