
DOI: 10.4018/IJWLTT.2020010104

International Journal of Web-Based Learning and Teaching Technologies
Volume 15 • Issue 1 • January-March 2020

﻿
Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

73

High Performance Fault Tolerant
Resource Scheduling in
Computational Grid Environment
Sukalyan Goswami, Institute of Engineering & Management, Kolkata, India

Kuntal Mukherjee, Birla Institute of Technology, Mesra, Lalpur Campus, Ranchi, India

ABSTRACT

Virtual resources team up to create a computational grid, which is used in computation-intensive
problem solving. A majority of these problems require high performance resources to compute
and generate results, making grid computation another type of high performance computing. The
optimization in computational grids relates to resource utilization which in turn is achieved by
the proper distribution of loads among participating resources. This research takes up an adaptive
resource ranking approach, and improves the effectiveness of NDFS algorithm by scheduling jobs
in those ranked resources, thereby increasing the number of job deadlines met and service quality
agreements met. Moreover, resource failure is taken care of by introducing a partial backup approach.
The benchmark codes of Fast Fourier Transform and Matrix Multiplication are executed in a real
test bed of a computational grid, set up by Globus Toolkit 5.2 for the justification of propositions
made in this article.

Keywords
Computational Grid, Fault Tolerance, Resource Failure, Resource Management, Task Scheduling

1. INTRODUCTION

Task scheduling in appropriate resources and achieving balanced load in computational grid
environment (Foster, Kesselman & Tuccke, 2001) are the two major research areas which need to be
explored more. This is mainly because of heterogeneous nature of grid and technological requirement
of computation-data separation. Computational capability of grid can be enormous if participating
resources remain well coordinated by broker and effective task scheduling is highest prioritized work
for achieving balanced load across grid.

Nearest Deadline First Scheduled (NDFS) algorithm (Goswami & Das, nee De Sarkar, 2014)
solves the above mentioned problems after the efficiency of the algorithm has been improved by
considering average load of each resource along with its current load for a pre-defined interval.
Saaty’s Analytic Hierarchy Process (AHP) (Saaty, 2008) has been adapted and improvised to rank
the participating resources. Subsequent job scheduling and load balancing in grid are completed by
NDFS, thus meeting the Service Quality Agreement (SQA) (Goswami & Das, nee De Sarkar, 2014).
Another objective of this research work is to make NDFS more robust by taking care of sudden
possible occurrences of resource failure in grid. Periodical runtime backup to next adaptively ranked
resource ensures compliance of approved SQA, which was signed between broker and client. Even if
resource fails, job need not be resubmitted in fault tolerant NDFS, submitted job resumes execution

This article, originally published under IGI Global’s copyright on January 1, 2020 will proceed with publication as an Open Access article
starting on January 28, 2021 in the gold Open Access journal, International Journal of Web-Based Learning and Teaching Technologies
(converted to gold Open Access January 1, 2021), and will be distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the

author of the original work and original publication source are properly credited.

International Journal of Web-Based Learning and Teaching Technologies
Volume 15 • Issue 1 • January-March 2020

74

from last backed up point, into next ranked resource. Hence, job is submitted by client only once,
thereby reducing total execution time. This paper puts thrust on single and multiple job execution
in real grid environment through execution of benchmark codes, namely, Fast Fourier Transform
and Matrix Multiplication. The experimental results are obtained for demonstration of balanced
workload in computational grid along with optimal solution for resource failure by creating test bed
of computational grid through Globus Toolkit, and comparing performance with other algorithms
in GridSim (Buyya & Murshed, 2002).

The organization of this paper is as follows: after discussing relevant works by different researchers
on grid in section 2, improvised NDFS algorithm is presented in section 3. Section 4 depicts results of
execution of benchmark codes in grid and discussion on the obtained results. The paper is concluded
in section 5.

2. RELATED WORKS

There are many challenges associated with computational grid, like, scheduling of jobs in appropriate
resources for subsequent execution, increasing the number of deadline meets for submitted jobs,
balancing of workload in grid and fault tolerance. Important related works in this arena of research
are summarized in this section.

The load balancing process must take into consideration the dynamic loads of participating
resources of the grid (Abo Rizka & Rekaby, 2012). Job scheduling has to ensure higher number of
deadlines meets, thereby improving the performance of the grid. In (Goswami & Das, 2016), an
adaptive execution scheme has been proposed which ensures guaranteed performance with respect
to service quality agreements.

The properties of general distributed system is quite different from that of computational grid
environment. Moreover, the client-server framework of grid proposed by Michael Stal (Stal, 1995)
does not solve the problem of load balancing among participating resources in grid. Various job
scheduling schemes in grid have been described in (Kant Soni, Sharma & Kumar Mishra, 2010).
X-Dimension binary tree data model (Abo Rizka & Rekaby, 2012) have limited success in workload
balancing among grid resources.

This research work documents an approach to improve the performance of computational grid
by reducing the the number of job deadline misses and overall makespan in grid. Job scheduling
in appropriate resources, being a multi-criteria-decision-making (MCDM) process, AHP model
(Saaty, 2008) of Saaty, supporting MCDM, is augmented in this research. The broker schedules
submitted jobs in adaptively ranked resources, ranking being done with help of AHP model. This
adaptive scheduling ensures performance improvement of grid by subsequently reducing number of
deadline misses and workload balancing among resources. Deadline of individual job is chosen as the
prioritization parameter for job scheduling in Nearest Deadline First Scheduled (NDFS) (Goswami
& Das, 2015) algorithm, and GridSim (Buyya & Murshed, 2002) simulation results show that NDFS
improves grid performance. Another milestone achieved is the number of submission by single client,
one job needs to be submitted once only by client, need of re-submission by client is done away with,
broker takes care of the possible re-submission in different resource in grid and monitors previously
signed SQA between client and broker. Resource ranking of NDFS has been refined in this research
by incorporating average load of the resource.

Resource failure creates possibility of deadline misses in grid. Multiple fault tolerant approaches
in grid have been explored in (Goswami & Das, nee De Sarkar, 2014). Author’s earlier research in
(Goswami & Das, nee De Sarkar, 2014) dealt with resource failure by introducing resubmission
approach which had incurred overhead. This research work improves the performance of NDFS by
incorporating partial backup approach without diluting performance of the grid.

International Journal of Web-Based Learning and Teaching Technologies
Volume 15 • Issue 1 • January-March 2020

75

3. NDFS ALGORITHM WITH FAULT TOLERANCE

3.1. Proposed Model of Resource Management
NDFS algorithm performs job allocation in grid by adaptively ranking the participating resources.
Computational grid environment hits a critical scenario when number of jobs submitted by clients in
grid out-numbers the number of resources, and the proposed model in this work of enhanced NDFS
with fault tolerance deals with this critical situation successfully.

Following discussion describes the working of NDFS.

3.2. Job Submission and Resource Addition in Grid:
Client submits 5 parameters of itself along with job – number of processor cores, current CPU
utilization, CPU clock frequency, current utilization of network and current RAM availability.

# of Jobs submitted to grid: Jx, 0 ≤ x ≤ n	 (1)

# of Resources available in grid: Ry, 0 ≤ y ≤ m	 (2)

n and m are maximum no. of executable jobs and maximum no. of resources that could be
supported by grid, respectively.

Assumptions: Jx > Ry	 (3)

3.3. Processing Phases
Job execution by NDFS is initiated after SQA is signed between client & broker, which happens
after Job Queue is prepared based on Jobweightage and adaptive resource ranking is complete based
on Resourceweightage. Saaty’s AHP model (Saaty, 2008) formulates calculation of the two valuable
parameters Jobweightage and Resourceweightage.

3.4. Allocation
Jobweightage and Resourceweightage need to be mapped for allocation of optimum number of jobs into
optimum number of available resources in grid, eventually maximum number of SQAs are met.

Assignment: Max(Jx)➲Min(Ry)	 (4)

Jobweightage (Ja) <= Resourceweightage (Rb)	

SQA verification,

Jx(Ct) <= Jx(dl)	 (5)

where, Jx(Ct) = completion time of job, Jx	
Jx(dl) = deadline of job, Jx	

Successful allocation implies that, jobs (Jx) are scheduled to appropriate resources (Ry) and
SQAs are met.

International Journal of Web-Based Learning and Teaching Technologies
Volume 15 • Issue 1 • January-March 2020

76

3.5. Compliance of SQA
The broker processes 3 phases after client successfully submits job in grid:

(i) 	 Preparation of job queue
(ii) 	Ranking of resources
(iii) 	SQA endorsement

3.6. Preparation of Job Queue
Jobweightage is calculated and resource ranking is obtained by the broker using AHP decision matrix
(Goswami & Das, 2016).

From [14],

f(Jobweightage) = 0.464x1 + 0.195x2 + 0.195x3 + 0.073x4 + 0.073x5	 (6)

3.7. Ranking of Resources
Resource ranking in computational grid has to support dynamicity, as because loads of participating
resources continuously change. So, CPU Availabilty parameter gets amended to accommodate both
current load and average load of the resource:

CPU Availability(x2) = (0.5 * current availability + 0.5 * average availability)	 (7)

Hence, the equation (6) is redefined as presented in equation (8):

f(Resourceweightage) = 0.464x1 + 0.0975x21 + 0.0975x22+ 0.195x3 + 0.073x4 + 0.073x5	 (8)

Broker calculates Resourceweightage. Highest Resourceweightage valued resource is ranked as Resrank=
1, next high Resourceweightage valued resource gets Resrank= 2 and so on. According to their ranks,
resources are placed on a priority queue by broker.

3.8. SQA Endorsement
On finding higher value of Resourceweightage compared to Jobweightage of submitted job, bipartite agreement
SQA is signed between broker and client. Job is allocated to the resource whose Resourceweightage is
immediate higher to Jobweightage of submitted job. Broker sends job execution results to the client, after
verification and validation of SQA.

Above discussed steps of proposed NDFS are depicted in Figure 1.

3.9. Enhancement of Efficiency of NDFS
This research also identifies that, in the instance of a resource failure resulting in possible deadline
miss, instead of resubmitting the job, another optimal solution is possible. Partial backup is taken
during execution of job, to ensure system becomes fault tolerant. Efficiency of NDFS is enhanced
with addition of fault tolerance property. During execution of a job, if resource fails, possibility of
meeting SQA will diminish drastically after job is resubmitted to another resource. To incorporate fault
tolerance in NDFS, partial backup process is introduced with initialization fraction f, 0 < f < 1, set at
0.3. For ensuring backup and seamless execution of job, state of the system of executing resource at
30%, 60% and 90% execution completion, with the job mirrored as well, are transmitted to next ranked
resource. Figure 2 represents steps to be followed to embed the property of fault tolerance in NDFS.

International Journal of Web-Based Learning and Teaching Technologies
Volume 15 • Issue 1 • January-March 2020

77

Fault tolerant NDFS ensures, in case of resource failure, job execution gets resumed from last
backed up point, therby saving on resubmission and execution time.

Implementation results of the algorithm, by executing several benchmark code instances in grid
test bed, are presented in next section.

4. EXPERIMENTAL SETUP AND RESULTS

The real test bed of computational grid is set up using Globus Toolkit 5.2. The system parameter values
are retrieved by SIGAR API through Java. The test bed consists of broker, 6 clients, and 5 resources.

Specifications of Client nodes: Dual Core Processor, 2 GB RAM and 160 GB HDD.
Specifications of Broker and Resources: Quad Core Processor, 4 GB RAM and 500 GB HDD.

4.1. Multiple Job Execution
Efficiency of an algorithm working in computational grid can only be certified if it can handle
computation intensive jobs. To substantiate this, 3 instances of heterogeneous benchmark codes
of Fast Fourier Transform (FFT) and another 3 instances of Matrix Multiplication are submitted to
broker from 4 clients for possible execution in participating 5 resources in the grid.

The sequence of operations follows:

1. 	 Client1 (192.168.30.3) sends “FFT1.java” job to Broker along with deadline specification.
2. 	 System parameters are fetched from Client1 by Broker along with all resources in grid. Jobweightage

of submitted job and Resourceweightage values of all participating resources are calculated by Broker.
3. 	 By this time Client3 (192.168.30.9) sends “FFT2.java” job along with deadline specification to

Broker.
3.1 Again System parameters are fetched from Client3 by Broker along with all resources in

grid. Jobweightage of submitted job and Resourceweightage values of all participating resources are
calculated by Broker. These values are depicted in Table 1.

3.2 SQAs are signed between Broker and both Client1 and Client3, as because matching values
of Jobweightage and Resourceweightage have been found.

3.3 Resource1 is assigned FFT1.java and Resource4 is assigned FFT2.java (presented in Table
1), as per the working principle of NDFS. SQAs are met.

4. 	 Client2 (192.168.30.8) sends “MatMul1.java” job to Broker along with deadline specification.
4.1 Resource5 is assigned MatMul1.java [presented in Table 1] by following the working principles

of NDFS, as alrady discussed earlier. SQA is also met in this case as well.
5. 	 Client4 (192.168.30.15) sends “MatMul2.java” job to Broker along with deadline specification.

5.1 Resource3 is assigned MatMul2.java [presented in Table 1] by following the working principles
of NDFS, as alrady discussed earlier. SQA is also met in this case.

6. 	 Lastly, Client5 (192.168.30.16) and Client6 (192.168.30.17) send “FFT3.java” and “MatMul3.
java” jobs to Broker. By virtue of working principle of NDFS, Resource1 and Resource2 are
assigned these 2 jobs respectively (presented in Table 1). SQAs are met in these 2 cases as well.

Execution of fault tolerant NDFS version is discussed next.

4.2. Single Job Execution with Fault Tolerance
An instance of benchmark code of Matrix Multiplication, “MatMul.java”, is executed in grid test bed
by fault tolerant NDFS. Benchmark code is executed for four different cases, as depicted in Table 2.

International Journal of Web-Based Learning and Teaching Technologies
Volume 15 • Issue 1 • January-March 2020

78

4.3. Case I
Job, “MatMul.java”, is allocated to Resource2 to meet SQA as per non-fault tolerant NDFS, as
represented in Figure 3. Execution is successful without resource failure, SQA is met.

Figure 1. Activity diagram of proposed NDFS

International Journal of Web-Based Learning and Teaching Technologies
Volume 15 • Issue 1 • January-March 2020

79

4.4. Case II
Job execution is halted after resource fails and job allocation is done again, resubmitted and then
execution is successful. So, SQA compliance is not achieved because of deadline miss. Figure 3
represents this scenario of NDFS without fault tolerance.

Fault Tolerant NDFS solves this problem, case III and case IV describe that.

4.5. Case III
Client2 submits MatMul.java, the matrix multiplication job. Resource2, being the resource with highest
rank, gets the allocation of the job by Fault Tolerant NDFS. Resource1 is next ranked resource. This
case represents successful job execution, as depicted in TABLE 3.

•	 Ater job execution is 30% complete consuming 3.71 seconds, backup is taken in resource having
2nd rank, Resource1, by pausing execution at Resource2, in 0.61 seconds.

Figure 2. Steps of fault tolerant NDFS

Table 1. Job Allocation by NDFS

International Journal of Web-Based Learning and Teaching Technologies
Volume 15 • Issue 1 • January-March 2020

80

•	 Same process is done after 60% and 90% completion of execution.
•	 Resource2 completes final 10% execution and Client2 receives the results via Broker.
•	 Though Fault Tolerant NDFS consumes more exection time compared to Non-Fault Tolerant

NDFS, because of the backup approach, still SQA is met.

4.6. Case IV:
Client2 submits MatMul.java, the matrix multiplication job. It is allocated to Resource2, the highest
ranked resource, by Fault Tolerant NDFS. Resource1 is next ranked resource. This case represents
successful job execution inspite of resource failure.

•	 30% execution is completed at Resource2 consuming 3.72 sec. Next, backup is sent to resource
having 2nd rank, Resource1, by further consuming 0.6 sec.

•	 Resource2 fails after 43% completion of execution by consuming 1.62 sec more.
•	 Resumption of job execution happens from last back-up point in Resource1 (2nd ranked resource),

and remaining execution (70%) is completed by Resource1 consuming 10.37 sec.
•	 SQA is complied.

Figure 3 presents this scenario.
Fault Tolerant NDFS ensures efficient performance in computational grid environment, as it has

been observed in different scenarios that, SQA is complied in Cases I, III, IV and was not complied
with in Case II.

4.7. Performance Comparison
Fault Tolerant NDFS is simulated with GridSim [4], the most widely used grid environment simulation
tool. Performance of NDFS is compared with few algorithms, namely, Without Load Balancing
(WLB), Fastest Processor to Largest Task First (FPLTF), Load Balancing on Enhanced GridSim
(LBEGS), Max-Min, and Min-Min.

Tables 4-6 along with Figures 4-7 present comparison of the above mentioned algorithms with
respect to various parameters such as, application execution time, communication overhead and rate
of finished Gridlet. Processing entity number is constant at 200 and number of Gridlets is varied.

Table 2. Different cases for demonstrating fault tolerant NDFS

International Journal of Web-Based Learning and Teaching Technologies
Volume 15 • Issue 1 • January-March 2020

81

5. CONCLUSION

Geographically dispersed resources constitute computational grid environment and these resources
have largely varied workloads. In grid, number of job execution-deadline meets can be increased
substantially by effective job scheduling among participating resources, also resulting in balanced
workload across the grid. This target gets achieved in this research by introduction of average resource
load along with current resource load, thereby improving the efficiency of NDFS algorithm. Service
quality agreements are met by scheduling jobs in the adaptively ranked resources. Another difficult
condition is encountered in computational grid environment when executing resource fails. This
research deals with this problem by introducing partial backup approach by Fault Tolerant NDFS. The
computational grid test bed is made by Globus Toolkit 5.2. Benchmark codes of multiple instances
of Fast Fourier Transform and Matrix Multiplication are executed. Obtained results demonstrate
balanced workload in computational grid along with fault tolerance property implemented. This
research concentrates the implementation in Java and in future will be extended to .NET framework
as well using Aneka software.

Figure 3. MatMul.java execution results for non-fault tolerant NDFS

Table 3. Job completion timestamp values of fault tolerant NDFS

ECT : Execution Completion Timestamp
BCT : Backup Completion Timestamp
ECFT : Execution Completion Final Timestamp

International Journal of Web-Based Learning and Teaching Technologies
Volume 15 • Issue 1 • January-March 2020

82

Figure 4. Job execution by fault tolerant NDFS inspite of resource failure

Table 4. No. of Communication Overheads comparison

International Journal of Web-Based Learning and Teaching Technologies
Volume 15 • Issue 1 • January-March 2020

83

Table 5. Makespan comparison

Table 6. Comparison of No. of finished Gridlets

International Journal of Web-Based Learning and Teaching Technologies
Volume 15 • Issue 1 • January-March 2020

84

Figure 5. Communication overhead comparison, PEs=200

Figure 6. Makespan comparison, PEs=200

International Journal of Web-Based Learning and Teaching Technologies
Volume 15 • Issue 1 • January-March 2020

85

Figure 7. No. of finished gridlets comparison, PEs=200

International Journal of Web-Based Learning and Teaching Technologies
Volume 15 • Issue 1 • January-March 2020

86

References

Abo Rizka, M., & Rekaby, A. (2012). Dynamic Job Scheduling and Load balancing algorithm In Grid Environment
via X-Dimension binary tree data model. International Journal of Intelligent Computing & Information Science,
12(2).

Balasangameshwara, J., & Raju, N. (2012). A hybrid policy for fault tolerant load balancing in grid computing
environments. Journal of Network and Computer Applications, 35(1), 412–422. doi:10.1016/j.jnca.2011.09.005

Balasangameshwara, J., & Raju, N. (2013). Performance-driven load balancing with a primary-backup approach
for computational grids with low communication cost and replication cost. IEEE Transactions on Computers,
62(5), 990–1003.

Buyya, R., & Murshed, M. (2002). GridSim: A toolkit for the modeling and simulation of distributed management
and scheduling for Grid computing. The Journal of Concurrency and Computation: Practice and Experience,
14(13).

De Sarkar, A., Roy, S., Ghosh, D., Mukhopadhyay, R., & Mukherjee, N. (2010). An Adaptive Execution Scheme
for Achieving Guaranteed Performance in Computational Grids. Journal of Grid Computing, 8(1), 109–131.
doi:10.1007/s10723-009-9120-9

Di, S., Kondo, D., & Cirne, W. (2014). Google hostload prediction based on Bayesian model with optimized feature
combination. Journal of Parallel and Distributed Computing, 74(1), 1820–1832. doi:10.1016/j.jpdc.2013.10.001

Foster, I., Kesselman, C., & Tuccke, S. (2001). The Anatomy of the Grid. The International Journal of
Supercomputer Applications, 15(3), 200–222. doi:10.1177/109434200101500302

Goswami, S., & Das, A. (2014). Handling Resource Failure towards Load Balancing in Computational Grid
Environment. In Proceedings of the Fourth International Conference on Emerging Applications of Information
Technology (pp 133-138). IEEE. doi:10.1109/EAIT.2014.62

Goswami, S., & Das, A. (2015). Deadline Stringency Based Job Scheduling in Computational Grid Environment.
In Proceedings of the International Conference on Computing for Sustainable Global Development, 9th IndiaCom
- 2015 (pp 531-536). IEEE.

Goswami, S., & Das, A. (2015). Resource Prioritization Technique in Computational Grid Environment. In
Proceedings of the Second International Conference on Computer and Communication Technologies - IC3T
2015 (pp 765-772). Springer.

Goswami, S., & Das, A. (2016). An Adaptive Resource Allocation Scheme in Computational Grid. International
Journal of Control Theory and Applications, 9(41), 721–736.

Goswami, S., & Das, A. (2016). Optimisation of Workload Scheduling in Computational Grid. In Proceedings
of the FICTA-2016. Singapore: Springer.

Jaiswal, S., Mishra, A., & Bhanodia, P. (2014). Grid host load prediction using gridsim simulation and hidden
markov model. International Journal of Emerging Technology and Advanced Engineering, 4(7), 775–781.

Kant Soni, V., Sharma, R., & Kumar Mishra, M. (2010). An analysis of various job scheduling strategies in
grid computing. In Proceedings of 2nd International Conference on Signal Processing Systems (ICSPS) (Vol.
2, pp. 162). IEEE.

Karthick Kumar, U. (2011). A Dynamic Load Balancing Algorithm in Computational Grid Using Fair Scheduling.
International Journal of Computer Science Issues, 8(5), 123–129.

Keerthika, P., & Kasthuri, N. (2013). A hybrid scheduling algorithm with load balancing for computational
grid. International Journal of Advanced Science and Technology, 58, 13–28. doi:10.14257/ijast.2013.58.02

Rajavel, R. (2010). De-Centralized Load Balancing for the Computational Grid Environment. In Proceedings
of International Conference on Communication and Computational Intelligence. IEEE.

Ray, S., & De Sarkar, A. (2013). Resource Allocation Scheme in Cloud Infrastructure. In Proceedings
of International Conference on Cloud & Ubiquitous Computing & Emerging Technologies. doi:10.1109/
CUBE.2013.16

http://dx.doi.org/10.1016/j.jnca.2011.09.005
http://dx.doi.org/10.1007/s10723-009-9120-9
http://dx.doi.org/10.1016/j.jpdc.2013.10.001
http://dx.doi.org/10.1177/109434200101500302
http://dx.doi.org/10.1109/EAIT.2014.62
http://dx.doi.org/10.14257/ijast.2013.58.02
http://dx.doi.org/10.1109/CUBE.2013.16
http://dx.doi.org/10.1109/CUBE.2013.16

International Journal of Web-Based Learning and Teaching Technologies
Volume 15 • Issue 1 • January-March 2020

87

Sukalyan Goswami has received his M.Tech in Information Technology from IIIT-Bangalore in 2006 and his B.E.
in Electronics & Communication Engineering from VTU, Karnataka in 2004. He has eleven years of teaching
experience and one and a half years of industry experience. He has twelve international conference / journal
publications. His research interest is grid computing. He is currently engaged with the Institute of Engineering &
Management, Kolkata, as an Assistant Professor in the Department of Computer Science & Engineering.

Kuntal Mukherjee has done PhD in computer science. He has vast experience of teaching & research and has
several international conference / journal publications. His research interest is grid computing, quantum computing
and cloud computing. He is currently engaged with Birla Institute of Technology, Mesra, Lalpur Campus, in the
Department of Computer Science & Engineering.

Ruchir, S., Bharadwaj, V., & Manoj, M. (2007). On the design of adaptive and de-centralized load balancing
algorithms with load estimation for computational grid environments. IEEE Transactions on Parallel and
Distributed Systems, 18(12).

Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services
Sciences, 1(1), 83–98. doi:10.1504/IJSSCI.2008.017590

Shestak, V., Smith, J., Siegel, J. H., & Maciejewski, A. A. (2008). Stochastic robustness metric and its use for
static resource allocations. Journal of Parallel and Distributed Computing, 68(8), 1157–1173. doi:10.1016/j.
jpdc.2008.01.002

Stal, M. (1995). The Broker Architectural Framework. In Proceedings of the Object-Oriented Programming
Systems, Languages and Applications Conference (OOP SLA’95).

http://dx.doi.org/10.1504/IJSSCI.2008.017590
http://dx.doi.org/10.1016/j.jpdc.2008.01.002
http://dx.doi.org/10.1016/j.jpdc.2008.01.002

