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ABSTRACT

In the context of remote medical monitoring of swallowing, the authors investigate the potential 
of non-invasive respiratory inductance plethysmography (RIP) technique to automatically detect 
swallow events in a wide context of respiration and phonation. Signal acquisitions were carried out 
on 5 healthy volunteers equipped with RIP and electroglottograph as swallowing reference. They 
were asked for spontaneous breathing, speaking and diverse bolus ingesting. The RIP signal was then 
segmented into cycles, each cycle being annotated according to one of the three class of interest, 
respectively ventilation i.e. spontaneous breathing (1257 cycles), swallowing (221) and phonation 
(216). Automated classification was performed using quadratic discriminant analysis. Focusing on 
swallowing class, the authors achieve an accuracy of 79% from the full wide protocol. It increases up 
to 86% with prior removal of vocalizations. These preliminary results in healthy subjects make RIP a 
promising candidate as a non-invasive and convenient technology for medical follow-up of swallowing.
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INTRODUCTION

Swallowing disorders exist at any age. However, its prevalence increases in elderly population 
associated with an increase of morbidity and mortality (Schindler & Kelly, 2002). Consequences of 
dysphagia are multiple: pneumonia due to aspiration, dehydration, but also psychological problems 
such as anxiety at mealtimes and social isolation (Tibbling & Gustafsson, 1991). Common techniques 
used to detect swallowing disorders are based on clinical evaluation such as cervical auscultation 
and gag reflex in combination with water/food swallow clinical tests and X-ray tests (Mathers-
Schmidt & Kurlinski, 2003). The gold standard to characterize swallowing disorders and especially 
oropharyngeal dysphagia is a method based on irradiation called videofluoroscopy (Fattori et al., 
2016). However, the usual clinical evaluations of cervical auscultation and gag reflex have been 
documented as having limitations in swallow assessment (Leder, 1996; Leslie, Drinnan, Finn, Ford, 
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& Wilson, 2004). In addition, videofluoroscopy, as well as other instrumental methods (endoscopy, 
scintigraphy), besides being invasive, focuses on the examination of the deglutition of one bolus and 
does not allow a daily monitoring of swallowing. Therefore, even if videofluoroscopy is essential in 
the diagnosis and planning of rehabilitation treatment for dysphagia and remains the test of choice for 
assessing pre-swallowing spillage and tracheobronchial inhalation, it may be of interest to investigate 
user-friendly and non-invasive techniques which may allow a complementary longitudinal monitoring 
of swallowing. The potential of non-invasive approach in this context must also be balanced by the 
possible shortcomings; the phenomenon measure is less well located and less targeted. Data obtained 
are more equivocal and therefore more complex to analyze. The first question is therefore to assess 
whether a non-invasive method is competitive enough to detect deglutition occurrences in peripheral 
signals. Longitudinal monitoring of parameters from the non-invasively detected swallows, such as 
the numbers or durations of occurrences, can be a first analysis of swallowing disorders.

Swallow detection from non-invasive techniques have been investigated in many studies, 
considering electromyography (Vaiman & Eviatar, 2009), microphone (Walker & Bhatia, 2011; 
Golabbakhsh et al., 2014), a combination of both systems (Amft & Troster, 2006), electroglottography 
(EGG) (Farooq, Fontana, & Sazonov, 2014) and accelerometry (Sejdic, Steele, & Chau, 2009; Steele, 
Sejdic, & Chau, 2013; Mohammadi, Steele, & Chau, 2016). However, placing sensors on the face or 
neck can lead to problems of comfort and use, which makes complicated a prolonged use. Therefore, 
other types of comfortably wearable sensors have also been considered, such as piezo belts (Dong 
& Biswas, 2016) or jackets using Respiratory Inductive Plethysmography (RIP) (Moreau-Gaudry, 
Sabil, Baconnier, Benchetrit, & Franco, 2005; Kenny, Casas, & McPherson, 1989; Casas, Kenny, & 
McPherson, 1994; Geddes, Chadwick, Kent, Garbin, & Hartmann, 2010).

RIP is a non-invasive method, usually dedicated to respiratory monitoring, that can be investigated 
to analyze deglutition, by studying the impact of deglutition on RIP signal. RIP monitors thoracic and 
abdominal cross-sectional area changes during ventilation, thanks to 2 sinusoidal wires positioned 
around the thorax above the line of the nipple and around the abdomen at the umbilical level. After 
calibration, the combination of thoracic and abdominal signals allows obtaining the ventilatory 
volume. It has been shown that RIP derivative is a proper estimation of the airflow signal (Calabrese, 
Besleaga, Eberhard, Vovc, & Baconnier, 2007; Eberhard, Calabrese, Baconnier, & Benchetrit, 2001). 
A preliminary work on elderly people (Moreau-Gaudry et al., 2005) has demonstrated the interest of 
using RIP to detect swallowing. Moreover, several works have studied the coordination of infants’ 
suck-swallow-breathing patterns using RIP (Kenny et al., 1989; Casas et al., 1994; Geddes et al., 
2010). In Geddes et al. (2010), the authors showed that ultrasound imaging of swallowing correlates 
well with swallow apnea manually detected on RIP signal. When studying the relationship between 
breathing and deglutition, it was observed that a physiological apnea occurs as a brief closure of 
the larynx to protect the airway from the aspiration of the bolus ingested. This swallow apnea can 
be detected as zero segments on the respiratory airflow (Moreau-Gaudry et al., 2005; Hardemark 
Cedborg et al., 2010). As RIP volume signal corresponds to airflow integral, the swallow apnea will 
result on RIP signal in plateaus during ventilatory cycles (Smith, Wolkove, Colacone, & Kreisman, 
1989; Preiksaitis & Mills, 1996; Tarrant, Ellis, Flack, & Selley, 1997; Terzi et al., 2007; Camargo, 
Ono, Park, Caruso, & Carvalho, 2010; McFarland, Martin-Harris, Fortin, Hill, & Armeson, 2016; 
Fontecave-Jallon & Baconnier, 2016). The induced modifications of the breathing pattern are then 
mainly characterized by differences on RIP signal shapes (Smith et al., 1989; Tarrant et al., 1997; 
Matsuo & Palmer, 2009) and by an increase of the respiratory cycle duration. Breathing pattern may 
also be changed by speech. It has been observed on RIP signal (Binazzi et al., 2006; Rochet-Capellan 
& Fuchs, 2013), that when speaking, breaths consist of a rapid inspiration with a slower expiration 
performed with essentially constant flow. This will therefore influence the signal shapes and the 
physiological respiratory variables extracted from RIP signal.

In most studies previously cited (Preiksaitis & Mills, 1996; Terzi et al., 2007; Camargo 
et al., 2010; McFarland et al., 2016), RIP signal is generally used to locate swallowing in the 
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ventilatory cycle and to observe if the swallow event occurs during in- halation or exhalation. 
In most cases, none specific processing is carried out on RIP signal. A few works have proposed 
to detect swallowing on RIP signal, but it is manually realized (Kenny et al., 1989; Casas et 
al., 1994; Geddes et al., 2010). A first attempt of automatic detection has been carried out by 
(Moreau-Gaudry et al., 2005) on the derivative of RIP signal. Furthermore, automatic detection of 
swallowing has been investigated for some other non-invasive techniques, such as accelerometry 
(Steele et al., 2013; Mohammadi et al., 2016), chest belt piezo-device (Dong & Biswas, 2016) 
or acoustic measurements (Golabbakhsh et al., 2014).

Therefore, the purpose of the present work is to propose an automatic swallowing detection 
on RIP signal, in order to investigate RIP technology as a non-invasive automatic remote medical 
monitoring of swallowing events. The present work is a preliminary study on healthy volunteers, 
which main purpose is to highlight if swallowing events can be automatically discriminated 
from ventilation and speech. Based on a wide range of experimental swallow and speech tests, a 
discriminant analysis is considered for an automatic classification of breathing, swallowing and 
speech events detected on RIP signal.

METHODOLOGY

Equipment and Protocol
Data acquisitions were conducted in TIMC-IMAG Laboratory (La Tronche, France), in a dedicated 
place of biomedical research. The study was approved by the relevant ethics committee (CHU 
Grenoble Alpes). Five healthy volunteers (2 men and 3 women, from 22 to 64 years old) participated 
after providing informed consent. This number of subjects is comparable to (Dong & Biswas, 2016).

Equipment: Each subject was wearing a connected Respiratory Inductive Plethysmography 
(RIP) jacket above its clothes and was equipped with a microphone on the jacket and two electrodes 
positioned on the neck either side of the thyroid cartilage and connected to an electroglottograph 
device (Figure 1). Participants were in a meal-time seated position and were asked not to move.

Figure 1. Experimental protocol: Subjects are equipped with a RIP jacket, an electroglottograph neckband and a microphone
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Thorax (THO) and abdomen (ABD) cross sectional area changes were recorded with the 
computer-assisted RIP vest (Visuresp, RBI, Meylan, France). During 3-4 minutes at the beginning 
of each recording, breathing was also simultaneously recorded with a flowmeter (Fleish head 
no.1, Emka Technologies, Paris, France) and a differential transducer (163PC01D36, Micro 
Switch, Honeywell, United States) placed on a face mask. The Laryngograph EGG-A100 device 
recorded the variations in the conductance between the electrodes, produced by changes in the 
nature and area of vocal fold contact. The acquired signal is noted EGG signal. The acoustic 
signal was recorded according to an audio microphone available with the EGG-A100 device. All 
signals were synchronously digitized at a rate of 10000 Hz with a PowerLab acquisition system 
and LabChart Soft- ware V7 (ADInstruments Pty Ltd).

Experimental protocol: Subjects were asked to follow an experimental protocol made of several 
steps. Indeed, many studies in the literature (Martin-Harris et al., 2005; Wheeler Hegland, Huber, 
Pitts, Davenport, & Sapienza, 2011) have documented the variation in the swallowing pattern based 
on bolus volume and presentation. The experimental swallow tests have deliberately been largely 
chosen (bolus nature and size, and types of container) and the protocol also included phonation events.

Subjects were first asked to breathe calmly and naturally with the face mask; this is considered 
as the calibration phase necessary in the pre-processing to calibrate RIP according to the ventilatory 
airflow. Then the mask was removed and 3 minutes of spontaneous breathing was recorded. 
Considering swallowing protocol, they were then asked to repeat 6 times a forced swallow of saliva. 
Intervals of 30 seconds were kept between each deglutition. Then the subject drank different volumes 
of water (5, 10, 15, or 100 ml) in random order through a straw or by glass. Different boluses of 
stewed fruit were also ingested in a random order with a spoon (5 ml) and a flask (90 ml). Each type 
of bolus was repeated 3 times. The subjects were instructed to breath in a regular manner between 
each bolus. As mentioned in introduction, the proposed protocol included a phonation part. Subjects 
were then asked to pronounce and repeat 3 times short sentences and longer sequences. The subjects 
were instructed to breathe in a regular manner between each phonation.

The average length of recording was 35 minutes. During each recording session, the starting 
times of all events were manually annotated by the investigator. Each event was annotated with its 
detailed description but also with a more macroscopic one among the 3 main categories (ventilation, 
swallowing or phonation).

Data Pre-Processing and Labeling
Events segmentation from EGG data: In this paper, the segmentation of specific events was processed 
from EGG data as illustrated in Figure 2 (top), the microphone being only used as further confirmation 
in case of dubious origin (e.g. vocalization or not) of a given detection. The annotation was performed 
under a strict conservative approach, in order not to feed the classifier with wrong input information:

•	 The EGG events were segmented using signal-to-noise criterion (set to 4 in the following), 
the noise variance being estimated from calibration data, in which a regular breathing without 
swallowing is insured;

•	 Each segmented event was annotated according to the manual comments recorded during the 
experiment. Non-attributable detection and unwanted perturbations (strong movement, coughing, 
etc.) of the EGG signal were subsequently discarded.

Note that an automated segmentation algorithm (see also (Sejdic et al., 2009; Wang & Willett, 
2003)) has also been developed but is out of the scope of this paper and will be presented in a 
dedicated article.

RIP volume reconstruction (VRIP): Thorax and Abdomen signals were linearly combined to 
compute the ventilatory volume, noted VRIP, the coefficients being estimated from a least square 
fit of the ventilatory flow recorded with the mask during the calibration phase previously described 
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in the experimental protocol (Eberhard et al., 2001; Calabrese et al., 2007). The obtained signal was 
then divided into cycles where cycles starts are estimated from negative to positive zero-crossing of 
the airflow (numerical derivative of the signal).

Cycle class eligibility rule: As shown in Figure 2 (bottom), each VRIP cycle was then associated 
to one of the corresponding three main classes, respecting the following rules of eligibility criterion 
illustrated in Figure 3:

•	 If the time interval of a given event lies within one VRIP cycle, this event is associated to the 
corresponding event class;

•	 If the event time interval crosses several VRIP cycles, cycles that are fully included in the interval 
were affiliated to the matching class. Considering both edge cycles, if the part of the event time 
interval that lies within the VRIP cycle is greater than 50% of the cycle time length, then the 
same class was applied. If not, these cycles were removed from the classification process.

Figure 2. Schematic description of the proposed approach. Top: for each subject independently, events are manually segmented 
from EGG data. Bottom: by matching time frames, each cycle on RIP volume signal (VRIP) is associated to one of the three 
defined class: ventilation (no detection on the EGG signal), swallowing or phonation. The set of annotated VRIP cycles is then 
used as input for classification.

Figure 3. Example of eligibility criterion for VRIP cycles. Left: the EGG event time interval lies within one VRIP cycle which is 
included in the corresponding class (here swallowing). Right: the EGG event time interval crosses several VRIP cycles. Inside 
cycles are included in the class of interest (here phonation). Right edge VRIP cycle is also included because the EGG event 
occurs during most of the cycle duration (as shown by the horizontal arrow). On the contrary left edge VRIP cycle is discarded 
because the EGG event is present in less than 50% of the cycle time length.
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Eventually it ended up for the 5 subjects with a total VRIP cycle number of 221 swallows 
(comparable e.g. to (Sejdic, Falk, Steele, & Chau, 2010)), 216 phonations, and 1257 breathing cycles. 
Figure 4 displays for each class random examples of VRIP cycle profiles extracted from the continuous 
RIP signal of a single subject (namely JF). One can see that within each class VRIP profiles are 
showing strong similarities whereas exhibiting noticeable differences between two separate groups. 
As illustrated in Figure 5, prototypical VRIP profiles are extracted for each class respectively: (i) 
a smooth “Gaussian-like” shape in case of regular ventilation, (ii) the presence of a full or partial 
plateau witnessing apnea, which is expected during (non-pathological) swallowing events, and (iii) 
a specific linear slope during the breathing out part of the vocalization (Binazzi et al., 2006). In the 
following, the authors explore how these profiles can provide a robust basis to perform classification 
and automatic detection of swallowing occurrences.

PROPOSED CLASSIFICATION APPROACH

Features Extraction
Before properly apply classification, each VRIP cycle needs to be described with a vector (so-
called feature) as representative as possible, and which dimension remains reasonable with 
respect to the number of samples. The authors propose here to combine both physiological and 
morphological parameters:

Figure 4. Random subsets of VRIP ventilatory (left), swallowing (center) and phonation (right) cycles (taken from JF dataset). The 
vertical axis is fixed for all little squares and corresponds to 0.5 liters. The horizontal axis (in time) is normalized.

Figure 5. Prototypical VRIP profiles of respectively ventilatory, swallowing and phonation events. Two profiles of swallowing are 
shown, depending on the swallow onset (during inhalation or during exhalation). One can notice a plateau associated to apnea 
during swallowing, while phonation displays a typical linear slope during breathing out.
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•	 They have extracted from each VRIP cycle 3 classical physiological variables associated to 
ventilatory activity: the tidal volume defined as the cycle breathed-in air volume, as well as 
inspiratory and expiratory durations;

•	 Moreover, a good descriptor of ventilatory cycles morphology is given by the so-called ASTER 
vector (Bachy, Eberhard, Baconnier, & Benchetrit, 1986) which is computed by the four first 
harmonics of the Fourier transform of the airflow cycles (i.e. derivative of the VRIP cycles). 
This makes up 8 morphological parameters (real and imaginary parts of each harmonic). Another 
parameter is given by the fraction of power contained in the four harmonics. It represents how 
much a given cycle spreads out the canonical respiratory profile. Note that in place of ASTER 
features, a mere sampling of the normalized profiles has also been tried, however leading to 
slightly lower classification performance.

Furthermore, it has been shown in the case of resistive loading (Laouani, Rouatbi, Saguem, 
& Calabrese, 2016) that shape differences between rib cage and abdomen signals could be 
a good indicator of changes in the level of bronchial obstruction in patients with moderate 
obstructive syndrome.

The authors have therefore added a last descriptor, computed from the quadratic distance between 
rib cage and abdomen normalized profiles, as followed by (Laouani et al., 2016).

In total, VRIP cycles are then featured by 13-dimensioned vectors, used to feed the classifier.

Classification Method
VRIP cycles are categorized with discriminant analysis technique (Klecka, 1980) where input features 
of each class are assumed to follow a multivariate normal probability density. So-called within-class 
covariance matrices of the normal density functions are estimated empirically from the data, enabling 
to calculate for each sample the probability of belonging to a given class and attributing the class for 
which this probability is maximal.

Similar to (Steele et al., 2013; Dong & Biswas, 2016) classification performance is calculated using 
leave-one-out validation (Jain, Duin, & Mao, 2000): a dataset of N samples is divided into a training 
set of N − 1 samples (from which the probability function is computed) and the remaining one is used 
for test. The class of this latter, supposedly unknown, is estimated by the classifier (i.e. by discriminant 
analysis). Finally, the estimated class is compared to the true class for validation. This process is repeated 
until all samples have been tested. Given the idiosyncrasies exhibited during the various breathing 
sequences of the protocol, the validation has been conducted for each subject separately.

Metrics
For each class, the numbers of true positives (TP, that is a sample correctly attributed to the class 
of interest), false positives (FP, that is a sample attributed by mistake to the class of interest) and 
false negatives (FN, a sample that should have been credited to the class of interest but was not) are 
counted. From these numbers metrics that are commonly used for classification analysis are computed:

•	 Sensitivity (also recall) S TP

TP FNe
=

+
. It measures the fraction of samples that are correctly 

assigned to a given class. Note that the denominator corresponds to the total number of sampling 
truly belonging to this class;

•	 Precision (also specificity) P FP

TP FPr
= −

+
1 , where the second term is the rate of false 

positive, for each class.
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PERFORMANCE AND DISCUSSION

Results
Table 1 shows the classification performance for each subject individually. First of all, one can see 
that individual results are achieved with small (a few percent) inter-subject dispersion, both for 
sensitivity and precision values and for the three class of interest. This assesses the robustness of the 
proposed approach despite idiosyncratic breathing behaviors. Note that the variation of performance 
across subjects is comparable to (Dong & Biswas, 2016) and results from the different ways people 
speak, drink or eat.

Focusing on swallowing events, average sensitivity and precision of 86% and 71% are respectively 
obtained, leading to an accuracy (average of sensitivity and precision) of Acc = 79%. These results 
lie within the same magnitude than recently published studies making use of different detection 
techniques. They are whether comparable (Se = 87%, Pr = 75% with the chest belt piezo-device (Dong 
& Biswas, 2016), or Acc = 82% from acoustic measurements (Golabbakhsh et al., 2014)), whether 
in the lower range (Acc = 86%, 89%, 90% from accelerometry (Mohammadi et al., 2016), previous 
RIP experiment (Moreau-Gaudry et al., 2005) and EGG data (Farooq et al., 2014) respectively).

Although it remains interesting to confront these approaches in terms of rough estimates, it 
is however not possible to undertake a deeper comparative analysis since each protocol is unique, 
that is following specific experimental requirements whether in terms of age (e.g. focusing on the 
elderly for Moreau-Gaudry et al. (2005)), pathology (targeting Parkinson’s disease in Golabbakhsh 
et al. (2014)), type of bolus (thin liquid barium in Mohammadi et al. (2016)) or food consistency 
(solid food ingested in Dong & Biswas (2016)). In the present study, the authors’ prejudgment was 
to scan a rather large variety of swallowing conditions as well as a richer environment by including 
vocalizations. This last point is of high importance because it adds a third class that has to be retrieved 
by automated classification, thus greatly increasing the complexity of the detection process whereas 
most of the above cited experiments are restricting people from talking or are considering vocalization 
as disturbances that are discarded from their dataset (Steele et al., 2013; Mohammadi et al., 2016).

This issue is explicitly tackled in Sejdic et al. (2010) in the context of accelerometry, where 
they demonstrate that removing vocalizations enables to improve the accuracy of their technique by 
55%. Reprocessing the results with prior removal of phonation events (assuming e.g. that the RIP 
jacket is equipped with a microphone from which the vocalization sequences can be segmented), the 
performance significantly increases, as summarized in Table 2. Noticeably, by narrowing the study 
to two class of interest, the authors straightforward achieve top-ranking performance in sensitivity, 

Table 1. Classification performance for each subject individually trained and tested with left-one-out validation method. V, S 
and P denote respectively ventilation, swallowing and phonation class.

Subjects

JF PC PB TF NR Average±SD

Sensitivity (%)

V 97 95 95 95 95 95±1

S 91 84 90 77 89 86±5

P 93 86 83 83 91 87±4

Precision (%)

V 100 97 100 97 97 98±1

S 79 69 65 69 75 71±5

P 90 97 93 86 100 93±5
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with an average of 95% ± 4% for the detection of swallows. The precision of the swallowing class – 
though slightly improved –, keeps nonetheless a comparatively lower ranking. The authors explain 
this behavior by their deliberated choice of involving a large variety of combined bolus types (water, 
stewed fruits) containers (glass, straw, spoon, flask) and volumes (5, 10, 15, 100 ml), thus driving to 
large variances of swallowing features as discussed in more details below.

Variability of Swallowing Class
From inductive reasoning, the authors postulate that spanning various swallowing conditions in their 
protocol drives the classifier to predominantly favor this latter class when dealing with outliers. If such 
an assumption is true, two joint effects are expected and indeed observed: (i) a fairly good sensitivity 
because outliers belonging to swallowing class are mostly correctly classified (i.e. few swallowing 
FN) and (ii) a relatively low precision because outliers not belonging to swallowing class are mostly 
wrongly attributed to this latter (i.e. many swallowing FP).

Verifying this hypothesis requires to compare the variability – i.e. the covariance matrices – of each 
class. In multivariate statistics, this is commonly done by performing a simultaneous diagonalization 
(Fukunaga, 2013) – or equivalently by solving the relative eigenvalue problem (Welling, 2005) – of 
the two matrices of interest: in the current case the covariance matrix of the swallowing class with 
respect to that of the ventilation or the phonation class, respectively. This process defines a new vector 
basis where each so-called relative eigenvalue can be interpreted as the maximum ratio of variances 
(here swallowing vs. ventilation/phonation variance ratio) in the corresponding eigenvector direction 
(Flury, 1985). Figure 6 (left) shows for PC subject the sorted eigenvalues when comparing swallowing 
features to ventilation (top) and phonation (bottom) features respectively. For sake of clarity, the 
inverse value for eigenvalues below one (i.e. when the maximum variance ratio stands in favor of 
the ventilation/phonation class) has been plotted with white color. It obviously exhibits a greater 
amount of variability in the swallowing class, both relatively to ventilation and phonation groups 
(though in a less pronounced fashion for the latter). This is quantitatively confirmed by computing the 
respective generalized variance ratios – defined as the product of the relative eigenvalues (Bookstein 
& Mitteroecker, 2014) – of roughly 4.107 and 103, that is larger than one by several magnitudes.

To experimentally confirm this analysis, a new protocol has been set-up involving four subjects 
among which the authors were able to record two participants of the first experiment (JF and PC). The 
main concern is here to restrict swallowing (and phonation) events to a single type which duration 
lies within a single VRIP cycle: 5ml water spoons and one short repeated sentence respectively, in 
the purpose of reducing intra-class variability as much as possible. Attention has been carried out 
to produce datasets with roughly the same number of cycles in each class than in the first protocol 
(∼ 40 swallows, 40 phonations and 250 breathings by subject). Table 3 reports the performance 
achieved in this narrow configuration. Focusing on the precision value for the swallowing class, 

Table 2. Classification performance with prior removal of phonation. Only 2 classes are remaining: ventilation and swallowing.

Subjects

JF PC PB TF NR Average±SD

Sensitivity (%)

V 96 96 95 95 94 95±1

S 98 92 97 88 98 95±4

Precision (%)

V 100 98 100 98 100 99±1

S 79 82 76 77 71 77±4



International Journal of E-Health and Medical Communications
Volume 11 • Issue 2 • April-June 2020

73

Figure 6. Illustration of the variability of the swallowing class, for PC subject. Each plot displays a class-to-class comparison of 
experimental covariance matrices by solving the relative eigenvalue problem. Top: swallowing vs. ventilation covariance matrices, 
bottom: swallowing vs. phonation. PC subject was recorded under full (left) and narrow (right) protocol. The dashed line delineates 
the eigenvalues for which the maximum ratio of (class to class) variance is greater than one whether for swallowing (left side, 
filled bars) or ventilation/phonation (right side, empty bars).

Table 3. Classification performance from narrow protocol (a single type of swallowing and phonation). V, S and P denote 
respectively Ventilation, Swallowing and Phonation class. Note that the first two subjects are the same than in Table 1, hence 
their individual performance can be quantitatively compared.

Subjects

JF-2 PC-2 CS ST Average±SD

Sensitivity (%)

V 99 99 98 97 98±1

S 95 92 94 79 90±6

P 90 82 84 100 89±7

Precision (%)

V 100 99 99 98 99±1

S 89 81 90 79 85±5

P 100 97 78 95 93±9
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one can see, as expected, a significant improvement both individually for the two subjects involved 
in the two protocols and in average with a precision of 85%, that is reaching typical performance 
published in the papers discussed above. Figure 6 (right) compares again the variability of each group 
in the context of the narrow protocol for subject PC. The relative variance between swallowing and 
ventilation appears now more balanced, as witnessed by the value of the generalized variance ratio 
that has severely dropped to 15. Swallowing vs. phonation variance ratio is kept roughly unchanged 
however, explaining why the precision of the swallowing– though noticeably improved – remains 
the lowest among the three groups.

CONCLUSION

It has been demonstrated in this paper the potential of Respiratory Inductance Plethysmography for 
an automated detection of swallowing events. Within a protocol spanning a rich variety of swallows 
and phonations, the authors achieve a sensitivity of 86% and a precision of 71%. Assuming a prior 
removal of the vocalization sequences, the results increases up to 95% and 77% respectively, these 
performance being comparable to that of previously published techniques. A qualitative method has 
also been provided, which allows to investigate the variability of each class (and in particular that of 
the swallowing group) in different protocol environment.

This study was carried out in seated subjects with as less movement as possible. Indeed, movement 
artefacts make RIP signal more difficult to analyze. However, there are many daily life situations 
where subjects are quiet (meal time or sleep) and where the proposed method could be easily adapted.

The preliminary results in the healthy population investigated in the present study stands as 
a first promising step towards a non-invasive and convenient technology for a remote monitoring 
of swallowing. In case of dysphagic populations, greater variations of the swallowing profiles on 
RIP signal can be anticipated and further developments will be necessary to enable the use of the 
proposed approach.

Afterwards RIP could be of interest for swallowing investigation in frailty subjects (elderly 
(Moreau-Gaudry et al., 2005), infants (Geddes et al., 2010)), in a complementary way to the gold 
standard videofluoroscopy and other clinical evaluations.
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