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ABSTRACT

In this article, it is shown that the dimension of a metal skeleton of giant palladium cluster, containing 
561 atoms in five shells, is 8. The claims of some authors that the palladium cluster in this case is an 
E8 lattice are groundless. The internal geometry of multi-shell metal clusters with ligands and core 
was investigated. It is proved that the multi-shell clusters with common center and different centers 
have a higher dimension. Clusters with ligands and a structural unit octahedron exist with different 
metals in the core. A spatial image of the cobalt tetra-anion cluster is presented. It is proved that its 
dimension is 5. It is considered homo-element metal cycles with ligands. For example, a spatial image 
of the three nuclear carbonyls of ruthenium and osmium it is build. It was proved that the ligands in the 
three nuclear carbonyls of ruthenium and osmium do not form a ligand polyhedron, as was previously 
assumed. The construction of cluster in this case can be divided into two polytopes dimension of 4.
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INTRODUCTION

In a recent work of the author (Zhizhin, 2019a) higher dimensions of clusters of intermetallic 
compounds were considered. In particular, multi-shell intermetallic clusters were considered, each 
shell of which is a convex regular three-dimensional polyhedron (Plato bodies). It was assumed that 
all shells in a certain arbitrary cluster have a common center and are of the same type. The statement 
is proved.

Theorem: The dimension d of a cluster of N shells with a common center is N + 2, if there is no 
atom in the common center, and is equal to N + 3, if there is an atom in the common center.

The proved statement allows us to calculate the dimension of many well-known intermetallic 
clusters: Mackay, Bergman, Samson, and others (Mackay, 1962; Pauling, 1960; Nyman & 
Anderson,1979; Bergman et al., 1952, 1957; Komura et al., 1960; Audier et al., 1998; Samson, 1972).

Continuing the mathematical descriptions begun in this work of real clusters of chemical 
compounds with the determination of their dimension, this article discusses multi-shell metal clusters 
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with ligands. Moreover, the shells in one cluster may have a different shape, as well as a common 
center or several centers at the same time. The study is based on the classification of various real 
clusters of chemical compounds with ligands (Gubin, 2019). This line of research is fundamentally 
different from abstract cluster studies that are not associated with specific chemical compounds and 
do not have technological significance (McMullen, & Schulte, 2002; Diudea & Nagy, 2007; Ashrafi, 
Cataldo, Iraumanesh, & Ori, 2013; Diudea, 2018).

THE DIMENSION OF A METAL SKELETON OF GIANT PALLADIUM CLUSTER

It was shown (Vargaftik, et al., 1985) that upon the reduction of palladium acetate with hydrogen in 
the presence of nitrogen-containing ligands (L), polynuclear complexes are formed, which are easily 
converted into cluster compounds. Based on the study of their structure by electron microscopy, they 
were assigned the composition Pd561L60(O2)180(OAc)180. The palladium atoms in this compound form 
a dense packing in the form of five icosahedrons with a common center in which the palladium atom 
is located. Ligands are located on the surface of a metal skeleton. The number of atoms in the metal 
core of this cluster is determined by the formula:

1 10 2
1

2+ +∑( ),
N

N N 	

is the number of layers around the central metal atom (Lord et al., 2006).
From Theorem in introduction (Zhizhin, 2019 a) at once it follows that the dimension of a metal 

skeleton of giant palladium cluster, containing 561 atoms in five shells, is 8. The claims of some 
authors that the palladium cluster in this case is an E

8
 lattice (Shevchenko, 2011) are groundless. 

The lattice E
8

, as you know (Conway, & Sloane, 1988), is a collection of points in an eight-dimensional 
space with coordinates ( , , , , , , , )± ±1 1 0 0 0 0 0 0 , where units can stand anywhere on the line with 
arbitrary signs, as well as points with coordinates:
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Obviously, this lattice has nothing to do with the structure of a cluster consisting of five icosahedral 
shells. It is assumed (Coxeter, 1963) that the lattice E

8
 corresponds to the polytope of Gosset (Gosset, 

1900), which draws from simplexes and cross-polytopes. But from the previous it follows that the 
polytope corresponding to the metal skeleton of a giant palladium cluster does not include either 
simplexes or cross-polytopes.

CLUSTERS ON AN OCTAHEDRON

Let there be a set of six atoms of osmium bound by a chemical bond (Gubin, 2019). The addition 
of other osmium atoms to this structure occurs by centralizing the planar triangular faces of the 
octahedron. As the first stage, atoms attach to triangular faces (located above them on the outside of 
the octahedron). In this case, faces with attached atoms and faces with non-attached atoms alternate 
with each other. Since four atoms joined the octahedron, a cluster of ten atoms forms (Figure 1).

In order to represent this cluster in the form of a convex figure, it is necessary to supplement 
it with edges. In this case, for the formation of a convex closed figure, the minimum additional 
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number of edges is 16 (black segments in Figure 1). In a topologically equivalent form, this cluster 
is depicted in Figure 2.

You can see that this is a 5 - cross - polytope. Each vertex in Figure 2 is connected by an edge to 
all other vertices with the exception of the opposite vertex. The number of elements of the dimension 
i in the d - cross - polytope is equal (Zhizhin, 2013, 2014, 2018, 2019 b):

f C
i

i
d
d i= + − −21 1 	 (1)

It have 10 vertices f Ci
0

1
4
55 2 10( )= =( )+ , 40 edges f C

1
2
5
35 2 40( )= =( ) , 80 triangle faces 

f C
2

3
5
25 2 80( )= =( ) , 80 tetrahedrons f C

3
4
5
15 2 80( )= =( ) , 32 four – dimensional simplexes 

Figure 1. The octahedron with attached tetrahedrons on faces of octahedron

Figure 2. The 5 – cross - polytope
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f
4

55 2 32( )= =( ) . The dimension of a figure is determined by the Euler-Poincare equation (Poincare, 
1895):

( ) ( ) ( )− = + − −

=

−

∑ 1 1 1 1

0

1
i
i

d

i

d

f P 	 (2)

In (2) f P
i
( )  is the number of faces with dimension i in polytope P with dimension d.

Including the numbers f
i
 in equation (2) we get 10 – 40 + 80 – 80 + 32 = 2. This proves that 

the figure in Figure 2 is a convex polytope of dimension 5. It is easy to make sure that with fewer 
edges the complex of ten atoms will not be convex, since equation (2) will not be satisfied. The next 
step in the formation of a cluster as a convex figure could be the attachment of atoms to the faces of 
the octahedron to which the atoms have not yet been attached. There are four such free faces. However, 
as follows from Figures 1 and 2, when constructing a convex figure, these free faces turned out to be 
already occupied tetrahedra without changing the number of vertices. But the edges of these tetrahedra 
have only geometric meaning for creating a convex figure. Therefore, attachment to these faces of 
tetrahedra with chemical bonds is still possible. Then a figure with 14 vertices is formed. Creating a 
convex figure from it will lead to the formation of a 7 - cross - polytope, which has already been 
shown in Figure 3.

From the general expression for the number of elements of the dimension and in the d - cross - 
polytope (1) it follows that the number of vertices in this polytope f C

0 7
62 14= ⋅ = ,  the number of 

edges f C
1

2
7
52 84= ⋅ = ,  the number of triangle faces f C

2 7
48 280= ⋅ = ,  the number of tetrahedrons 

f C
3 7

316 560= ⋅ = ,  the number of four - dimension simplexes f C
4 7

232 672= ⋅ = ,  the number of 
five - dimension simplexes f C

5 7
164 448= ⋅ = ,  the number of six - dimension simplexes f

6
128= .  

Further attachment of atoms to the 7 - cross - polytope can be limited by the possibility of creating 
a large number of valence bonds.

Figure 3. The 7 – cross - polytope
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CLUSTERS ON A CUBOCTAHEDRON

Let there be a set of 12 rhodium atoms linked by a chemical bond, forming one of the forms of the 
cuboctahedron (Figure 4).

6 other rhodium atoms can join this design by centering the square faces. Geometrically, this 
means joining to the square faces of the cuboctahedron 6 quadrangular pyramids on the outside of the 
cuboctahedron. In this case, a figure is formed having two parallel triangular faces, each of which is 
composed of four triangular sections. In the center of the parallel faces of the figure is the triangular 
faces of the cuboctahedron. In order to create a convex figure, in this case it is enough to connect the 
corresponding vertices of these parallel faces with the edges (Figure 5).

The sides of the resulting figure contain two trapezoids tilted to each other. Each of them is 
composed of three triangles. So that the sides of the figure are not flat. We can say that the resulting 
figure is a “bloated” prism. Each of the three generators of this prism is simultaneously the edges of 
three tetrahedrons that close the figure. So, the resulting figure contains 12 vertices of the 
cuboctahedron and 6 vertices of the attached six pyramids, i.e. f

0
18= . Many edges of the figure 

Figure 4. The Cuboctahedron

Figure 5. The “bloated” prism
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contain 24 edges of the cuboctahedron, 24 edges of the attached pyramids and 3 edges of the generators, 
i.e. f

1
51= . The flat sections of this figure are composed of 14 flat faces of the cuboctahedron, 24 

triangular faces of the pyramids and 6 flat faces of the tetrahedra containing 3 generators, i.e. f
2
44= . 

The figure includes 11 three-dimensional bodies (6 pyramids, 3 tetrahedrons, 1 cuboctahedron, 1 
three-dimensional body with the outer surface of the figure without taking into account the internal 
content of the figure, i.e. f

3
11= . Substituting these numbers into the equation (2) we get 18 – 51 

+ 44 – 11 = 0. This proves that the resulting figure has dimension four. It should be noted that the 
figure obtained is an example of a polytope of higher dimension significantly different from a simplex 
and a cross-polytope. As follows from the construction (Figure 5), 5 edges come from each of its six 
vertices, which are simultaneously the vertices of the attached pyramids. From any of the other 
vertices that coincide with the vertices of the cuboctahedron, 6 edges emanate. While in a simplex 
with 18 vertices, 17 edges emanate from each vertex, and in a cross-polytope, under the same 
conditions, 16 edges emanate from each vertex. Further addition of atoms will increase the dimension 
of the figure, provided it is convex.

COMPOUNDS WITH LIGANDS HAVING A METAL OCTAHEDRON FRAME

Clusters with ligands and a structural unit octahedron exist with different metals in the core: Pt, Pd, 
Ni, Cu, Ti, Fe, Ru and other metals (Gubin, 2019). They are distinguished by sufficient structural 
complexity, leading to the formation of polytopes of a higher dimension of new types. So far, none 
of them have been analyzed in the space of higher dimension. As an illustration of such an analysis, 
we consider the structure of the cobalt tetra - anion cluster [ ( ) ( ) ]Co Co CO

6 8 6
4µ− − . The scheme of 

this compound is shown in Figure 6 (Johnson, & Benfield, 1981).

The desire to create a convex model of this compound leads to the appearance of various three 
-dimensional polyhedrons and four - dimensional polytopes entering into each other.

Theorem 1: The dimension of cobalt tetra - anion cluster [ ( ) ( ) ]Co Co CO
6 8 6

4µ− −  equal 5.
Proof: To build a spatial model of cobalt tetra - anion cluster [ ( ) ( ) ]Co Co CO

6 8 6
4µ− − , let us turn to 

its scheme in Figure 6. From this figure, it can be seen that the ligands (μ - CO) that bind two 

Figure 6. Scheme of cobalt tetra - anion cluster [ ( ) ( ) ]Co Co CO
6 8 6

4µ− −
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metal atoms form a cube. In addition, each vertex of the metal core in the form of an octahedron 
is formed as a result of constructing a pyramid on each face of the ligand cube. The free vertices 
of these pyramids give the vertices of the octahedron of atoms cobalt. The six faces of the cube 
thus give six vertices of the octahedron. Consider first the figure that forms as a result of this 
construction. The spatial image of this figure is shown in Figure 7.

The valence bonds are indicated in this figure with red edges. The edges of the ligand cube are 
marked with dotted black lines. The edges of the pyramids, with the exception of the grounds, denoted 
by solid lines in black. Thus, the ligands (μ - CO) are located at the vertices 2, 4, 6, 8, 9, 11, 12, 14. 
Metal atoms are located at the vertices 1, 3, 5, 7, 10, 13. To create a closed convex figure in the figure, 
two edges are added blue 1 - 4, 9 - 14. Determine the dimension of this compound. There are 14 
vertices here ( )f

0
14= . The numbers of edges on Figure 7 is 50 ( f

1
50= ) :

1 - 2, 1 - 3, 1 - 13, 1 - 12, 1 - 4, 1 - 10, 1 - 9, 1 - 8, 1 - 7, 2 - 3, 2 - 13, 2 - 14, 2 - 12, 2 - 9, 3 – 4, 3 - 
5, 3 - 14, 3 - 13, 3 - 12, 3 - 10, 4 - 5, 4 - 6, 4 - 10, 4 - 12, 4 - 14, 5 - 14, 5 - 11, 5 - 10, 5 - 6, 5 - 7, 5 
- 13, 6 - 7, 6 - 10, 6 - 11, 6 - 8, 7 - 10, 7 - 11, 7 - 13, 7 - 8, 7 - 9, 8 - 9, 8 - 10, 8 - 12, 9 - 11, 9 - 13, 

9 - 14, 10 - 12, 11 - 13, 11 - 14, 13 – 14	

The number of triangles on Figure 7 is 58:

Figure 7. The spatial image of compound Co Co
6 8
( )µ−
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1 - 2 - 3, 1 - 3 - 13, 1 - 3 - 12, 1 - 2 - 13, 1 - 2 - 12, 1 - 2 - 9, 1 - 9 - 8, 1 - 9 - 7, 1 - 12 - 8, 1 - 13 - 
7, 1 - 10 - 7, 1 - 10 - 8, 1 - 10 - 12, 1 - 10 - 3, 1 - 9 - 13, 1 - 8 - 7, 2 - 12 - 3, 2 - 13 - 3, 2 - 14 - 3, 
2 - 14 - 13, 2 - 9 - 13, 3 - 12 - 4, 3 - 13 - 14, 3 - 13 - 5, 3 - 4 - 5, 3 - 14 - 5, 3 - 14 - 4, 3 - 10 - 12, 

3 - 10 - 4, 3 - 10 - 5, 4 - 5 - 14, 4 - 10 - 12, 4 - 5 - 10, 4 - 6 - 10, 4 - 5 - 6, 5 - 13 - 11, 5 - 13 - 14, 5 - 
14 - 11, 5 - 11 - 6, 5 - 11 - 7, 5 - 10 - 6, 5 - 7 - 6, 5 - 10 - 7, 6 - 10 - 7, 6 - 11 - 7, 6 - 8 - 7, 6 - 8 - 10, 
7 - 11 - 13, 7 - 8 - 10, 7 - 8 - 9, 7 - 9 - 11, 7 - 9 - 13, 8 - 10 - 12, 9 - 11 - 13, 9 - 13 - 14, 9 - 14 - 11, 

1 - 12 - 4, 1 - 10 – 4	

The number of tetragon flat faces on Figure 7 is 6:

2 - 14 - 4 - 13, 14 - 4 - 11 - 6, 11 - 6 - 8 - 9, 9 - 8 - 2 - 13, 4 - 6 - 8 - 12, 2 - 14 - 11 - 9	

Thus, the common number of flat faces on Figure 7 is 64 ( )f
2
64= . The number of tetrahedrons 

on Figure 7 is 19:

1 - 2 - 3 - 12, 1 - 12 - 9 - 7, 1 - 12 - 8 - 9, 1 - 2 - 3 - 13, 1 - 2 - 12 - 9, 1 - 3 - 11 - 13, 1 - 9 - 8 - 7, 2 - 
12 - 14 - 3, 3 - 4 - 5 - 14, 3 - 13 - 4 - 11, 13 - 8 - 11 - 1, 4 - 5 - 6 - 11, 5 - 14 - 10 - 12, 5 - 11 - 7 - 6, 
5 - 10 - 7 - 6, 5 - 12 - 7 - 10, 6 - 11 - 7 - 8, 7 - 9 - 10 - 12, 1 - 8 - 11 – 7	

The number of pyramids on Figure 7 is 6:

2 - 12 - 4 - 6 - 3, 4 - 14 - 6 - 11 - 5, 6 - 8 - 9 - 11 - 7, 9 - 8 - 12 - 2 - 1, 4 - 6 - 8 - 12 - 10, 2 - 14 - 11 
- 9 - 13	

On Figure 7 is 1 cube:

2 - 14 - 4 - 12 - 6 - 8 - 9 – 11	

and is 1 octahedron:

1 - 3 - 5 - 7 - 10 – 13	

In addition, in Figure 7 there is also a closed body with 12 vertices:

2 - 13 - 11 - 10 - 6 - 12 - 3 - 5 - 1 – 7	

His image is presented separately in Figure 8.
Determine the dimension of the body S. For this body is f

0
10= . The number of edges on Figure 

8 is 22 ( )f
1
22= :

1 - 2, 1 - 13, 1 - 12, 1 - 10, 1 - 7, 2 - 3, 2 - 13, 2 - 12, 3 - 5, 3 - 10, 3 - 13, 3 - 12, 5 - 13, 5 - 11, 5 - 
10, 6 - 7, 6 - 10, 6 - 11, 7 - 10, 7 - 11, 10 - 12, 11 – 13	

The number of triangles on Figure 8 is 8:

2 - 3 - 12, 2 - 3 - 13, 1 - 2 - 13, 6 - 5 - 10, 6 - 5 - 11, 1 - 2 - 12, 7 - 6 - 10, 7 - 6 – 11	
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The number of tetragon flat faces on Figure 8 is 4:

13 - 3 - 5 - 11, 12 - 3 - 5 - 10, 1 - 7 - 13 - 11, 1 - 12 - 10 – 7	

Thus, the common number of flat faces on Figure 8 is 12 ( )f
2
12= . Substituting the obtained 

values f i
i
( , , )= 0 1 2  in the equation (2) you can see that the Euler - Poincaré equation is satisfied in 

his case for n = 3 10 – 22 + 12 = 2. This proves that Figure 8 is polyhedron with dimension 3. 
Consequently, the total number of three - dimensional figures included in the polytope in Figure 7 is 
19 + 9 = 28, i.e. for this figure f

3
28= .  Substituting the obtained for Figure 7 values f i

i
( , , , )= 0 1 2 3  

in the equation (2) you can see that the Euler - Poincaré equation is satisfied in his case for n = 4 14 
– 50 + 64 – 28 = 0. This proves that Figure 7 is polytope with dimension 4. Now back to the review 
of cobalt tetra - anion cluster [ ( ) ( ) ]Co Co CO

6 8 6
4µ− −  in Figure 6. On Figure 7 shows the spatial 

image of only part of this compound. To create the spatial image of this compound, it is necessary 
to release the edges into the outer part from the vertices of the octahedron in Figure 7 and build a 
larger octahedron 15 - 16 - 17 - 18 - 19 - 20 on the free vertices of these edges. This are red edges 1 
- 18, 3 - 15, 5 - 16, 7 - 17, 13 - 19, 10 - 20 on Figure 9.

Thus, the number of vertices on Figure 9 equal 20 ( )f
0
20= . The construction of a large 

octahedron taking into account the edges connecting two octahedrons adds 16 edges to the body in 
Figure 7. A three - dimensional figure is formed between each face of a large octahedron and the 
corresponding face of a small octahedron. For example, a three - dimensional figure is formed between 
the face of 1 - 10 - 7 small octahedron and the face 18 - 17 - 20 of the large octahedron (see Figure 
9) 1 - 10 - 7 - 18 - 17 - 20. The number of such three - dimensional figures is equal to the number of 
faces of the octahedron - 8. In addition, to fill the space between the large octahedron and other 

Figure 8. The image a closed body S = 2 - 13 - 11 - 10 - 6 - 12 - 3 - 5 - 1 - 7
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convex bodies that make up the polytope in Figure 7, it is necessary to connect the vertices of the 
large octahedron with the vertices of the cube:

2 - 14 - 4 - 12 - 6 - 8 - 9 – 11	

This adds to the body in Figure 7 another 24 edges:

2 - 15, 12 - 15, 14 - 15, 4 - 15, 14 - 16, 4 - 16, 6 - 16, 11 - 16, 6 - 17, 8 - 17, 9 - 17, 11 - 17, 8 - 18, 
9 - 18, 2 - 18, 12 - 18, 2 - 19, 14 - 19, 9 - 19, 11 - 19, 4 - 20, 12 - 20, 8 - 20, 6 – 20	

Thus, a common number of the edges on Figure 9 is 50 + 16 + 24 = 90 ( )f
1
90= . The construction 

of a large octahedron taking into account the edges connecting two octahedrons adds 20 flat faces to 
body on Figure 7. Connection the vertices of the large octahedron with the vertices of the cube adds 
48 flat faces to Figure 7. For example, the face of the cube:

2 - 14 - 4 – 12	

when building a large pyramid on it gives an additional 8 flat faces:

2 - 12 - 15, 4 - 12 - 15, 4 - 14 - 15, 2 - 14 - 15, 12 - 3 - 15, 2 - 3 - 15, 4 - 3 - 15, 14 - 3 – 15	

Figure 9. Spatial image of cobalt tetra - anion cluster [ ( ) ( ) ]Co Co CO
6 8 6

4µ− −
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Since the faces at cube 6 one gets an additional 48 flat faces. In this way, the total number of flat 
edges in Figure 14 is 64 + 20 + 48 = 132, ( )f

2
132= . The construction of a large octahedron taking 

into account the edges connecting two octahedrons adds 9 three - dimensional faces to body on Figure 
7. Connection the vertices of the large octahedron with the vertices of the cube adds 30 three - 
dimensional faces to Figure 7. For example, the face of the cube:

2 - 14 - 4 – 12	

when building a large pyramid on it gives an additional 5 three - dimensional faces:

2 - 12 - 15 - 3, 4 - 12 - 15 - 3, 4 - 14 - 15 - 3, 2 - 14 - 15 - 3, 12 - 2 - 15 - 4 – 14	

Since the faces at cube 6 one get an additional 30 three - dimensional faces. In addition, 4 
tetrahedrons are additionally formed between the cube and the large octahedron, each of which has 
an edge of one of the edges of a rectangular cross section of:

15 - 16 - 17 – 18	

large octahedron. For example, a tetrahedron:

18 - 17 - 8 – 9	

is formed on the edge 17 - 18. Thus, the total number of three - dimensional areas in the body in 
figure 14 is 28 + 9 + 30 + 4 = 71 ( )f

3
71= . Connection the vertices of the large octahedron with 

the vertices of the cube adds 2 four - dimensional faces to Figure 7, one of which has an edge 18 - 17 
and second has edges 15 - 16 of a rectangular cross section of:

15 - 16 - 17 – 18	

large octahedron. For example, on the edge 17 - 18 formed area 18 - 1 - 9 - 8 - 7 - 17 (see Figure 9). 
This area has 6 vertices ( )f

0
6= . It has14 edges ( )f

1
14= :

1 - 9, 1 - 8, 1 - 7, 1 - 18, 7 - 8, 7 - 9, 7 - 17, 8 - 9, 8 - 18, 8 - 17, 9 - 18, 9 - 17, 9 - 8, 18 – 17	

It has 14 two - dimensional faces ( )f
2
14= :

1 - 9 - 18, 1 - 9 - 8, 1 - 8 - 7, 1 - 7 - 17 - 18, 7 - 9 - 17, 7 - 8 - 9, 7 - 9 - 17, 8 - 17 - 18, 8 - 9 - 17, 8 - 
9 - 18, 9 - 18 – 17	

It has 6 three - dimensional faces ( )f
3
6= :

1 - 9 - 8 - 18, 1 - 9 - 8 - 7, 18 - 9 - 8 - 17, 1 - 18 - 9 - 7 - 17, 9 - 8 - 7 - 17, 1 - 8 - 18 - 7 – 17	

Substituting the obtained for Figure 7 values f i
i
( , , , )= 0 1 2 3  in the equation (2) you can see that 

the Euler - Poincaré equation is satisfied in his case for n = 4 14 – 50 + 64 – 28 = 0. This proves that 
body 18 - 1 - 9 - 8 - 7 - 17 is polytope with dimension 4. It is also proved that the body 15 - 16 - 5 
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- 4 - 14 - 3 has the dimension 4. It can be shown that, due to the orientation of the cube with respect 
to the large octahedron, similar four - dimensional polytopes with the edges of the large octahedron 
18 - 15 and 17 - 16 do not form. Connection the vertices of the large octahedron with the vertices of 
the cube adds yet 6 four - dimensional faces to Figure 7, associated with the formation of structures 
of the pyramid in the pyramid on the faces of the cube. Consider for example two pyramids on the 
face of a cube:

2 - 12 - 14 – 4	

This body has 6 vertices( )f
0
6= , 13 edges( )f

1
13= :

2 - 3, 2 - 15, 12 - 3, 12 - 15, 4 - 3, 14 - 3, 4 - 15, 14 - 15, 3 - 15, 2 - 12, 2 - 14, 4 - 12, 4 - 14, 13	

two - dimensional faces ( )f
2
13= :

2 - 15 - 12, 2 - 3 - 12, 4 - 3 - 14, 4 - 15 - 14, 3 - 4 - 12, 15 - 4 - 12, 2 - 14 - 3, 2 - 14 - 15, 12 - 3 - 
15, 2 - 3 - 15, 4 - 3 - 15, 14 - 3 - 15, 2 - 14 - 12 – 4	

and 6 three - dimensional faces ( )f
3
6= :

2 - 14 - 4 - 12 - 3, 2 - 14 - 4 - 12 - 15, 4 - 3 - 15 - 14, 12 - 4 - 3 - 15, 2 - 12 - 3 - 15, 2 - 3 - 14 – 15	

Substituting the obtained for two pyramids values f i
i
( , , , )= 0 1 2 3  in the equation (2) you can see 

that the Euler - Poincaré equation is satisfied in his case for n = 4: 14 – 50 + 64 – 28 = 0. This proves 
that construction from two pyramids is polytope with dimension 4. The four - dimensional structure of 
two pyramids on the remaining five faces of the cube is proved in a similar way. In addition, the polytope 
in Figure 9 has two polytopes formed by inscribing a cube into an octahedron (large and small). Each 
of these polytopes has dimension 4 (this has already been proved). Finally, the polytope in Figure 9 has 
a polytope octahedron in an octahedron. This polytope also has dimension 4. Therefore, the total number 
of polytopes of dimension 4 that make up a polytope in Figure 9 is 11 ( )f

4
11= . Substituting the 

obtained for Figure 9 values f i
i
( , , , , )= 0 1 2 3 4  in the equation (2) you can see that the Euler - Poincaré 

equation is satisfied in his case for n = 5 20 – 90 + 132 – 71 + 11 = 2. This proves that dimension of 
cobalt tetra - anion cluster [ ( ) ( ) ]Co Co CO

6 8 6
4µ− −  equal 5. Q.E. D.

HOMO – ELEMENT METAL CYCLES WITH LIGANDS

The absence of bridging ligands and high symmetry make three - nuclear carbonyls 
Ru CO Os CO

3 12 3 12
( ) , ( )  convenient support compounds for structural and theoretical studies of three 

- membered homo - element metal cycles. In molecules, each metal atom is associated with four 
functional groups (Figure 10).

It is believed that 12 ligands are arranged so that they form an anti – cube – octahedron as a ligand 
polyhedron (Mason, & Rae, 1968; Benfield, & Jonson, 1981; Gubin, 2019). However, evidence of this 
assumption has not yet been provided. The proof of this assertion could be a concrete construction 
of an anti – cube – octahedron with a three - link metal cycle enclosed in it, connection by valence 
bonds of the metal cycle atoms to the vertices of the anti – cube - octahedron. After this, it is required 
to determine the partition of the anti – cube - octahedron with the constructed valence bonds into 
elementary three - dimensional cells and the verification of the implementation of the Euler – Poincaré 
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(Poincaré, 1895) equation for the constructed polytope. No such evidence was carried out. In this 
chapter, this question will be considered as part of the proof of the following theorem.

Theorem 2: The geometric model of three nuclear carbonyls Ru and Os consists of two polytopes 
of dimension 4, touching each other in a two - dimensional section, containing a three nuclear 
metal cycle.

Proof: Let us assume that carbonyl ligands form a ligand polyhedron in the form of an anti - cube 
- octahedron. Then the three nuclear metal cycle contained in an anti - cube - octahedron must 
be connected by vertices of an anti - cube - octahedron by valence bonds. Each vertex of the 
metal cycle must be connected with the four nearest vertices of the anti - cube - octahedron. In 
an arbitrary general form will look like that shown in Figure 11.

Figure 10. Shema of three - nuclear carbonyls Ru and Os

Figure 11. The anti - cube - octahedron with the three nuclear metal cycle



International Journal of Applied Nanotechnology Research
Volume 4 • Issue 2 • July-December 2019

58

At the vertices 12, 13, 14, belonging to the metal cycle, there are metal atoms, and at the 12 
vertices of the anti - cube - octahedron functional groups CO are present. The valence bonds of the 
metal atoms with each other and the functional groups are indicated by red edges. The edges of the 
anti - cube - octahedron is denoted by solid black lines. Valence bonds and edges of anti - cube - 
octahedron already create convex three - dimensional bodies:

2 - 3 - 4 - 12, 2) 5 - 6 - 15 - 14, 3) 1 - 9 - 13 - 7, 4) 9 - 12 - 13 - 14 - 15, 5) 1 - 2 - 12 - 9 - 13, 6) 3 
- 4 - 12 - 11 - 5 - 15, 7) 4 - 12 - 5 - 15 - 14, 8) 2 - 4 - 9 - 14 - 12, 9) 7 - 9 - 14 - 6 - 13 - 15, 10) anti 
- cube - octahedron	 1) 

However, body particles do not yet create a partition of the space inside the anti - cube - octahedron 
into elementary three - dimensional cells, i.e. do not create the structure of this space. To create it, 
you need to add more edges between the 15 vertices of the system. You need to do this carefully 
enough so as not to come to possible contradictions. To do this, choose in the system the smallest 
possible number of places for holding these edges so that each added edge leads to the creation of 
the maximum number of three-dimensional bodies. Such places can be symmetrically located edges 
(indicated by dotted lines) 13 - 10, 12 - 11, 11 - 15. These edges lead to the creation of a whole series 
of three - dimensional bodies:

1-7 - 8 - 10 - 13, 12) 13 - 10 - 11 - 15 - 12 - 8, 13) 10 - 3 - 11 - 12, 14) 7 - 8 - 13 - 15 - 6, 15) 9 - 13 
- 12 - 14 - 15, 16) 1 - 3 - 10 - 2 - 13 - 12, 17) 3 - 10 - 12 - 11, 18) 5 - 6 - 8 - 11 - 15 11) 

Now the whole space of the anti - cube - octahedron is divided into three - dimensional 
polyhedrons.

Two numbers are already there f f
0 3
15 18= =,  . It is necessary to count the number of edges 

and the number of flat two - dimensional elements. It is possible to determine that Figure 11 has 45 
edges ( f

1
45= ) :

1 - 2, 1 - 9, 1 - 10, 1 - 13, 1 - 7, 2 - 3, 2 - 4, 2 - 12, 2 - 9, 3 - 10, 3 - 12, 3 - 11, 3 - 4, 4 - 12, 4 - 14, 
4 - 5, 5 - 11, 5 - 14, 5 - 15, 5 - 6, 6 - 14, 6 - 15, 6 - 8, 6 - 7, 7 - 8, 7 - 13, 7 - 9, 8 - 15, 8 - 10, 8 - 13, 
8 - 11, 9 - 12, 9 - 14, 9 - 13, 10 - 12, 10 - 11, 10 - 13, 11 - 2, 11 - 15, 12 - 13, 12 - 14, 12 – 15, 13 - 
15, 14 - 15	

31 two - dimensional elements ( f
2
31= )  (two - dimensional elements that are a section of three 

-dimensional figures are not taken into account):

1 - 2 - 3 - 10, 1 - 2 - 9, 1 - 9 - 13, 1 - 10 - 13, 1 - 9 - 7, 2 - 3 - 4, 2 - 4 - 12, 2 - 4 - 9 - 14, 3 - 10 - 12, 
3 - 10 - 11, 3 - 4 - 12, 3 - 4 - 5 - 11, 3 - 12 - 11, 4 - 14 - 12, 4 - 5 - 14, 5 - 14 - 15, 5 - 15 - 6, 5 - 14 

- 6, 6 - 14 - 15, 5 - 6 - 8 - 11, 6 - 8 - 15, 7 - 8 - 6, 7 - 8 - 13, 7 - 9 - 13, 8 - 13 - 10, 8 - 11 - 15, 8 - 10 
- 11, 1 - 7 - 8 - 10, 1 - 2 - 12 - 13, 9 - 12 - 13, 11 - 15 - 12	

Substituting the obtained values f i
i
( , , , )= 0 1 2 3  in the equation (2) you can see that the Euler 

- Poincaré equation is not satisfied in this case:

15 – 45 + 31 – 18 = - 17 < 0	

This proves that Figure 11 is not polytope.
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The reason for this lies in the fact that not all the flat faces of the 45 faces are the faces of two 
adjacent polyhedrons. It can be determined from Figure 11 that the faces 3 - 10 - 12, 3 - 12 - 11 are 
not at the same time the face of two neighboring polyhedrons (they are only a part of the face of 
neighboring polyhedrons). This is a necessary condition for the existence of a polytope in this case, 
dimension 4. With increasing polytope dimension, each flat face must simultaneously be the face of 
an even larger number of three - dimensional faces (Zhizhin, 2019 b). Attempts to draw additional 
edges in Figure 11, in order to create additional three - dimensional bodies with faces 3 - 10 - 12, 3 
- 12 - 11, lead to the emergence of new flat faces, which need to be closed by new polyhedrons, and 
this process is difficult to complete. Make it fails. It should be recognized that the assumption made 
at the beginning about the anti - cube - octahedron as a ligand polytope of compounds 
Ru CO Os CO

3 12 3 12
( ) , ( )  is not correct, since it is not provable.
To create a geometric image of a cluster with the skeleton of a three - bar metal cycle, one should 

turn to the coordination of ligands around each atom of the cycle. This coordination is octahedral. In 
the case of a closed cycle, coordination around each atom overlaps each other. Consider the plane in 
which the metal cycle is located (Figure 12).

In this plane, there are three intersecting cross sections of the octahedron coordination of ligands 
around each metal atom. In the figures in Figure 12, these sections are:

1 - 2 - 4 - 5, 4 - 7 - 8 - 9, 5 - 7 - 13 – 14	

Valence bonds are indicated by red edges. At the vertices 4, 5, 7 are located the metal atoms. 
In other vertices are located functional groups. Passing from the octahedron section into space, one 
should draw segments perpendicular to the section plane at vertices 4, 5, 7. These segments should 
intersect the section plane and are located above the section plane for the bond length and below 
the section plane for the bond length too. From the free vertices of these segments, the edges of the 
octahedrons connecting these vertices with the vertices of each corresponding octahedron should be 
drawn. The overall picture of the intersection of three octahedrons in the projection on the plane will 
be quite complicated. In addition, to create a geometric image of the entire cluster in the form of a 
convex closed figure, it is necessary to fill the space between the octahedrons. Here, as well as in the 
previous chapter, it is necessary to remove part of the edges of octahedrons that have ceased to bear 
the function of creating a convex figure in the cluster image, and add the edges necessary to create a 
convex figure in the cluster image. The final cluster figure is shown in Figure 13.

Figure 12. A section of a cluster containing a closed three - bar metal cycle
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The vertices of the octahedrons above the sectional plane (Figure 12) are marked with numbers 
3, 11, 15. The vertices of the octahedrons below the section plane (Figure 12) are designated with 
numbers 6, 10, 12. In accordance with what was said earlier, in Figure 13 eight edges of 6 - 5, 7 -9, 
3 - 5, 7 - 11, 8 - 4, 2 - 4, 12 - 7, 1 - 5 from all edges of octahedrons with marked vertices are removed. 
At the same time, eight other edges are added 2 - 13, 8 - 14, 6 - 10, 10 - 12, 6 - 12, 3 - 15, 15 - 11, 
3 - 11. The edges connecting the indicated vertices of three parallel octahedrons have blue color. 
The edges corresponding to the valence bonds are marked in red, the other edges have a black color. 
The construction in Figure 13 can be divided into two polytopes: one polytope, located above the 
section in which the closed cycle of metal atoms is located (Figure 14); another polytope is located 
under this section (Figure 15).

The section that separates both polytopes and at the same time belongs to both polytopes, taking 
into account the added and removed edges, has the form shown in Figure 16.

One defined the dimension of the upper part of the cluster shown in Figure 5. This part has 12 
vertices ( f

0
12= ) , 35 edges ( f

1
35= ) :

1 - 2, 1 - 7, 1 - 3, 1 - 9, 2 - 3, 2 - 7, 2 - 13, 3 - 7, 3 - 4, 3 - 11, 3 - 13, 3 - 15, 4 - 7, 4 - 13, 4 - 15, 4 
- 14, 4 - 11, 4 - 5, 5 - 11, 5 - 8, 5 - 9, 5 - 7, 5 - 14, 5 - 15, 7 - 13, 7 - 15, 8 - 11, 8 - 14, 8 - 9, 9 - 11, 

11 - 14, 11 - 15, 13 - 14, 13 - 15, 14 - 15	

41 two - dimensional elements ( f
2
41= ) :

1 - 2 - 7, 1 - 7 - 5 - 9, 1 - 7 - 3, 1 - 2 - 3, 1 - 3 - 11 - 9, 2 - 3 - 7, 2 - 3 - 13, 2 - 13 - 7, 3 - 13 - 15, 
3 - 4 - 11, 3 - 4 - 15, 3 - 4 - 7, 3 - 7 - 15, 3 - 13 - 14 - 11, 3 - 13 - 4, 4 - 7 - 5, 4 - 5 - 11, 4 - 7 - 13, 4 
- 5 - 14, 4 - 11 - 14, 3 - 13 - 7, 4 - 13 - 15, 4 - 11 - 15, 4 - 13 - 14, 4 - 15 - 14, 4 - 15 - 5, 4 - 7 - 15, 
5 - 9 - 11, 5 - 15 - 11, 5 - 11 - 14, 5 - 14 - 8, 5 - 11 - 8, 5 - 15 - 14, 5 - 8 - 9, 8 - 11 - 14, 8 - 9 - 11, 

11 - 15 - 14, 13 - 14 - 15, 3 - 7 - 4 - 15, 5 - 11 - 4 - 15, 3 - 7 - 5 - 11	

18 three - dimensional elements ( f
3
18= ) :

1 - 2 - 7 - 3, 1 - 3 - 7 - 11 - 5 - 9, 2 - 3 - 7 - 13, 3 - 7 - 4 - 13, 3 - 7 - 4 - 15, 3 - 13 - 15 - 4, 3 - 13 - 
15 - 14 - 11, 3 - 13 - 14 - 11 - 7 - 5, 3 - 4 - 11 - 14 - 13, 3 - 4 - 7 - 5 - 11, 4 - 7 - 5 - 15, 4 - 13 - 14 

- 15, 4 - 5 - 11 - 14, 4 - 15 - 11 - 14, 5 - 15 - 11 - 14, 5 - 14 - 11 - 8, 5 - 11 - 8 - 14, 5 - 11 - 8 – 9	

external three - dimensional surface of Figure 14.
Substituting the obtained values f i

i
( , , , )= 0 1 2 3  in the equation (2) you can see that the Euler 

- Poincaré equation is satisfied in his case for n = 4:

12 – 35 + 41 – 18 = 0	

This proves that Figure 14 is polytope with dimension 4.
The lower part of the cluster (Figure 15) is symmetrical to the upper part of the cluster (Figure 

14) relative to the cross section separating them. The perpendiculars to the section 3-7, 5-11, 4-15 in 
the upper part of the cluster are equal in length to the perpendiculars to the section in the lower part 
of the cluster passing through the same points in the section, respectively, 7, 4, 5. Each edge in the 
upper part of the cluster has an edge in the lower part of the cluster. Therefore, the dimension of the 
polytope of the lower part of the cluster is equal to the dimension of the polytope of the upper part 
of the cluster, i.e. it is equal to 4. This can also be seen by directly counting the number of elements 
of different dimensions at the bottom of the cluster.



International Journal of Applied Nanotechnology Research
Volume 4 • Issue 2 • July-December 2019

61

Figure 13. Spatial image of the cluster with a closed three - bar metal cycle

Figure 14. The polytope upper part of a cluster with a three - bar metal atom cycle

Figure 15. The polytope lower part of a cluster with a three - bar metal atom cycle
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Q.E.D.
The cluster ligand polyhedron is not an anti - cube - octahedron.

The top view of the cluster (from a point above the triangle 3 - 15 - 11) coincides with the view 
of the cluster from the bottom (from a point under triangle 6 - 10 - 12), as follows from Figure 17.

Only the numbers of the points of the blue triangle change (the numbers for the lower part of the 
cluster are indicated in brackets). The spatial image of the ligand polyhedron is shown in Figure 18.

As follows from Figures 8, 9 the ligand polyhedron contains 12 vertices ( f
0
12= ) , 28 edges (

f
1
28= ) , 18 flat faces (2 trapeziums, 16 triangles) ( f

2
18= ) .

Substituting the obtained values f i
i
( , , )= 0 1 2  in the equation (2) you can see that the Euler – 

Poincaré equation is satisfied in his case for n = 3:

12 – 28 + 18 = 2	

This proves that Figure 18 is polyhedron with dimension 3.
It is clearly seen that the ligand polyhedron is not an anti - cube - octahedron, as was assumed 

earlier.
The ligand polyhedron cross section divides the ligand polyhedron into two parts, which are also 

three - dimensional surfaces. If the section is a hexagon, then in each half there are 9 vertices ( f
0
9= ) , 

17 edges ( f
1
17= ) , 10 two - dimensional faces ( f

2
10= )  . Substituting the obtained values 

f i
i
( , , )= 0 1 2  in the equation (2) you can see that the Euler – Poincaré equation is satisfied in his 

case for n = 3:

9 – 17 + 10 = 2	

If the cross section of the ligand polyhedron is the section in Figure 16 (it was used to analyze 
the upper and lower parts of the cluster when determining their dimensions), then each of the halves 
also represents a three - dimensional surface. In this case, for each of the halves, the number of 
vertices increases by 3, the number of edges increases by 9, the number of flat faces increases by 6. 
The total change in the right side of the Euler-Poincaré equation is 3 – 9 + 6 = 0. Thus, the right side 
of equation (2) does not change. The surfaces remain three - dimensional.

Figure 16. A section dividing a cluster with a three - bar closed cycle of metal atoms into two polytopes
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CONCLUSION

The geometry of multi-shell metal clusters with ligands is studied. It is proved that these clusters 
have the highest dimension and, depending on the geometry of the core (octahedron, cuboctahedron), 
the corresponding polytopes either have the type of cross-polytope, or their type differs significantly 
from the simplex and cross-polytope. It was shown that the core of giant palladium cluster containing 
561 atoms with five shells has a dimension of 8. The erroneousness of the assertions that the core of 
giant palladium cluster is a lattice E

8
 known in crystallography is proved. A spatial image of the 

cobalt tetra-anion cluster is presented and it is proved that its dimension is 5. The geometry of homo-
element metal cycles with ligands is studied. In particular, it was proved that the ligands in the three 
nuclear carbonyls of ruthenium and osmium do not form a ligand polyhedron, as was previously 
assumed. The construction of cluster in this case can be divided into two polytopes: one polytope, 
located above the section in which the closed cycle of metal atoms is located; another polytope is 
located under this section.

Both polytopes adjacent to each other in a flat section have a dimension of 4.

Figure 17. Top and bottom views of ligand polyhedron

Figure 18. The spatial image of the ligand polyhedron
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