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ABSTRACT

The authors designed an automated framework to segment tumors with various image sequences like
T1, T2, and post-processed MRI multimodal images. Contrast-limited adaptive histogram equalization
method is used for preprocessing images to enhance the intensity level and view the tumor part clearly.
With the combination of kernel possibilistic ¢ means clustering with particle swarm optimization
technique, a tumor part is segmented, and morphological filters are applied to remove the unrelated
outlier pixels in the segmented image to detect the accurate tumor part. The authors collected various
image sequences from online resources like Harvard brain dataset, BRATS, and RIDER, and a few
from clinical datasets. Efficiency is ensured by computing various performance metrics like Jaccard
Index MSE, PSNR, sensitivity, specificity, accuracy, and computational time. The proposed approach
yields 97.06% segmentation accuracy and 98.08% classification accuracy for multimodal images with
an average of 5s for all multimodal images.
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INTRODUCTION

Cancer is a dangerous disease. It produces unpredictable cells, and also reproduces new cells and
new cells break existing organs and cause the tumour to spread, thus harming the body. Tumor in the
brain is classified as primary tumor and metastasis tumor, Primary tumor is one type of cancer which
grows in the brain tissue whereas metastasis tumor affects the other organs in the human body. Primary
brain tumor is further classified as benign and malignant In benign tumor structure is uniform without
active cells and does not affect the nearby tissues whereas malignant tumor contains heterogeneous
structure with active cells affects the other parts of the body. To predict the tumor growth in advance
and reduce the death rate due to breast cancer for women’s an automated frame work is necessary.
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The common types of cancers that develop in breasts are ductal carcinoma in situ, invasive ductal
carcinoma, inflammatory breast cancer, and metastatic breast cancer and our proposed work focus
on invasive ductal carcinoma breast cancer images. For diagnostic and treatment purposes, medical
professionals (radiologists and doctors) need to understand the type of tumors they are dealing with.

In this context, MRI (Magnetic Resonance Imaging) scanning is used to get the high contrast
resolution images of tumors. Using MRI scanner, images with various dimensions and various angles
such as T1-Axial, T2-Axial, T1-Weighted, T1 Contrast enhanced and post processed, are captured
efficiently. The MRI images greatly help medical professionals study the details of various soft tissues
and structures associated with the tumors in question and help them classify tumors. In the whole
process, the technique of segmenting images of tumors from the MRI images plays an important
role. MRI image sequences usually have non-uniform intensity variations and noise inference signals.
They prevent enhanced visualisation of images and proper tumor segmentation. Image segmentation
partitions images into small number of homogenous regions based on their size, texture and pixel
intensity. Thus it enhances the vision of the tumor region. This helps medical professional to extract
the meaningful information from scanned images. From the clinical prospective, when segmentation
is done manually, it takes a lot of time. Further manual segmentation can result in human errors. To
overcome the above said issues, an automated segmentation is required.

Currently, segmentation is done on image sequences pertaining only to any one single modality
such as MRI brain or MRI breast. For this, bio inspired techniques such as Particle Swarm Optimization
(PSO), Cuckoo Search Optimization (CSO), and Ant Bee Colony (ABC), are used. The proposed
system produces better segmentation results in multimodal (specifically, MRI brain and MRI breast)
with various image sequences and yields better segmentation and classification accuracy. This is
achieved by integrating Kernel Possibilistic C Means (KPCM), a technique to calculate the kernel-
induced distance metrics between data spaces, with PSO that provides the best optimal solution with
less number of iterations to increase the efficiency of segmentation and classification of tumors. The
approach also involves the removal of irrelevant pixels from the segmented output using morphological
reconstruction filter. This enhanced output (feature set) is fed into Support Vector Machine classifier
one of the supervised classification techniques for classifying the tumors into normal, benign, and
malignant.

The major contributions of this approach in image segmentation are:

Integration of a clustering method (KPCM) with a soft computing technique (PSO);
Deployment of a classifier (SVM) for tumour classification;

Ability to process image sequences of two different modalities (MRI brain and MRI breast) with
less computational time.

The rest of the paper organized as follows: section II briefs the related work, Section III deals with
image acquiring, types of datasets used, and working principle of KPCM-PSO with Morphological
reconstruction filters and support Vector Machine (SVM) architecture in detail. Section III briefly
discusses the experimental results and its performance measures and in Section IV conclusion and
limitation of the proposed work is stated in a short note.

RELATED WORK

Cellular automation based seeded segmentation algorithm is used to segment the tumor part of
T1 weighted images of MRI brain sequence. Fuzzy-based hybrid techniques have been applied to
segment the DICOM-based MRI brain images and (Uma maheswari & Radhaman, 2012) shown
to yield better results than Otsu based segmentation. Comparison between Kernel Fuzzy C Means
KFCM-F feature space and (KFCM-K) kernel space proves that KFCM is highly sensible in selecting
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the kernel parameters based on the clustering rate and reconstruction rate is defined by Daniel Graves
& Witold Pedrycz (2010).

Hala Ali et al (2015) have segmented MRI brain images using three steps: in the first step, the
spatial context is maintained, in the second step, the image is enhanced and the noise information is
reduced using morphological operations and in the third step, the tumor is segmented using Fuzzy
C Means. MRI brain tumors like Meningioma, Glioma, Astrocytoma, and Metastases are utilized to
classify the tumor based on the attributes of the co-occurrence matrix and the histogram. Fuzzy logic-
based hybrid kernel (Jayachandran & Kharmega Sundararaj, 2015) is used to test the classification for
accuracy. T1-weighted MRI images are used to clustering for brain tumors with Principal Component
Analysis (PCA) algorithm and compare the performance with PPCA, EM-PCA, GHA, APEX — they
conclude that PPCA and EM-PPCA are efficient clustering algorithms.

Multi fractional Brownian motion approach (Artem Mikheev et al, 2008) is applied to identify
the tumor part based on tumor size and its texture, The limitation in this method is that it focused
on single image sequence like T1-W alone and its jaccard index is comparatively less than leading
approaches (Vijayakumar & Ashish Chaturvedi, 2012). It uses three steps for detecting and classifying
the MRI brain tumor with T1W and T2-W sequences. In the first step, Gaussian filter is applied
for pre-processing and in the second step, fluid flow is used to segment the tumor part and in the
last step support vector machine is used for classification of tumor as normal and abnormal. Using
spatially constrained possibilistic fuzzy c-means classification (Hayit Greenspan et al, 2006) for
segmenting the lesions present in MRI brain with T1-W and T2-W image sequences. They proved
that PFCM produces better segmentation accuracy than FCM clustering in short duration of time.
An hybrid approach (Aboul EllaHassanien &Tai-hoon Kim, 2012) to segment the tumor region by
pulse coupled neural networks and SVM classifier is used to discriminate the tumor as cancer or
not and proved its accuracy with various techniques like decision trees, rough sets, neural networks,
and fuzzy artmap. SVM with KNN (Machhale et al, 2015) is combined for image classification and
yield 98% of classification accuracy with 50 images. Bauer et al (2011) has utilizes 10 multispectral
dataset of patients with the combination of Support Vector Machine classification using multispectral
intensities and textures with subsequent hierarchical regularization based on Conditional Random
Fields. Combination of wavelet transform, Genetic algorithm and SVM (Ahmed Kharrat et al, 2010) is
applied for brain tumor classification. It obtains 96.2% classification accuracy. T2 spectral MRI breast
image tissues (Wang et al, 2008) are classified using SVM with 5 classes namely fatty, glandular,
tumor, muscle, and background with limited number of images.

Sowjanya et al (2018) has utilized adaptive wind driven optimization technique for segmenting
the tumor part of brain images with Axial T2 Weighted image sequences with 10 MRI brain images,
with the number of cluster=5 and number of iteration used is 80, To reduce the number of iteration
WDO is replaced with adaptive wind driven optimization and proved its efficiency with PSO, DE
and GA techniques, its limitation is high execution time and the choice of multilevel threshold value.

Combination of Genetic Algorithm — Ant Colony optimization-Fuzzy C means (GA-ACO-FCM)
algorithms (Guru Kalyan Kanungo et al, 2014) aids in segmenting the breast tumor part and achieves
high accuracy when compared with other existing techniques like GA and ACO. Weighted PSO
optimization (Seetha & Santhosh baboo, 2017) applied to extract the tumor part of mammogram breast
cancer images and classifies the micro calcifications into benign, malignant or normal images. Aya
Hossam et al (2018) have suggested utilizing the sub-optimum Feature set algorithm with Particle
Swarm Optimization (PSO) to detect the tumor part using a breast cancer dataset and to ensure the
classification accuracy as better as data structure’s breast first and Greedy approach. Max-min with
the east variance method (Raj kumar & Raju, 2015) is applied to extract the abnormal part in breast
images. Fuzzy C Means combined with a level set with PSO (Elham Gohariyan et al, 2016) is used
to segment the MR brain images and proved its accuracy with limited images. Combination of Ant
Bee colony— Extreme Learning Machine — Kernel Fuzzy C Means clustering (Hemalatha et al, 2018)
is used for segmenting the tumor part of brain images. This method yields 97.03% of segmentation
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accuracy and 95.85% of Classification accuracy. But its limitation is combination of three different
approaches that leads to high computational time. Ahmed et al (2016) have used contrast enhanced
MRI breast images with KNN classifier and with two classes to classify the tumors as benign and
malignant with 20 patients images based on histogram feature extraction.

BAT based Interval Type-2 Fuzzy C-Means (BAT-IT2FCM) clustering (Saravanan et al, 2020) is
used for brain tissue segmentation with the T1-W, T2-W, FLAIR (Fluid Attenuated Inversion Recovery)
and MP(Multi- planar Reconstruction) image sequences and proved their segmentation accuracy with
various existing approaches like Cuckoo based IT2FCM, PSO based FCM etc. Anitha Narayanan et
al (2019) combines the particle swarm optimization (PSO) and bacteria foraging optimization (BFO)
with modified fuzzy c means (MFCM) algorithm for segmenting the tumor tissue and identifies the
tumor part with the T1- W, T2-W image sequences. Deep Neural network model (Yurttakal et al, 2020)
is used to classify the MRI breast images in to benign and malignant and proved this classification
accuracy with 98.8% with 200 sample image datasets. Ahmed et al (2020) utilized the Deep Lab and
Mask RCNN (restn CNN) for classifying the Mammogram breast masses and its limitation is artifact,
muscle removal and noise handling during the feature extraction.

METHODOLOGY

Scope of Our Proposed Work

The major goal of this method is to develop an automated framework by combining the two multimodal
MR brain images like T1-W, T1-A, T2-W, T2-A and for breast image sequences like post-processed,
T1 —A, T2-A and post-contrast images. The author investigated various techniques and proved that
this automated frame work helps radiologists for early prevention and also for diagnosis using MR
brain and MR breast tumor images in advance. This method uses 208 images (170 MRI brain and 38
MRI breast) and ensures the segmentation accuracy with 97.06% and classification accuracy with
98.08%. This compares the computational time with various emerging techniques like GA with K
Means, FCMPSO and FCM-SVM etc.

Details of Image Dataset

In this study, the authors have used various types of images for the MR brain and breast for ensuring
the validity of the proposed method.

MR Brain Images

This study uses various types of MR brain image sequence like T1 axial, T2 axial and T1 post-contrast
images. These images are collected from online datasets like Harvard Brain Web Database (Alexander
Dagley et al, 2017) and also from hospital datasets. To enhance the fatty portion T1-Weighted images
are used to focus the image which was taken in front dimension as T1-Axial images that are used to
analyze the anatomic details, whereas T2- Axial produces the detailed information about anatomic
details of CSF helpful for blood flow and lesions part.

MR Breast Images

MRI scanning images of breast cancer is used to measure the accurate size of tumor part and to detect
multifocal and multi centric lesions accurately. This study uses post-processed T1 post-contrast and
STIR axial images for MR breast images and these samples are collected from publicly available
sources like RIDER (Reference Image dataset to evaluate Therapy response) (Meyer et al, 2015) and
few from hospital dataset. The authors have used Intel I5 core Vostro 3000 series with 4Ghz processor
with 4 GB RAM for processing the input images.
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Image Analysis

Our proposed approach steps are described as follows:

Step 1: Convert the input image of size 256 x 256 into grayscale image.

Step 2: Apply CLAHE preprocessing to enhance the contract of tumor part and reduce noise
amplification.

Step 3: To initialize the cluster KFCM method is used, based on kernel space all data inputs are
mapped with high dimensional feature space to reduce the noise as well as outlier more accurate
then FCM.

Step 4: To Integrate the KFCM with PSO for global solution based on the cluster centroid, which is
used to extract the tumor parts.

Step S: Apply morphological reconstruction filters to segment both brain and breast tumors with
accurate size by removing the irrelevant pixels in the outliers.

Step 6: SVM classifier is used to classify the tumor as normal, benign and malignant based on the
feature set obtained from the segmented output images.

Step 7: Compare the segmented output with expert manual segmentation and ensure 97.06%
segmentation accuracy. Based on specificity, sensitivity values classification accuracy and
obtained as 98.08%. The Flow diagram of our proposed work is shown in Figure 1.

Contrast Limited Adaptive Histogram Equalization (CLAHE)

Preprocessing is very essential for the medical image to enhance the contrast level of the input images
for identifying the tumor part. CLAHE is highly used to enhance the contrast and helps to identify
the boundaries of tumor part. It also suppresses the noise levels other than AHE (Waleed et al, 2014):

Figure 1. Flow diagram
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where o< represents the non-negative number and the authors have assigned as 0.2, which defines
the distribution value and p ( f ) is a cumulative grey level function of R.

Kernel Possibilistic C-Means

FCM is a soft computing technique that is highly suitable for medical image segmentation applications
(Vishnuvarthanan & Rajasekaran, 2014). It is an iterative approach method that yields an optimal
C partition by minimizing the weighted within the group sum of squared error objective function
(Krishnapuram & Keller, 1993). It is denoted as:

N C

Jm = Z Sl’;’xl o 672 (2)
i_1 =1 '

where X = {x, X,....... X, }is the data set and cluster center is represented as follows:

= ZZ’:J‘IK (xk ’ V7 ) z,
S K (V)

Vi 3)

To reduce the noise, outlier and inaccurate boundary detection, FCM is not preferable to overcome
the problem and improve the robustness. KPCM objective function is defined as:

JECM = S5 wrd? (2, V) + ST S (1- 4, )" )
i=1 k=1 i=1 k=1

where d represents the Mahalanobis distance measure as:

@ (2,.V) = (@, V)8 (V) 5)

i

where:

>N ®

where p is the problem dimension and its value is assigned as 1. From equation 3, the value of n, is
chosen using the formula:
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where k =1 and the membership of PCM values are updated by:
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KPCM objective measure is represented as:
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Membership is updated using:

(10)

Here the author’s use the Gaussian function as kernel function and n, can be estimated by using:
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Steps for KPCM is as follows:

Step 1: Initialize number of class ¢ = 3 for the pre-processed image, m >1 and ¢ =0.
Step 2: Initialize U’ = 0 .as a random value
Step 3: Determine the value of n_.using equation 11
Step 4: See below:

i. Update V' .using equation 3.

ii. Update U'.using equation 10.

iii. Check whether J ;(J;lm —-J ;(P o < € then stop the process else goto step 3.
Step 5: Stop the process

Particle Swarm Optimization

The KPCM processed images are given as input to the PSO algorithm to achieve the global solution,
whereas PSO is the best for producing globally optimal solution obtained from the behaviour of
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swarm. PSO is used to find the optimal cluster location from which the clustering operations are
performed by the KPCM to reduce the computational complexity, particle with random position and
velocity is evaluated using fitness function:

{v,(6)if = (t+1)> 7(v, (1)

wli1)=y, (t+1)if o, (1) < £ (s, 1) (12
Global best position § (gbest) can be obtained by applying the following equation as:

i(t) € {vom, -} = min{fGy, (1), (v, (1)) £ (v, ()} (13)
Velocity and position of the particle is updated by applying the following equation:

o, (6+1) = wo, (1) + e (8) (v, () = 2, )+ e (1) (9 (1) = 2, (1) (14)

z(t+1) =z, (t)+ v, (t+1) (15)

where i = 1,2, 3, ....p, are integer values and the parameter used in PSO is mentioned in Table 1.

Morphological Reconstruction Filters

Mathematical morphology provides aid between the KPCM-PSO segmented image and structural
element. It also briefs the structure and the shape of an object by using set theory. A more powerful
class of morphological filters can also preserve the horizontal contours that are the opening and closing
by reconstruction. These two operations involve an interaction between an image (A) and a structuring
element (B). The morphological reconstruction filters perfectly, preserving other components and their
contours. The size of removed components depends on the size of the structuring element. Among

Table 1. Parameters of PSO

Definition Values
C 2
M 2
Iteration 60
104
C 0.5
C, 1.5
P 20
U . 255
W 0.9
W 0.4
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Figure 2. Overall average values of all feature sets
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the many structuring elements, ‘disc’ (Gonzalez & Woods, 2009) is more suitable for removing the
unrelated pixels with 7 x7. It also preserves the edges and enhances the quality of medical images.
Morphological operators like dilation and erosion are highly helpful in medical images. Erosion
shrinks the extraneous pixels, and dilation escalates pixels in the segmented image.

Dilation of A by B is represented as:

(A@B)(s,t) = max A(s—x,t—y)——,(t—y) € DA;<3,y) €D, (16)

where D, and D, are the domains of A and B. whereas erosion of A by B is defined as:

Bl
o)

(A@B)(s,t):mam A(s—x,ter)— ,(ter)GDA;(s,y)GDB a7

where D, and D, are the domains of A and B. opening and closing are denoted as:

AoB:(A@B)@B (18)

A-B:(A@B)@B (19)

The morphological closing operator applies dilation followed by erosion, where dilation leads
to brighter image and erosion leads to darker images. A morphological closing simplifies the
original signal by removing the dark components that do not fit within the structural elements B,
where A represents the original image and B is the structuring element applied to the KFCM PSO
segmented image. Applying Morphological operations highly reduces the computational time for
tumor segmentation that has been proved (Devkota et al, 2017).
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SVM Classifier

SVM classifier (Mathew & Anto, 2017; Srinivas & Sasibhushana, 2019) are one of the best classifier
under supervised learning technique. It is highly used in medical image classification with two types
namely linear and non linear. In order to classify the tumor as normal, benign and malignant many
techniques like DWT, Gabor Filter and GLCM are commonly used. The gray level co-occurrence
matrix is mostly used as statistical technique for feature extraction. This study uses GLCM for
classifying the tumor as normal, benign and as malignant. The statistical importance is examined
using one-way ANOVAs test. Our work uses non linear classifier with the following texture features
like entropy, mean, standard deviation, variance, correlation, contrast, kurtosis, energy, skewness
and homogeneity for classification. The overall average values of all feature set is shown in Figure
2. The SVM classifier is suitable for classifying the tumor of multimodal images. It obtains 98.08%
classification accuracy with 208 images (with 170 benign and 38 malignant) validated by expert
radiologist using manual segmentation and classification.

PERFORMANCE MEASURES

Jaccard Index

Jaccard Index (Jaccard, 1912) values ensure the segmentation accuracy, and its representation is
defined as:

~—

J(A’ B) — S(A—ﬂB (20)

S(AUB

~——

MSE (Mean Square Error)

It is used to measure the accumulated square error obtained between the input image A (i, j) and the
segmented output image B (i, j):

MSE — iiyi[A(z j)-B(s j)r @1

TY =0 =0

where x and y represents the row and column of the given input image.

Peak Signal to Noise Ratio (PSNR)

PSNR value is used for measuring the noise resistance level between the input and segmented output
image. Its value is depended upon the MSE value obtained (Sumathi et al, 2018). The PSNR value
lies in the range from 40 to 60 and ensures the quality of good segmentation. It also ensures the
noise signals value of MSE as low, and PSNR value remains high. The combination of MSE and
PSNR is used to degrade the noise level, PSNR computes the pixel by pixel comparison with input
and segmented output images, it determines the how close the image obtained from the manual
segmentation and also ensure the quality of segmented image.
The formula of PSNR is denoted as:

255
MSE

PSNR =10*1log10

(22)

64



International Journal of E-Health and Medical Communications
Volume 12 « Issue 3 » May-June 2021

Sensitivity, Specificity and Accuracy
It measures the percentage of patients having tumors (Sumathi & Arjunan, 2014) It is calculated using:
TP

Sensitivity = —— 23
v TP + FN 23)

where as specificity is the percentage of patients that is not correctly identified with tumor. It provides
the percentage of patients wrongly identified with a tumor:

TN
Specificity = ——— 24
pecificity TN + FP (24)

Accuracy
Accuracy is used to calculate the proposition of both TP and TN in all evaluated cases:

Accuracy = TP+ TN (25)

TP+ FP+TN + FN

where TP (True Positive) represents the correct segmentation of tumor part; FP (False positive)
represents normal region present in the input image identified wrongly as tumor region; FN (False
negative) represents the wrongly segmented tumor region, and TN (True Negative) represents the
correct segmentation of non-tumorous part.

RESULTS AND DISCUSSION

The proposed technique segments the tumor part of MR brain and MR breast in an efficient manner
within a minimum duration by combining KPCM-PSO technique with morphological filters. Brain and
breast tumor shapes are exactly segmented by applying morphological filters. It is highly preferable in
biomedical research and real-time applications. Its task is to remove unrelated patches and unrelated
holes in the given image. The output produced by our proposed method has been validated with ground
truth images of clinical dataset. It is useful to the surgeon to get detailed information about the tumor
shape, size and location in the brain and the breast within a short duration. T1- axial, T1-Enhanced,
T1-Weighted, T2 -axial and T2-Weighted MRI brain images with the age group of 30-45 is shown in
Figure 3. These images are collected from online dataset like Harvard Brain Dataset and BRATS 2013
challenge images. 3(a) contains input image, 3(b) contains CLAHE Pre-processed images and 3(c)
contains KPCM-PSO technique with morphological reconstruction filters segmented output images.
MR breast of T1 weighted, T1 Axial, T2 axial, T2 Weighted Images collected from the clinical dataset
with Carcinoma tumor of the patients’ age group 35 to 40 is shown in Figure 4, where 4(a) contains
input image, 4(b) contains CLAHE preprocessed images that increase the contrast to enhance the tumor
part clearly, 4(c) contains the segmented output images using KPCM-PSO and Morphological filters.
It is observed that the proposed method is highly helpful to the radiologist to segment the tumor part in
multimodal image. MRI brain segmentation accuracy is proved with comparing the output of existing
methods is shown in Figure 5 whereas MRI breast images segmentation is compared with meanshift,
meanshift + K Means clustering methods is shown in Figure 6. From this, it is proved that KFCM-
PSO is an efficient method for segmenting both brain and breast images. Segmentation accuracy of
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Figure 3. T1- axial, T1-Enhanced, T1-Weighted, T2 -axial and T2-Weighted MRI brain images with the age group of 30-45
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the proposed method with existing techniques used (Hamamci et al, 2012; Priyansh Sharma et al,
2017) for both images is shown in Figure 7. The tumor segmentation performed using improved K
Means clustering, and hybrid segmentation using region growing techniques. From the comparisons
of existing approaches, the proposed method ensures the efficiency of segmentation. Some ground

Figure 4. MR breast of T1 weighted, T1 Axial, T2 axial, T2 Weighted Images collected from the clinical dataset with Carcinoma
tumor of the patients’ age group 35 to 40
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Figure 5. MRI brain segmentation accuracy is proved with comparing the output of existing methods
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truth images of brain and breast are shown in Figure 8. Jaccard Index comparison among existing
with proposed work is shown in Figure 9, whereas Jaccard index of Mean shift produces 0.09, Mean
shift + K means produces 0.878 and KPCM-PSO yields 0.95. It proves that the proposed method
gives vital information about the commonality among input and segmented images.

The average values of MSE and PSNR produced by various segmentation methods like Mean
shift, Meanshift + K Mean and KPCM-PSOMSE values of existing methods like Mean shift produces
26.79, Meanshift+K Means produces 4.15, whereas this method yields 0.11, which is relatively less
than all the existing methods is mentioned in Figure 10. By default, any segmentation efficiency is
proved based on the PSNR value range between 40 and 60 decibels. This method ensures the quality
of segmentation from the PSNR value of the proposed method. It is observed that the noise level is
comparatively low and validates that this method is suitable for segmenting multimodal images. It can
also be applied to many image processing applications like image compression, image enhancement
etc., From the MSR and PSNR comparison chart, it is proved that the present work contains 44.5
overall PSNR value, whereas Mean shift produces 21.22, Mean shift + K means produces 38.5.

To ensure the segmentation specificity, sensitivity and accuracy measures are compared with
existing techniques. Our present study’s segmented output yields 97.06% accuracy with ground
truth images, whereas Mean shift produces 93.3% and Mean shift + K Means contribute 95.3% are
mentioned in Figure 11. The average computational time comparisons among all techniques are
shown in Figure 12. From the comparison chart, the proposed method is found to be an efficient
segmentation method among all other techniques (Kumar et al, 2018; Siyuan Lu et al, 2018). It is
observed that KFCM-PSO is highly suitable for tumor segmentation with various image sequences
like T1, T2, Post-processed etc, though many soft computing approaches are used in medical image
segmentation, the proposed method takes minimum duration for segmenting the tumor part of brain
and breast images. Classification accuracy with existing techniques like (Latif et al, 2017; Ali et al,
2015) are compared with our proposed work is shown in Figure 13. From this output, it is noticed
that SVM classifier is suitable for classifying the multimodal image using BRATS data images and
few from clinical dataset. It is observed that ABC-ELM-KFCM classifier is 97.03% accurate and
our proposed method yields 98.08% which is far better than existing methods. From the obtained
segmentation and classification outcome, it was proved that our proposed method KFCM- PSO with
morphological reconstruction is highly helpful for radiologist for clinical decision support system.

The proposed method faces a shortcoming of fixed size. Since the approach fixes the size of the
structural element (7x7) in the morphological reconstruction filter, it may not always accommodate
shapes (especially of breast) when mass increases or decreases abnormally. The value of Jaccard
index can be improved by using various other hybrid techniques like Fish Swarm Optimization and
GA based optimization with deep learning techniques. There are still some open research questions
to address in future:

1. Adaptive selection of structural element size for different image modalities;
Adaptive selection of the hybrid techniques based on the physiological structure of the various
images;

3. The optimization of the parameters with respect to the features of the image segmentation.

CONCLUSION

This study has shown that the proposed automated KPCM-PSO with morphological filters has
significantly able to segment both the modalities. Efficiency is proved by applying various performance
measures like Jaccard index, MSE, PSNR, specificity, sensitivity, accuracy and computational time.
From the MSE and PSNR values, it is proved that the segmentation results obtained by the proposed
algorithm have good immunity toward noise interference. The accuracy rate of the proposed method is
far better than existing approaches and also computational time comparison ensures that using KPCM-
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Figure 9. Jaccard Index comparison
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PSO segmentation works in short duration. Our proposed method produces 97.06% segmentation
and 98.08% classification accuracy for both MRI brain and breast images. The future work may
focus on hybrid techniques with deep learning techniques for both segmentation and classification

of multimodal images.
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Figure 12. The average computational time comparisons among all techniques
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Figure 13. Classification accuracy with existing techniques
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