
DOI: 10.4018/IJORIS.2020010102

International Journal of Operations Research and Information Systems
Volume 11 • Issue 1 • January-March 2020

﻿
Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

37

A Simulated Annealing Based Centre 
of Mass (SAC) Approach for Mesh 
Routers Placement in Rural Areas
Jean Louis Kedieng Ebongue Fendji, University of Ngaoundéré, Yaounde, Cameroon

 https://orcid.org/0000-0001-9803-6981

Chris Thron, Texas A&M University-Central Texas, USA

 https://orcid.org/0000-0002-8960-2504

ABSTRACT

The problem of node placement in a rural wireless mesh network (RWMN) consists of determining 
router placement which minimizes the number of routers while providing good coverage of the area of 
interest. This problem is NP-hard with a factorial complexity. This article introduces a new approach, 
called the simulated annealing-based centre of mass (SAC) for solving this placement problem. The 
intent of this approach is to improve the robustness and the quality of solution, and to minimize the 
convergence time of a simulated annealing (SA) approach in solving the same problem in small and 
large scale. SAC is compared to the centre of mass (CM) and simulated annealing (SA) approaches. 
The performances of these algorithms were evaluated on a set of 24 instances. The experimental results 
show that the SAC approach provides the best robustness and solution quality, while decreasing by 
half the convergence time of the SA algorithm.
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1. INTRODUCTION

The ninth United Nations Sustainable Development Goal is to build resilient infrastructure. One of 
his targets is to significantly increase access to ICT and strive to provide universal and affordable 
access to internet in Least Developed Countries by 2020. Universal and affordable access means 
“Leave No One Behind”. But the bulk of the unconnected is located in rural and hard-to-wire areas, 
with technical and financial limitations. Fortunately, Wireless Mesh Network (WMN) (Akyildiz, 
Wang, & Wang, 2005) has appeared as an appealing cost-effective solution to bridge the digital 
divide and to connect the unconnected. A Wireless Mesh Network (WMN) is a wireless network in 
which nodes are connected in a mesh topology. It is based on off-the-shelf Wi-Fi technology. For 
economic reasons, Rural Wireless Mesh Networks (RWMN) are typically composed of only one 
gateway and a set of mesh routers (MRs) which aim to cover only areas of interest in the locality. 
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The sole gateway usually connects the network to Internet via a last mile solution such as VSAT. The 
success of the planning of such networks depends on the determination of an optimal placement of 
mesh nodes which provides good coverage while requiring fewest nodes. The planning of wireless 
networks in rural regions is more coverage-driven than capacity-driven (Bernardi, Marina, Talamona, 
& Rykovanov, 2011), which means we are more concerned by the area to cover than the capacity 
to provide. The aim during the planning is to minimize the overall cost of the architecture, while 
maximizing the coverage percentage of the area of interest. For realistic deployment scenarios, the 
problem of mesh node placement is a NP-hard combinatorial optimization problem which cannot be 
solved in polynomial time. This is why metaheuristics are usually required to optimize the planning.

Convergence time and robustness are important issues when it comes to developing or applying 
a stochastic optimisation technique. Simulated annealing (SA) is a probabilistic global optimisation 
technique used in large search spaces, which accepts some non-improving solutions in order to 
escape local optima. Since its introduction by Kirkpatrick et al. (1983), SA has been applied to a 
large variety of optimization scenarios, including the problem of node placement in Rural Wireless 
Mesh Networks (RWMN). Several years of experience using SA has led to the following general 
observations (Ingber, 1989):

•	 SA yields high-quality solutions, but may require large amounts of computation time;
•	 SA is especially advantageous in practical situations, where tailored algorithms are unavailable, 

due to its general applicability and its ease of implementation.

Several authors have attempted to reduce the convergence time for SA algorithms (Varanelli & 
Cohoon, 1999; Yuping, Shouwei, & Chunli, 2005). Other authors have recently tried to improve the 
solution quality of SA by providing hybrid approaches (Ezugwu, Adewumi, & Frîncu, 2017; Chen, 
Chien, Chena, & Chiena, 2011; Yannibelli & Amandi, 2013; Jia, Ma, Wang, & Liu, 2011). In this paper, 
we tackle the problem of improving the quality of solution and the robustness while minimising the 
convergence time of the SA approach in solving the problem of node placement in a Rural Wireless 
Mesh Network (RWMN). We consider the network model proposed in (Fendji, Thron, & Nlong, 
2015). In this model, a given area to cover is decomposed into elementary areas which are identified 
as “required” or “optional” in terms of coverage, and “possible” or “not possible” in terms of node 
placement. We consider also the presence of obstacles that can hinder the connectivity. The aim is 
therefore to determine the location of mesh routers which maximizes the coverage of area of interest 
while ensuring the connectivity. To reach this goal, a placement approach based on the calculation 
of the centre of mass (CM) of area covered per router is proposed. This approach is later combined 
with the SA approach defined in (Fendji, Thron, & Nlong, 2016) in order to obtain a hybrid method, 
Simulated Annealing based Centre of mass (SAC).

The rest of the paper is organized as follows: Section 2 briefly presents related work in WMN 
design. Section 3 defines the network model and formulates the placement problem. The SA 
optimization technique is presented in Section 4. Section 5 explains the three different approaches 
(SA, CM, SAC). Section 5 presents the experimental setup and compares the performance of the 
different approaches. This paper ends with a conclusion and future work.

2. DESIGN OF WIRELESS MESH NETWORK

Much research has been conducted in the design of WMNs: typically, the aim is to optimize some 
criteria related to the network configuration or operation. A good survey on the design of WMNs 
can be found in (Benyamina, Hafid, & Gendreau, 2012), in which the design problem is classified 
according to the flexibility of the network topology: fixed (predefined) and unfixed (not-predefined). 
We discuss these two categories below.
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2.1. Predefined Topology
In predefined topologies, each mesh router is installed in a predefined location and cannot be moved 
elsewhere. The planning problem involves improving the way each node in the network sends and 
receives information. In particular, efficient use of transmission channels can reduce interference 
and increase the capacity of the network (Gupta & Kumar, 2000). Some approaches include new 
MAC protocols (Garces & Garcia-Luna-Aceves, 2000; Darties, Theoleyre, & Duda, 2009); channel 
bonding technique (Xu, Yamamoto, & Murata, 2008); cross layer design (Akyildiz & Wang, 2008; 
Fu, Xiao, Deng, & Zeng, 2014); network topology control design (Liu & Liao, 2009; Marina, Das, 
& Subramanian, 2010); network virtual backbone construction (F. Wang, Thai, & Du, 2009); multi-
channel routing algorithms; channel assignment schemes (Das, Alazemi, Vijayakumar, & Roy, 2005; 
Chaudhry, Hafez, Aboul-Magd, & Mahmoud, 2010); and joining approaches. An interesting survey 
in joining approaches is found in (Pathak & Dutta, 2011).

2.2. Not-Predefined Topology
In not-predefined topology, the planning problem aims to optimally place the nodes of the network: 
Internet gateway(s), mesh routers, or both.

2.2.1. Internet Gateway(s) Placement
The Internet gateway(s) placement problem has received much attention, since the gateway is the 
main mechanism for internetworking and is more expensive than simple mesh routers. The number of 
Internet gateway(s), their location and the number of hops in the network have a direct effect on the 
performance, the scalability, and the overall cost of the network. Planning approaches in the literature 
fall into two categories: cluster-based approaches, where the network is partitioned into subsets of 
nodes, each subset being served by one Internet gateway (Aoun, Boutaba, Iraqi, & Kenward, 2006; 
Tang, 2009; Djohara Benyamina, Hafid, & Gendreau, 2009; Jingzhi, Jianxiao, & Zhifeng, 2009); 
and non-clustering approaches, which consider the network as a whole (Zhou, Wang, Manoj, & Rao, 
2010; Franklin & Murthy, 2007; Xin & Wang, 2009; Wenjia Wu, Junzhou Luo, & Ming Yang, 2009).

Although there are different objectives in different gateway placement problems, they all take 
into account the placement of mesh routers.

2.2.2. Mesh Router Placement
In basic mesh router placement problems, the Internet gateways are taken as fixed, and mesh router 
locations are sought which optimise the objective(s) subject to given constraints. For example, in 
(Sen & Raman, 2007), the authors take an existing landline node as the Internet gateway, and obtain 
a low-cost solution that connects neighbour villages. The costs related to the height of the antenna 
towers and the multi-hop topology are minimized subject to throughput, power and interference 
constraints. (Chen & Chekuri, 2007) consider the planning of a robust and fault-tolerant urban 
WMN composed of mesh routers that use directional antennas. The aim in this planning problem 
is the maximisation of the deployment profit expressed in terms of amount of services provided, 
while maintaining the cost within the budget. In (Roh & Lee, 2010), the authors consider a wireless 
network that consists of multiple fixed nodes and a single relay node that has controllable mobility. 
The objective was to maximise the weighted throughput of a node that achieves the lowest weighted 
throughput among all nodes.

2.2.3. Planning From Scratch
Unlike the basic placement problems described above, in most practical situations the mesh 
router placement and gateway placement problems are not taken independently, but rather are 
different aspects of the overall network planning problem. We refer to such cases as planning 
the network “from scratch”. Planning a network from scratch consists not only in finding the 
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optimal locations and node types in the network, but also in determining a judicious number of 
interfaces and channel assignment for each node while minimizing the cost and ensuring the 
connectivity, the required coverage and a minimum QoS. (Wang, Xie, Cai, & Agrawal, 2007) 
provide an approach for node placement where the set of candidate positions is predetermined. 
The aim is to determine a minimum set of positions satisfying network coverage, connectivity 
and Internet traffic demand requirements. (Beljadid, Hafid, & Gendreau, 2007) address a similar 
problem with the objective of minimising the overall cost of the network. (Amaldi, Capone, 
Cesana, Filippini, & Malucelli, 2008) formulate the planning model of a WMN considering the 
coverage and topology planning for real size networks (60 nodes). They use a mixed integer 
linear programming model to solve their placement problem. (Wu, Luo, & Yang, 2010) define the 
WMN placement problem as an integer linear program. They propose a method for determining 
mesh access point locations, Internet gateway selection and mesh router addition with the aim 
of minimising the cost of the network.

The earliest research in WMN planning used deterministic methods to solve the node placement 
problem, after formulating it as a single-objective linear programming problem. The main drawback 
of this formulation is the restriction of the network size, especially when the number of constraints 
is important. For realistically-sized networks, probability techniques are used, including: genetic 
algorithms (GA) (De Marco, 2009), (Xhafa, Sanchez, & Barolli, 2010); Particle Swarm Optimisation 
(PSO) (Benyamina, Hafid, & Gendreau, 2008), (Benyamina, Hallam, & Hafid, 2008); Simulated 
Annealing (SA) (Xhafa, Barolli, Sanchez, & Barolli, 2011); and ad hoc and neighbourhood search 
method (Xhafa, Sanchez, & Barolli, 2009).

Some researchers provide a multi-objective formulation for the WMN planning problem. In 
(Xhafa et al., 2011), the problem is defined as a hierarchical multi-objective optimization problem in 
which a priority is defined between the two objectives of coverage and size of the giant component 
(connectivity). A non-hierarchical multi-objective formulation based on Pareto optimisation is provided 
in (Benyamina, Hafid, & Gendreau, 2008a).

2.3. WMN Planning in Rural Regions
WMN planning in rural regions is usually framed as a mesh router placement problem, as in (Sen 
& Raman, 2007) wherein different villages are connected from a landline node. WMN’s in rural 
regions are usually composed of a set of mesh routers and a sole gateway that connects the network 
to the Internet via a last mile solution such like VSAT. This is the case of Macha network in Zambia 
(Backens, Mweemba, & Van Stam, 2010).

The main constraint when planning a rural WMN is the cost of the solution. Since rural 
populations are typically sparsely distributed, planners may reduce cost without significantly 
affecting service by serving only areas presenting the highest potential usage. Users are typically 
not fixed, so the coverage constraint is more appropriately expressed as a specification of an 
area rather than a set of clients to serve. In this configuration, the planning problem resembles 
basic network planning with only the location of the Internet gateway (IGW) taken as known. 
Figure 1 illustrates a Rural Wireless Mesh Network with a sole gateway connected to Internet 
via VSAT. In contrast to urban regions where the planning of networks is typically capacity-
driven, in rural regions the planning of networks is rather coverage-driven (Bernardi et al., 2011). 
Coverage-driven planning is especially appropriate in situations when most of the applications 
accessible through the network are text and audio-based rather than video-based: this is often 
the case for rural WMN’s.

The work begun in (Fendji, Thron, & Nlong, 2014) and extended in (Fendji et al., 2015) introduces 
a new placement problem of mesh routers in a rural region. Regions to be covered are decomposed into 
small elementary areas which may or may not require coverage or be available for node placement. 
A placement approach based on metropolis algorithm has therefore been used.
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3. FORMULATION OF THE PLACEMENT PROBLEM

In previous works, the coverage constraint has been usually represented as a set of clients distributed 
in a region. Following (Fendji et al., 2015), here we consider instead the coverage constraint as an 
area to cover. In this placement problem, a given region is composed of areas of interest that should 
be covered. The coverage of a region is considered as optional when this region is not of interest. 
A given region comprised also prohibited areas where a node cannot be placed (lake, river, road, 
etc.), and a set of obstacles that could hinder the connectivity. The area to cover is modelled as a 
two-dimensional irregular form in a two-dimensional coordinate plane. We consider the smallest 
rectangle that can contain the irregular form, and divide this rectangle into small squares which are 
indexed by a pair of integers (x, y). These squares are called elementary areas (EA). Each EA can 
be of one or more types:

•	 EAI: Elementary Area of Interest
•	 OEA: Optional Elementary Area
•	 NEA: Non-line-of-sight (NLOS) Elementary Area
•	 PEA: Prohibited Elementary Area

Figure 2 illustrates the result of a decomposition of a region into a set of EA. When an EA is 
not an EAI, it is automatically an optional EA (OEA); that means an EA is either an EAI or an OEA. 
However, an EAI can be a NEA or a PEA. The network has a single Internet gateway, labelled as IGW.

In order to describe the situation mathematically, we can define several two-dimensional matrices 
to characterise each EA type: the matrix Cover indicates whether or not an EA requires coverage; Place 
indicates whether or not we can place a node in an EA; CoverDepth indicates the number of routers 
covering an EA; and Pathloss indicating whether or not an EA contains an obstacle. Specifically, 
matrix entries for position (x, y). are defined by (1-4):

Figure 1. A rural wireless mesh network
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The following expressions are considered:

•	 The area to cover is denoted by  ⊂ ×N� N , since it is discretized into elementary elements;
•	 M R R R

nr
= … }{ 1 2

, , ,  is the set of mesh routers;

•	 Each mesh router node has a unique integer identifier j nr� � ,�∈

1 ;

•	 The sets of EA, EAI, and PEA are represented respectively by  , i , and p ;
•	 The number of EA, EAI, and PEA are given respectively by n

ea
=  , n i

eai
=  , 

and n p
pea
=  ;

•	 The set of EA covered by R j N
j
, ,∈


 ∩1   is represented by C

j
 ;

Figure 2. Example of the decomposition of an area into EA
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•	 The set of EAI covered by R j N
j
, ,∈


 ∩1   is represented by C i

j
 ;

•	 The set of EAI covered by R j N
j
, ,∈


 ∩1 N� alone is represented by C is

j
 ;

•	 The number of EAI covered by R j N
j
, ,∈


 ∩1   is represented by Cov C i

j j
=  ;

•	 The number of EAI covered by R j N
j
, ,∈


 ∩1   along with at least one other MR is represented 

by mCov C m
j j
=  ;

•	 The number of EAI covered by � ,� � ,�R j N
j
∈


 ∩1   alone is represented by sCov C s

j j
=  ;

•	 The centre of mass of the set of EAI covered by R j N
j
, ,∈


 ∩1   is represented by  CM

j
.

Let p  be an EA at position x y,( ). If Rj  is located in p, then the set of EAs covered by R
j
 is given by (5):

C
j j
 = ( ) −( ) + −( ) <{ }a b x a y b r, ,

2 2 2 with Cov C
j j
=  	 (5)

For any R j N
j
, ,∈


 ∩1  , the following equations hold:

C s C m
j j

 ∩ = ∅ 	 (6)

C s C m C i
j j j

  ∪ = 	 (7)

3.1. Assumptions
To simplify the problem, we assume that the attenuation factor of any obstacle in the line of sight between 
two routers is high enough to prevent any wireless link between those routers. We also assume that all routers 
are equipped with an omnidirectional antenna and having the same transmission range. The transmission 
range is expressed in units of EA width, so for example r = 6 means that the radius stretches across 6 EAs.

The mesh router placement problem in rural regions can be described as the determination of 
a minimum set of positions, which maximizes the coverage of areas of interest, while minimising 
the cost of the architecture. This cost can be minimised just by minimising the number of routers 
required to cover the region.

The basic placement problem of nr routers in this area requires the evaluation of the number of 
combinations given by (8) for checking the optimal coverage:

C
p

n p n
p

n

r r

r

 

 

 −
=

−( )
− −( )

!

! !
	 (8)

For a real-life scenario, we suppose  = ×50 50,  r = 60, p = 100 . We also suppose that 

half of the region is optional in terms of coverage. Thus, i = =
50 50

2
1250

* . Therefore, the 

number of combinations to examine is:

C
1150
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1250 100
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1150

60 1090
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−( )
− −( )

=
!

! !

!

! !
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This number increases exponentially with the size of   and nr . Since the number of 
combinations is too high, an exhaustive deterministic algorithm is not practically possible. Therefore, 
a meta-heuristic should be used.

4. SIMULATED ANNEALING BASED CENTRE OF MASS (SAC)

This section discusses the two basic algorithms that are combined to obtain the SAC algorithm for 
solving the problem of mesh nodes placement in RWMN.

4.1. Simulated Annealing Algorithm
The SA algorithm has been developed by (Kirkpatrick et al., 1983). It is inspired from the annealing process 
in metallurgy and material science, whereby a substance is heated to a specific temperature and then slowly 
cooled to reduce the defects and to obtain a strong crystalline structure reaching a minimal (optimal) energy 
level. The energy changes in the cooling process of a system are simulated by the SA algorithm until an 
equilibrium state (an optimum) is reached. The first development of an optimisation technique based on 
an annealing process dates back to Metropolis (Metropolis, Rosenbluth, & Teller, 1953).

4.1.1. Basic Algorithm
The SA algorithm proceeds as follow: First, an initial solution is generated; several iterations are performed 
from this solution. A new random solution is generated at each iteration. If the solution improves the value 
of the objective function, it is directly accepted. Otherwise, this non-improving solution is accepted with 
a probability depending on the current temperature T  and the difference ∆E .between the value of its 
objective function f s '( )  and that of the previous solution f s( ) . Since the temperature decreases 
progressively, the probability of accepting non-improving solutions also decreases. Usually, the probability 
in the SA algorithm follows the Boltzmann distribution given in (9) (Talbi, 2009) (Algorithm 1):

P E T e
E

T∆( ) =
−∆

, 	 (9)

The basic version of the SA algorithm is given in Algorithm 1.

Algorithm 1. Simulated annealing for maximising problem

Input: f  . the objective function to be maximised
Output: s . the best solution found
Begin
  T �:= T

initial
; s := InitialSolution(); v := f s( )

  while (stopping condition not met) do
    while (equilibrium condition not met) do
      s’ := GenerateSolution()
      v’:= f s’( )
      ∆E := � ’v v−
      if ∆ ≥E 0  then s = s’

      else accept s’ with probability e
E

T
−
∆

    Update (T).
  Return s
End
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4.1.2. Influencing Parameters
Several parameters influence the efficiency of the SA algorithm, and should be optimized in 
order to minimize the computational time. The main parameters are: the initial temperature, the 
equilibrium state, the temperature update scheme, the acceptance probability, and the stopping 
condition (Talbi, 2009).

4.1.3. Initial Temperature
The initial temperature should not be too high in order to avoid the cooling process to be time 
consuming in the SA algorithm. But it should also not be too low to escape from local optima which 
may be near the initial solution.

4.1.4. Equilibrium State
An equilibrium state should be reached at each temperature; then the temperature is decreased. Two 
possible strategies may be used to indicate an equilibrium state: static or adaptive. For the static strategy, 
the number of moves to perform at each temperature is predefined: this strategy has drawbacks in 
that the number of iterations can be too long (increasing the running time of the algorithm) or too 
short (leading to suboptimal solutions). For the adaptive strategy, the number of moves is dynamic: 
for instance, a given number of moves without improvement of the solution can be considered as a 
sufficient condition to update the temperature.

4.2. Temperature Update Scheme
Temperature updates decrease in value as according to the following general scheme:

( ) ( , ) (lim )T T T i T
i i i

i
i

> ∧ > ∀ ∈ ∧ =+
→∞

0 0
1

�N� 	

The decrease of the temperature can be based on different schemes. The most common schemes 
of updates are: linear; geometric (e.g. Cauchy annealing); or logarithmic (e.g. Boltzmann annealing).

4.2.1. Stopping Condition
The most commonly-used stopping condition is to stop at a fixed temperature threshold. 
Another proposed stopping condition is to perform a number of a fixed number of temperature 
changes without improving the best solution found. If at a temperature Ti. the equilibrium state 
is reached without improvement of the solution, the algorithm can stop without necessarily 
reaching the final temperature.

4.2.2. Simulated Annealing for RWMN
The basic SA algorithm is a single solution-based metaheuristic (S-metaheuristic) that searches for 
the global optimum of a single objective function. It is usually used in a single-objective optimization 
problem. However, in our problem, both the extent of coverage and the number of routers is considered 
as objectives to be optimized. This means that the solutions that the algorithm will seek Pareto 
optimal solutions. We assume the number of routers to place to be unknown at the beginning in this 
placement approach.

The particularization of the SA algorithm aims to define suitable values of its parameters in 
order to enable the approach to be more efficient. We consider the particularization of SA approach 
found in (Fendji, Thron, & Nlong, 2016).
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4.2.3. Initial Solution
The initial solution is obtained by placing routers randomly in the area to cover while ensuring that 
the centre of the router is located at an EA (x,y) for which Cover x y,( )  = 1, and Place x y,( )  = 1.

4.2.4. Cooling Schedule
The initial temperature T = 0.25 has been determined empirically. We select a geometric update 
scheme as defined in (10) with α = 0.5. When the temperature is less than Tmin = 0.01, the cooling 
process stops:

T T
i i+ =1

α 	 (10)

4.2.5. Move
Only one router is moved at a time: both direction and distance are randomly selected based on a 
uniform distribution function. The movement from the current EAa = ( )x y,  to the new EAb = ( )x y’, ’  
is simulated if and only if Cover x y′ ′( ) =, 1  and � ’, ’Place x y( ) = 1 . Initially great moves (r, r/2) 
are selected to allow a rapid convergence. The size of moves decreases with the temperature; when 
the temperature is close to Tmin, the size of moves is one EA.

4.2.6. Fitness Function
We count the number of EAIs that are covered to evaluate the fitness function. This is done by (11) 
after the initialization:

f sign CoverDepth *Cover= ∑ ( ). 	 (11)

Since we move only one router at the same time, we consider also only the EAs which are 
affected by the motion.

4.2.7. Acceptance Criterion

When moving a selected router  R
j
 from an EAa = x y,( )  to an EAb = � ,′ ′( )x y  if C is

j
  increases 

(that means ∆E  is positive), then the coverage is directly accepted. But if C is
j

  decreases (that 
means ∆E  is negative), the change is accepted with a certain probability following the Boltzmann 
distribution given in (9).

4.2.8. Equilibrium State and Stopping Condition
The equilibrium state for a given temperature is presumed to be reached if after a number 
(Stop) of moves no solution has been accepted. The stopping condition depends on Imp  
and on  T

min
. At each temperatureT

i
, Imp  indicates whether the solution has improved. 

When the equilibrium state at a temperature T
i
 is reached, before decreasing the temperature 

we check whether the solution has improved. In case of an improvement, we decrease the 
temperature and move to the next iteration. But if there is no improvement or the temperature 
is less than  T

min
, we stop the search process and suppose having reached an optimum.
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4.3. Centre of Mass of Single Coverage (CM)
4.3.1. Algorithm
The idea behind the approach of the centre of mass of single coverage is to reduce the area covered 
by multiple routers by moving routers in high-coverage regions to the centre of mass of areas that are 
not yet covered. This approach is motivated by the fact that by moving routers to the centre of mass 
of their single coverage, new non-covered EAI can be reached in a relative short number of moves. 
Since moves effectively reduce multiple coverage, the coverage improves more rapidly than with the 
SA approach. In fact, the SA approach sometimes moves routers to areas that are already covered. 
The CM algorithm is given in Algorithm 2.

Algorithm 2. Centre of mass of single coverage

Input: f  : the objective function to be maximized
Output: s : the best solution found
1.  Begin
2.    s  = InitialSolution();
3.    v  = f s( )
4.    while (stopping condition not met) do
5.       R

i
 = selectARouter();

6.    if mCov
i
 is too large a fraction then

      // Jump Operation
7.      P

tmp
 Search for EA with CoverDepth  = 0, Cover  = 1, and Place = 1

8.     SimulateR
i
 to P

tmp

9.    Move R
i
 to CM

i

10.  else
     //Shift Operation
11.   Move R

i
 to CM

i

12.    s := NewSolution(R
i
);

13.    v := f s( )
    Return s
    End

4.3.2. Algorithm Explanation

•	 Initial Solution: The initial solution is obtained, as in SA algorithm, by placing routers randomly 
in the area to cover while ensuring that Cover x y,( )  = 1, and Place x y,( )  = 1;

•	 Moves based on single or multiple coverage: To improve the initial solution, a router R
j
 is 

moved at the same time. Two types of move are defined depending on mCov
j  

 and sCov
j
: Shift  

operation and Jump  operation;
•	 Shift operation: Consists into moving R

j
  to  CM

j
. That means R

j
 is moved to the Centre of 

Mass of its single coverage  C is
j

 . An example of Shi operation is illustrated in Figure 3c;
•	 Jump operation: Consists into first randomly selecting an EA = x y,( )  with � ,CoverDepth x y( ) = 0 , 
Cover x y,( ) = 1 , and Place x y,( ) = 1 ; then relocating R

j
 to CM

j '
 which is the Centre of Mass of 

the single coverage of the new selected EA. An example of Jump operation is illustrated in Figure 3b.
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Shift and Jump operations are exclusive and selected depending on condition (12). rand x( )  is a 
function following a uniform distribution. We can remark that when sCov

j
 is too great compared to

 mCov
j
, expression in (12) has a great probability to be not satisfied. If it is the case, the shift operation 

is applied on  R
j
 reducing eventually its multiple coverage. Otherwise the Jump operation is applied:

sCov mCov rand mCov
j j j
+( ) ( ) < ( )� *

2 2
x 	 (12)

•	 Fitness Function (lines 3 and 13): The evaluation of fitness function consists, as it is the case in 
the SA algorithm, to count the number of covered EAI. This is done by (11) after the initialization;

•	 New Solution (line 12): It is obtained by keeping other routers in their previous positions and 
considering the new position of router  i ;

•	 Stopping Condition: If the value of the fitness function does not improve after a certain 
number of iteration TTS (Time to search), we suppose therefore having reached an optimum. 
The value of TTS has a direct incidence on the convergence time of the algorithm. A small 
value leads automatically to a rapid convergence, while a great value will extend the running 
time of the algorithm.

4.3. SAC Framework for Solving RWMN Problem
SAC approach is a hybrid of Centre of Mass and Simulated Annealing. It is composed of two 
main phases: A Speedup phase based on Centre of Mass approach, and a Refinement phase 

Figure 3. (a) Configuration at a time t; (b) Configuration at a time t+1 after a Jump operation if black router is selected; (c) 
Configuration at a time t+1 after a Shift operation if Red router is selected
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based on Simulated Annealing. Flowchart is given in Figure 4. Best is an archive which keeps 
the best solution for each number of routers. nRun is the number of times the SAC algorithm 
will be executed.

The number of routers is unknown at the beginning and the form of the region is irregular. Since 
routers should overlap to ensure the connectivity, we start with a great number of routers, and then 
we reduce this number while trying to maintain a large coverage percentage of the area of interest. A 
lower bound to the number of routers to cover of the area of interest when all routers have the same 
transmission range is given by (13). A too great number of routers at the beginning is not efficient 
since the reduction of the number of routers will last longer. The initial number of routers was chosen 
between 1.5-2 times the lower bound, as in (14):

nr Cover x y r *
min
= ∑ ( ) ( ), .2 3 14 	 (13)

3

2
2nr nr nr

initmin min
≤ ≤ 	 (14)

4.4. Initial Solution
Routers are placed randomly in the region during the initialization phase of the SAC algorithm, 
but only in areas of interest. We randomly select an EA for each router. We check if Cover(EA) = 
1, and Place(EA) = 1, and, if a router is not already set at this location then the current router can 

Figure 4. Flowchart of the SAC approach for solving mesh nodes placement in RWMN
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be placed there. Otherwise, we continue by selecting another EA. The initialization ends when all 
routers are placed.

4.5. SpeedUp Phase With CM
The aim of this phase coming right after the initialization is to achieve a rapid exploration of the 
search space. This stage consists of CM algorithm. TTS is set at the beginning. A router is randomly 
chosen and the suitable operation between Jump and Shift is performed. If there is no improvement 
of the current solution, TTS decreases; otherwise it is reset. This phase stops when TTS reaches 0.

4.6. Refinement Phase With SA
This stage aims to improve the intermediate solution provided by the Speedup phase. This is achieved 
by the SA algorithm which make and exploitation of the search space in the neighbourhood of the 
intermediate solution.

4.7. Reduction of the Number of Routers and Stopping Condition
At the beginning nrinit routers are used. The SAC algorithm is running nRun times for each number 
of routers, and the best solution is kept in Best. After completing the runs for nr routers, the number 
of routers is reduced according to (15). The algorithm stops when nr becomes less than nr

min
:

nr nr= − γnr
min

	 (15)

5. PERFORMANCE EVALUATION

5.1. Performance Metrics
Different metrics are considered for the evaluation of performance of the presented algorithms.

5.1.1. Coverage Percentage of Area of Interest
The first metric is the coverage percentage of the area of interest. It is determined by the fitness function 
defined in (11). The closer this percentage is to 100 percent, the better is the quality of the solution. 
Since we reduce the number of routers progressively, we compare the algorithms’ performance for 
each given number of routers; best case, mean and median coverage percentages are recorded after 
nRun runs of the algorithm.

5.1.2. Robustness
An important characteristic of stochastic optimisation approaches is the robustness, defined as the 
ability to provide similar results after repeated. The robustness reflects the degree of consistency 
(or reproducibility) in values obtained by the stochastic approach. We compute two measures of 
robustness: the standard deviation and interquartile range (IQR) of coverage percentages of the area 
of interest for all the runs with the same number of routers.

5.1.3. Convergence Time
The convergence time is another important consideration, particularly in online optimisation where 
the time to reach a solution is a practical constraint. In general, better quality solutions are obtained 
at the expenses of longer running times. We evaluate the convergence time by computing the best, the 
mean, and the median values of all runs: and we evaluate the dispersion by calculating the standard 
deviation and the IQR.
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5.2. Simulations and Discussion
5.2.1. Network Instances
Due to the lack of a suitable testbed, we created our own for this study. The testbed was designed to 
mimic real-world scenarios. We randomly generated 24 different regions with irregular forms, with 
areas of interest and prohibited areas. Four typical regions are presented in Figure 5. Since algorithms 
may perform differently in both runtime and solution quality on small and large problems, we consider 
four different grid sizes: 50×50, 100×100, 150×150, and 200×200. If size(EA) is taken to be 20m, 
then the selected grid sizes correspond to areas between 1km2 and 16km2. The completed testbed is 
available online (Fendji, 2017).

5.2.2. Algorithm Parameters and Simulation Environment
The algorithms parameters are given in Table 1. The transmission range r is set to 6. If size(EA) 
= 20m, the radius will be 6×20m=120m. This is realistic since 802.11n routers have a theoretical 
outdoor transmission range of 250m.We use a number of routers between 1.5nrmin and nrmin (1.5nrmin, 
1.4nrmin, 1.3nrmin, 1.2nrmin, 1.1nrmin, nrmin). For each number of routers and each instance, the three 
algorithms are run 20 times. Simulations of all algorithms are conducted using SCILAB 5.5 on a 2.8 
GHz CPU Desktop with 4GB RAM.

Figure 5. Four Instances in a set of 24 with irregular forms: (a) Instance 1 with  = ×50 50� , (b) Instance 2 with 
 = ×100 100� , (c) Instance 3 with  = ×150 150� , (d) Instance 4 with  = ×200 200�
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5.2.3. Discussion of Results
Table 2 presents the mean, the median, and the best coverage percentages of the algorithms. The 
table shows that CM provides the worst results in terms of coverage percentage of AI, irrespective of 
the number of routers and the size of instances. SAC and SA are consistently very close by all three 
measures, and both SA and SAC provide coverage over 99 percent when Nr ≥ 1.3nrmin. However, 
SAC consistently provides better results than SA in all metrics for large grids: at grid size 200×200, 
the mean and median coverage improvements over all metrics and router numbers is 0.4 percent. 
Figure 6 presents standard box plots of coverage percentages for the three different algorithms for 
values of 50×50 and 200×200 grids.

Figure 7 shows coverage percentages as a function of number of routers (Nr) for the three 
algorithms for different grid sizes. As expected, the coverage percentages consistently decrease as 

Table 1. Algorithm parameters

Parameter Value

TTS 1000

Tinit 0.25

α 0.5

Tmin 0.01

Stop 1000

nRun 20

r 6

β [0,1]

γ 0.1

nrinit 1.5nrmin

Table 2. Comparison of mean, median, and best coverage percentages of algorithms

Number 
of 

Routers

50x50 100x100 150x150 200x200

CM SA SAC CM SA SAC CM SA SAC CM SA SAC

1,5nrmin

Mean﻿
Median﻿
Best

97.60﻿
97.84﻿
99.31

99.86﻿
100.00
100.00

99.95
100.00
100.00

96.26﻿
96.48﻿
97.42

99.78﻿
99.84﻿
100.00

99.93
99.96
100.00

95.96﻿
96.16﻿
96.81

99.53﻿
99.74﻿
99.99

99.93
99.94
100.00

95.98﻿
96.16﻿
96.81

99.60﻿
99.64﻿
99.91

99.90
99.93
99.98

1,4nrmin

Mean﻿
Median﻿
Best

95.22﻿
95.85﻿
97.91

99.55
99.94
100.00

99.47﻿
99.84﻿
100.00

94.77﻿
94.77﻿
96.38

99.62﻿
99.71﻿
99.96

99.79
99.85
99.97

94.17﻿
94.46﻿
95.40

99.28﻿
99.54﻿
99.86

99.81
99.84
99.95

94.30﻿
94.46﻿
95.40

99.09﻿
99.31﻿
99.85

99.74
99.79
99.94

1,3nrmin

Mean﻿
Median﻿
Best

93.43﻿
94.53﻿
96.81

98.94﻿
99.53
100.00

99.12
99.50﻿
100.00

92.56﻿
92.65﻿
94.23

99.20﻿
99.18﻿
99.73

99.31
99.36
99.80

91.89﻿
92.33﻿
93.31

98.69﻿
99.01﻿
99.61

99.31
99.39
99.77

91.99﻿
92.33﻿
93.31

98.45﻿
98.86﻿
99.48

99.16
99.35
99.60

1,2nrmin

Mean﻿
Median﻿
Best

90.12﻿
91.70﻿
95.02

96.83
98.34
99.71

96.58﻿
97.96﻿
99.65

89.91﻿
89.97﻿
91.48

97.84
97.97
98.82

97.79﻿
97.95﻿
98.85

89.25﻿
89.62﻿
90.95

97.39﻿
97.81﻿
98.83

98.02
98.11
98.91

89.36﻿
89.62﻿
90.95

97.18﻿
97.58﻿
98.35

97.97
98.13
98.68

1,1nrmin

Mean﻿
Median﻿
Best

87.47﻿
88.23﻿
92.09

94.85
96.07
97.45

94.74﻿
95.63﻿
97.34

86.14﻿
86.27﻿
87.73

95.30
95.38
96.69

95.23﻿
95.33﻿
96.46

85.79﻿
86.20﻿
87.41

95.32﻿
95.49﻿
96.83

95.38
95.68
96.51

86.01﻿
86.20﻿
87.41

94.76﻿
95.16﻿
96.18

95.71
95.75
96.38

nrmin

Mean﻿
Median﻿
Best

81.44﻿
82.85﻿
86.67

89.59﻿
91.02
93.05

89.64
90.57﻿
92.87

81.58﻿
81.75﻿
83.52

91.21
91.46
92.65

91.08﻿
91.13﻿
92.65

81.41﻿
81.72﻿
83.26

91.34﻿
91.63﻿
92.89

91.55
91.75
92.74

81.92﻿
81.72﻿
83.26

90.99﻿
91.34﻿
92.62

91.57
91.67
92.23
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Nr decreases. When Nr= nrmin, SA and SAC achieve over 90 percent coverage independent of grid 
size: when Nr= 1.3nrmin, this increases to 98 percent. Larger grid sizes are associated with higher 
coverage percentages, and the difference increases as Nr decreases. The largest difference achieved 
between 50×50 and 200×200 coverage rates was 2 percent, at Nr= nrmin with SAC.

Table 3 presents the standard deviation and IQR of coverage percentages provided by the 
three algorithms. As far as relative performance of the three algorithms, the situation is similar to 
coverage percentage metrics. CM is consistently worst, and for the smallest grid sizes SA and SAC 
are comparable. But for larger grid sizes, the robustness measures for SAC are about 2-7 times smaller 
than those for SA: the improvement tends to be larger for larger router numbers. Apart from this, we 
may note a general tendency towards greater robustness for larger grid sizes, and larger router numbers.

Two-sided p-values have been computed to test the statistical significance when comparing SAC 
to other approaches. The p-value is computed for each number of routers by computing means and 
standard deviations for the twenty runs of each of the six instances for a given grid size (120 runs 
total) for the two algorithms being compared. When comparing CM with SAC, the p-value was always 
less than 0.00001, indicating that SAC improvements over CM are highly statistically significant. The 
p-values for SAC and SA are presented in Table 4. From this Table, SA provides a better coverage 
than SAC only with 50x50 grid and when the number of routers is less than 1.3nrmin. For the smallest 

Figure 6. Average coverage percentage provided by the different algorithms: (a) Instance 1 with  = ×50 50� ; (b) Instance 
4 with  = ×200 200�
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number of routers (nrmin and 1.1nrmin) in 100x100 grid, the superiority of one approach over the second 
one cannot be proved. However, for larger grid sizes, the superiority of SAC over SA in terms of 
coverage is confident since p is always less than 0.05.

Table 5 presents the mean and median CPU times required by the different algorithms. CM 
approach provides the shortest running time, regardless the number of routers and the size of instances. 
However, this is clearly tied to the relatively poor coverage performance of CM—the CM algorithm 
explores less of the solution space, so the running time is less but better solutions are missed. SA 
provides the worst CPU time, ranging from about three times the CPU time used by the CM approach 
for small instances, up to twelve times for larger instances. Compared to SA, SAC shows 40-60 percent 

Figure 7. Average coverage percentage provided by the different algorithms

Table 3. Comparison of standard deviation and IQR of coverage percentage for three algorithms

Number 
of 

Routers

50x50 100x100 150x150 200x200

CM SA SAC CM SA SAC CM SA SAC CM SA SAC

1,5nrmin
Dev﻿
IQR

0.69﻿
0.92

0.16﻿
0.05

0.07
0.00

0.49﻿
0.63

0.28﻿
0.23

0.06
0.06

0.35﻿
0.50

0.32﻿
0.29

0.05
0.05

0.26﻿
0.50

0.30﻿
0.34

0.04
0.04

1,4nrmin
Dev﻿
IQR

1.04﻿
1.41

0.24
0.18

0.26﻿
0.28

0.52﻿
0.55

0.41﻿
0.37

0.12
0.16

0.42﻿
0.56

0.35﻿
0.34

0.08
0.11

0.29﻿
0.56

0.42﻿
0.58

0.08
0.11

1,3nrmin
Dev﻿
IQR

1.12﻿
1.57

0.51﻿
0.62

0.37
0.53

0.56﻿
0.75

0.53﻿
0.60

0.25
0.34

0.46﻿
0.58

0.49﻿
0.61

0.17
0.21

0.32﻿
0.58

0.52﻿
0.56

0.15
0.17

1,2nrmin
Dev﻿
IQR

1.54﻿
2.38

1.03﻿
1.42

0.95
1.47

0.70﻿
0.96

0.94﻿
0.86

0.41
0.54

0.49﻿
0.67

0.62﻿
0.60

0.28
0.37

0.38﻿
0.67

0.48﻿
0.52

0.21
0.27

1,1nrmin
Dev﻿
IQR

1.51﻿
2.05

0.97
1.21

1.03﻿
1.38

0.77﻿
1.03

0.78﻿
0.86

0.46
0.65

0.57﻿
0.72

0.67﻿
0.72

0.39
0.60

0.43﻿
0.72

0.62﻿
0.75

0.26
0.42

nrmin
Dev﻿
IQR

1.67﻿
2.40

1.14﻿
1.34

1.05
1.32

0.74﻿
0.99

0.86﻿
1.08

0.60
0.76

0.59﻿
0.76

0.73﻿
0.91

0.38
0.54

0.51﻿
0.76

0.58﻿
0.75

0.27
0.38
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reductions in CPU time, where reductions decrease as grid size increases. The running time of SAC 
scales roughly linearly with the grid size as shown in Figure 8. For a given grid size, running time 
for different router numbers varies by less than 40%.

Standard Deviation and IQR for CPU times of algorithms are presented in Table 6. IQR and 
StdDev for SA is roughly twice that of SAC. So, in terms of robustness as well as mean running time, 
the SAC is markedly superior to SA.

We have supposed at the beginning that the number of routers is unknown. So, an implicit 
objective was to determine an optimal number of routers that can provide a good coverage. From 
simulation, first, there was no need to use an initial number of routers greater than 1.5Nr_min, since 
this number provided a coverage percentage of 100% with SAC algorithm. Secondly, 1.3Nr_min 
can be considered as a good compromise, since SAC algorithm can achieve a coverage percentage 
greater than 99% with this number of routers. This algorithm improves results previously achieved 
in the literature by SA algorithm which is 98% using 1.3Nr_min routers (Fendji et al., 2016), and 
outperforms the approach based on metropolis proposed earlier in (Fendji et al., 2014).

Figure 9-12 presents the coverage of area of interest and the network topology achieved by SAC 
approach using 1.3nrmin on four instances of different sizes. We can observe that the great percentage 
of EAI is covered by only one router, while the percentage covered by two routers is low and the 
percentage covered by three is almost zero.

Table 4. Two-sided p-values when comparing mean coverage percentages of SAC and SA. Numbers in italics correspond to 
instances where the SA mean coverage percentage is higher than SAC, while numbers in regular case indicate instances 
where SAC mean percentage coverage was higher than for SA. Significance at p<0.05 is indicated in bold.

Number of Routers 50x50 100x100 150x150 200x200

1,5nrmin 0.01364 0.00001 0.00001 0.00001

1,4nrmin 0.007047 0.00001 0.00001 0.00001

1,3nrmin 0.393277 0.00001 0.00001 0.00001

1,2nrmin 0.022995 0.012899 0.00001 0.00001

1,1nrmin 0.004611 0.12259 0.000215 0.00001

nrmin 0.024758 0.213914 0.000204 0.00001

Table 5. Comparison of mean and median CPU times of algorithms

Number of Routers
50x50 100x100 150x150 200x200

CM SA SAC CM SA SAC CM SA SAC CM SA SAC

1,5nrmin
Mean﻿
Median

9.91
9.23

28.53﻿
28.83

13.41﻿
13.32

11.55
11.07

63.58﻿
63.19

24.55﻿
26.30

12.80
12.39

107.82﻿
115.28

45.83﻿
46.40

14.97
14.25

169.20﻿
170.62

69.61﻿
70.97

1,4nrmin
Mean﻿
Median

8.50
8.02

29.88﻿
29.09

14.24﻿
14.10

9.94
10.22

61.82﻿
65.95

29.80﻿
31.79

11.52
11.39

115.09﻿
116.45

56.33﻿
54.93

13.99
13.49

176.25﻿
175.18

84.92﻿
84.75

1,3nrmin
Mean﻿
Median

8.76
8.92

28.07﻿
28.43

15.23﻿
15.09

9.27
9.24

64.36﻿
67.37

33.07﻿
35.52

11.09
11.56

115.49﻿
117.29

61.59﻿
64.20

13.71
13.17

178.14﻿
181.84

97.69﻿
98.12

1,2nrmin
Mean﻿
Median

10.00
8.57

26.48﻿
26.46

12.82﻿
13.50

9.75
9.75

62.89﻿
66.18

33.37﻿
36.33

11.92
10.69

117.38﻿
119.35

65.73﻿
67.35

12.60
12.95

181.64﻿
182.74

101.39﻿
106.27

1,1nrmin
Mean﻿
Median

8.28
9.01

25.02﻿
24.42

12.69﻿
13.15

10.32
10.31

59.88﻿
62.32

33.02﻿
34.66

12.01
11.30

112.35﻿
117.89

63.18﻿
66.65

13.47
12.97

171.76﻿
176.77

100.77﻿
108.11

nrmin
Mean﻿
Median

9.24
9.07

21.11﻿
20.27

11.85﻿
12.36

10.76
10.11

56.78﻿
60.73

32.94﻿
33.05

12.02
11.50

104.63﻿
109.02

61.19﻿
63.68

13.88
14.69

171.95﻿
173.87

96.88﻿
103.69
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6. CONCLUSION AND FURTHER WORK

In this paper, a new algorithm for node placement in rural wireless mesh networks is proposed. 
Simulated Annealing based Centre of Mass (SAC) combines the best features of the Centre of Mass 
(CM) and Simulated Annealing (SA) algorithms. CM is a descent algorithm which converges quickly 
to a local optimum; while SA employs stochasticity to explore a larger area of the solution space. 
SAC combines both in such a way as to preserve the exploration properties of SA, while employing 
CM characteristics to more effectively seek out local optima in the regions explored.

SAC achieved better performance than previous algorithms. 99% coverage was achieved when 
router number = 1.3nrmin, which surpasses the 98% found in (Fendji et al., 2016), and 95% found in 
(Fendji et al., 2015; Fendji et al., 2014).

Simulation results on 24 benchmark instances show that SAC consistently achieves much 
better average coverage than CM for all grid sizes (p<0.00001), and also better coverage than 
SA for larger grid sizes (p < 0.00001). In addition, compared with SA, SAC both reduces the 

Table 6. Comparison of standard deviation and IQR CPU times of algorithms

Number 
of 

Routers

50x50 100x100 150x150 200x200

CM SA SAC CM SA SAC CM SA SAC CM SA SAC

1,5nrmin
Dev﻿
IQR

3.15﻿
4.10

6.71﻿
8.44

2.83
3.38

3.84
5.09

10.43﻿
13.41

4.17﻿
5.16

4.45
6.66

15.33﻿
20.45

6.43﻿
8.30

4.02
5.72

20.33﻿
23.22

10.14﻿
13.28

1,4nrmin
Dev﻿
IQR

2.99
4.22

6.07﻿
5.32

3.38﻿
3.76

3.25
4.47

10.72﻿
16.23

5.85﻿
7.22

4.25
5.86

16.58﻿
16.98

8.67﻿
11.92

4.53
6.97

23.21﻿
25.61

12.02﻿
17.35

1,3nrmin
Dev﻿
IQR

3.42
4.77

4.23﻿
7.03

3.76﻿
4.77

3.71
4.47

11.94﻿
13.11

5.93﻿
7.45

4.22
5.30

15.51﻿
21.91

10.83﻿
14.89

3.93
4.39

21.00﻿
29.75

14.17﻿
19.56

1,2nrmin
Dev﻿
IQR

3.36﻿
4.13

5.07﻿
6.97

2.79
4.02

3.41
4.68

10.56﻿
13.25

6.58﻿
8.79

4.10
4.54

16.38﻿
20.14

10.64﻿
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Figure 9. (a) Router coverage and (b) Network Topology provided by SAC approach on a 50x50 Instance using 1.3nr_min routers. 
Blue areas are covered by one router, red areas by two, and white areas by three routers.
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Figure 10. (a) Router coverage and (b) Network Topology provided by SAC approach on a 100x100 Instance using 1.3nr_min 
routers. Blue areas are covered by one router, red areas by two, and white areas by three routers.
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Figure 11. (a) Router coverage and (b) Network Topology provided by SAC approach on a 150x150 Instance using 1.3nr_min 
routers. Blue areas are covered by one router, red areas by two, and white areas by three routers.
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Figure 12. (a) Router coverage and (b) Network Topology provided by SAC approach on a 200x200 Instance using 1.3nr_min 
routers. Blue areas are covered by one router, red areas by two, and white areas by three routers.
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running time (for all grid sizes) and improves the coverage robustness by reducing the variance 
of solutions (for larger grid sizes).

The above results indicate that SAC holds promise as a high-performing algorithm for practical 
design of rural WMN’s. On a managerial point of view, SAC’s contribution is twofold. First, SAC 
reduces the time consumed during the network planning phase. Secondly, SAC increases the network 
coverage percentage for a given number of routers. That means, for the same coverage percentage 
SAC will require fewer nodes (reducing the cost of the architecture), or for a given number of nodes, 
SAC will provide a greater network coverage (improving the network coverage).

Future work may include application of the algorithm to areas of interest with different 
characteristics, including non-continuous areas. Additionally, the question of guaranteeing good 
connectivity has not been addressed: this issue is particularly important in areas of interest with 
significant obstacles that may block communication between mesh routers. Modified algorithms may 
be developed to address this issue by ensuring bi- or tri-connectivity of the network, which increases 
robustness of the functioning network. Finally, the SAC approach may be made more efficient by 
developing a more intelligent strategy for router moves in the SA subsystem of SAC, to replace the 
purely random moves employed in the current algorithm.
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