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ABSTRACT

This article presents a new model and an efficient solution algorithm for a bi-objective 
one-dimensional cutting-stock problem. In the cutting-stock—or trim-loss—problem, 
customer orders of different smaller item sizes are satisfied by cutting a number of 
larger standard-size objects. After cutting larger objects to satisfy orders for smaller 
items, the remaining parts are considered as useless or wasted material, which is called 
“trim-loss.” The two objectives of the proposed model, in the order of priority, are to 
minimize the total trim loss, and the number of partially cut large objects. To produce 
near-optimum solutions, a two-stage least-loss algorithm (LLA) is used to determine 
the combinations of small item sizes that minimize the trim loss quantity. Solving a 
real-life industrial problem as well as several benchmark problems from the literature, 
the algorithm demonstrated considerable effectiveness in terms of both objectives, in 
addition to high computational efficiency.

Keywords
Cutting-Stock Problem, Heuristic Algorithms, Multiple-Objective Optimization, Trim-
Loss Problem

1. INTRODUCTION

The trim-loss or cutting stock problem (CSP) is an important applied optimization 
problem. CSP assumes a given a number of standard sizes of large objects, and 
customer demands for different quantities of smaller pieces. A CSP solution specifies 
the number of smaller pieces cut from each large standard-size object. Of course, 
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many smaller-piece cut combinations may not consume the full size of the larger 
objects, resulting in smaller, unused remainders called trim loss. The main objective 
of CSP is to minimize the total trim loss (wasted material) left over after cutting all 
larger objects necessary to satisfy customer orders. In general, optimum solutions are 
difficult for practical, industrial-size CSP problems. According to Garey and Johnson 
(1979), CSP is a complex, NP-complete optimization problem. Therefore, heuristic 
techniques are usually used to solve real-world, applied trim-loss problems.

Cutting stock problems (CSP) are classified according to several criteria, but mainly 
according to the dimension of the problem. One-dimensional problems (1D-CSP) 
involve one-dimensional (i.e., length) cut decisions, as in the cutting of paper, fabric, 
and cable rolls that have the same width. Two-dimensional problems (2D-CSP) involve 
two-dimensional (i.e., length and width) cut decisions, as in the cutting of wood 
and glass. Three-dimensional problems (3D-CSP) have very limited applications in 
industry and in the literature. However, there are few recent exceptions, such as the 
3-D knapsack problem considered by Baldi et al. (2012). This paper is concerned with 
a bi-objective one-dimensional cutting stock problem (1D-CSP).

Dyckhoff (1990) presents a four-criterion typology of cutting and packing problems, 
considering them as two types of “geometric combinatorics” problems related by 
material-space duality. Wäscher et al. (2007) enhance Dyckhoff’s classification 
and propose a five-criterion typology. According to the four-criterion topology of 
Dyckhoff (1990), the 1D-CSP problem considered in this paper can be classified as a 
classical cutting stock problem denoted by (1/V/I/R). Here, (1) denotes 1 dimension, 
(V) indicates all small items must be cut from a selection of large objects, (I) denotes 
identical (single) size of large objects, and (R) denotes many small items of the same 
shape. However, the classical cutting stock problem has a single objective (minimizing 
trim loss), while our problem has two objectives.

One-dimensional problems (1D-CSP) models may consider either a single given 
size or a few given standard sizes for all available large objects. Most previous 1D-CSP 
models focus on only minimizing the total trim loss quantity. This paper presents a bi-
objective 1D-CSP model with one given large-object size, where the primary objective 
is to minimize the total amount of trim loss. The second objective is to minimize the 
number of partially cut large objects. Minimizing the number of partially cut large 
objects is a real-life objective for many companies, because partially cut objects are 
generally more difficult to reuse or cut again. Moreover, partially cut stocks are not 
as easy or profitable to sell as uncut objects.

An integer linear programming (ILP) model of the problem is formulated to 
determine the optimum number of used large objects, and the cutting pattern for 
each large object. As the optimum solution of this ILP model is difficult to obtain, 
a two-stage heuristic least-loss algorithm (LLA) is developed to solve the problem 
effectively and efficiently. In the first stage, a decreasing order of size is used to assign 
small items to cutting patterns in order to minimize trim loss. If the solution does 
not satisfy a specific performance criterion, then a second stage is required in which 
a different initial order of small items is used. The algorithm is effectively applied 
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to a real-life industrial cutting-stock problem. Moreover, numerical comparisons on 
benchmark problems are carried out, demonstrating the superior performance of the 
proposed algorithm.

The paper presents a bi-objective mathematical model and heuristic algorithm to 
determine the number of large objects used, and the cutting pattern for each object. 
Subsequent sections of this paper are organized as follows. Relevant literature is 
surveyed in Section 2. The mathematical optimization model is formulated in Section 
3. The two-stage least-loss algorithm (LLA) is described in Section 4. Results of the 
computational comparisons and the industrial application are presented in Section 5. 
Finally, conclusions and suggestions are provided in Section 6.

2. LITERATURE REVIEW

Because of its practical value and theoretical significance, the trim-loss cutting-stock 
problem is one of the most popular and well-studied problems in operations research. 
Dyckhoff (1990) reviews literature up to 1990, listing 16 previous surveys of literature 
on various aspects of cutting and packing problems from 1971 to 1988. Wäscher et al. 
(2007) review literature from 1995 to 2004. Recently, Melega et al. (2018) review and 
classify the literature relevant to the integration between the cutting stock problem 
and the production lot-sizing problem. In this section, the primary concern is one-
dimensional cutting stock problem (1D-CSP) literature published since 2005. Because 
this paper presents a new bi-objective model, more emphasis is given to recent multi-
objective 1D-CSP techniques.

Some 1D-CSP models assumes that the trim loss is not completely lost, but may 
have some salvage value. Cherri et al. (2013) develop a heuristic method for a multi-
period 1D-CSP with usable leftover, assuming the trim material is reusable if large 
enough, but it has to be consumed quickly. Over a specific time horizon, new demands 
in each period are satisfied from left-over and remaining unused large-objects. Cui et 
al. (2017) consider a 1D-CSP where specific types of leftover can be used to fulfill new 
orders. A heuristic algorithm is developed based on column generation procedure to 
solve such problem. Garraffa et al. (2016) present a pattern-based heuristic to solve the 
1D-CSP with sequence-dependent cutting losses due to cutting processes by different 
tools. The main objective is to minimize cutting patterns, and the secondary objective 
is to have larger left-overs in order to maximize their usability.

Many techniques in the literature deal with bi-objective 1D-CSP. A pattern-free 
bi-objective ILP model is formulated by Kasimbeyli et al. (2011) for 1D-CSP. The 
first objective is to minimize total trim loss, while the second is to minimize the total 
number of rolls (large objects) used. A heuristic algorithm is used to solve this ILP 
model efficiently. Aliano Filho et al. (2018) optimize two objectives for 1D-CSP: 
minimizing the number of cutting patterns, and minimizing the frequency of their 
use. Four solution techniques are compared: weighted sum, Chebyshev metric, 
ε-Constraint, and the modified Chebyshev metric. The two objectives of minimum 
trim loss (material cost) and minimum cutting patterns (setup cost) are combined by 
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Mobasher and Ekici (2013) into one total production cost. A mixed integer linear 
programming model is formulated, and three heuristic solution methods are developed 
based on local search and column generation concepts. Ogunranti and Oluleye (2016) 
investigate the 1D-CSP in wood industry. A pattern generation algorithm is integrated 
with a linear programming (LP) model to minimize trim loss and the number of 
used stocks. In addition to minimizing the trim loss, Arbib et al. (2016) assume that 
cutting patterns must be sequenced to satisfy a given limit on the number of different 
part types in production at any time. The problem is formulated as ILP model, and a 
column generation procedure is used to solve it.

Multiple-objective 1D-CSP models aim to achieve several simultaneous, often 
conflicting, objectives. Matsumoto et al. (2011) consider a multi-objective 1D-CSP in 
the paper industry to minimize four objectives. The problem is solved by generating 
cutting pattern sequences, decomposing into several bin-packing problems, and tabu 
search. Cui et al. (2015) solve a 1D-CSP problem with two objectives, minimizing 
the material cut cost and the number of different patterns used (setup cost). First a 
set of patterns is generated using sequential grouping procedure, and then this set is 
used in solving the ILP model. A dynamic programming (DP)-based heuristic is used 
by Tanir et al. (2016) to solve a 1D-CSP problem with divisible items, where some 
of the leftovers can be combined by welding to form demanded items. The objective 
is to minimize both the trim-loss material and the number of the welding operations. 
Son et al. (2016) study the cutting process in window frame manufacturing using 
mixed integer programming and a knapsack-based heuristic approach. The aim is 
to minimize the weighted sum of trim loss, bar type imbalance, and the degree of 
order spreading. Liu et al. (2017) consider a cutting-stock problem to minimize three 
objectives: trim loss, number of cutting patterns, and usable leftovers. Multi-objective 
optimization, heuristic methods, and multi-attribute decision-making are combined 
to solve this problem.

Although the 1D-CSP problem is NP-complete, optimal solutions have been 
developed for special cases taking advantage of the unique problem structure. An 
optimization model and solution technique are presented by Reinertsen and Vossen 
(2010) for 1D-CSP with due date constraints. The model is applied to an industrial 
case study, incorporating realistic considerations such as order aggregation, multiple 
stock lengths, and rolling horizons. A model is developed by Alves and de Carvalho 
(2008) to minimize the number of setups in the cutting-stock problem. To solve the 
NP-hard problem, a branch-and-price-and-cut algorithm is used to generate stronger 
cuts. The algorithm utilizes dual feasible functions, valid inequalities, and arc flow 
variables to strengthen the bounds on the column generation model. A similar cutting 
stock problem is considered by Arana-Jiménez and Neto (2017) with two objectives: 
minimizing the number of used large objects, and minimizing the number of cutting 
patterns. Integrating discrete optimization with continuous vector optimization, 
sufficient conditions for partial optimality are derived for this problem. Muter and 
Sezer (2018) solve the two-stage 1D-CSP by designing an exact simultaneous column-
and-row generation algorithm.
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Several meta-heuristic techniques have been applied for the trim-loss problem, and 
specifically for 1D-CSP. These techniques include simulated annealing, tabu search, 
and genetic algorithms. Two meta-heuristic algorithms, simulated annealing (SA) and 
tabu search (TS), are applied to the 1D-CSP by Jahromi et al. (2012). Comparing the 
results on several test problems, it is concluded that SA outperforms TS in terms of 
the objective function values. A genetic algorithm-based heuristic is proposed to solve 
a bi-objective 1D-CSP by Araujo et al. (2014). The two objectives are minimizing 
the number of used large objects and minimizing the number of different cutting 
patterns. In addition, as discussed earlier, tabu search is used by Matsumoto et al. 
(2011). Evtimov and Fidanova (2018) use ant-colony optimization algorithm to solve 
a cutting-stock problem. Sanchez et al. (2018) solve the binary cutting stock problem 
using ILP and three metaheuristic algorithms: genetic algorithms, simulated annealing, 
and particle swarm optimization.

A number of papers combine the cutting-stock problem with other related problems. 
Arbib and Marinelli (2014) combine the classical cutting-stock problem with the 
machine scheduling problem by considering different due dates for orders. Poldi 
and de Araujo (2016) study the combined problem of cutting stock and production 
planning, considering a finite planning horizon and taking the cost of inventory into 
consideration. Melega et al. (2016) develop a model for the integrated lot-sizing and 
cutting-stock problem, and then solve it using a commercial optimization package and 
a column generation technique. Vanzela et al. (2017) consider the integrated cutting-
stock and lot-sizing problem in small-scale furniture factories. Constraints related 
to the cutting saw are considered as limits on the cutting capacity. Poltroniere et al. 
(2016) integrate the lot-sizing problem with the cutting stock problem in the paper 
industry and solve the integrated model both heuristically and optimally. Leao et al. 
(2017) discuss a similar problem in the paper industry, in which 1D-CSP is integrated 
with the lot-sizing problem. Column generation techniques and rounding heuristics 
are developed to obtain feasible solutions.

The  above  l i t e ra ture  rev iew indica tes  tha t  mul t i -ob jec t ive  1D-CSP 
approaches are very common in the literature. However, with the exception 
of Liang et al. (2002), none of the published papers simultaneously addresses 
the same two specific objectives of this paper. As far the authors know, only 
Liang et al. address the same two objectives: minimizing the trim loss, and 
minimizing the number of partially cut large objects. Considering these two 
objectives,  Liang et  al .  (2002) apply an evolutionary programming (EP) 
heuristic to 1D-CSP with and without contiguity. Computational comparisons 
using 20 test problems demonstrate that their EP solutions are significantly 
better than genetic algorithms (GA) solutions in most cases and equivalent in 
the remaining cases. In this paper, a heuristic two-stage least-loss algorithm 
(LLA) is developed for the bi-objective 1D-CSP and it is compared with the 
EP heuristic of Liang et al. (2002). This paper is an extended and enhanced 
version of Alfares and Alsawafy (2017) conference paper.
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3. PROBLEM DEFINITION AND MODEL FORMULATION

To be consistent with the terminology of Dyckhoff (1990), it is assumed that an 
unlimited number of “large objects” of one standard size need to be cut into specified 
quantities and sizes of “small items”. A “cutting pattern” indicates the number of times 
each small item size is cut from a single large object. A “cutting plan” is a complete 
solution that specifies cutting pattern frequencies, i.e., the number of large objects 
cut according to each pattern.

The sizes and quantities of the small items are assumed to be known values 
specified by customer orders. Orders are classified according to the size of small 
items, thus orders by different customers for the same size are combined together. 
The primary objective of our model is to minimize the total trim loss. The second 
objective is to minimize the number of partially used large objects. According to our 
experience, partially used large objects are considered as left-over stock that may 
or may not be used again. For the company in which the real-life problem is solved, 
partially cut objects are more difficult to use and less profitable to sell. The ILP 
model of the 1D-CSP problem described above is presented below. First, the notation 
is defined, and then the model objectives and constraints are presented.

3.1. Integer Programming Model Notation

si = size (constant length) of all small items in order i, i = 1, …, I	
qi = quantity of small items of size si required in order i, i = 1, …, I, qi ≥ 0 and integer	
aij = number of times size si is cut from cutting pattern j, i = 1, …, I, j = 1, …, J, aij 
    ≥ 0 and integer	
wj = trim loss of cutting pattern j, 0 ≤ wj ≤ L, j = 1, …, J	
bj = 1 if cutting pattern j has trim loss (wj > 0), j = 1, …, J = 0 if cutting pattern j 	
    has no trim loss (wj = 0)	
L = given standard length of the large objects, L ≥ 0	
N = number of large objects used, N ≥ 0 and integer	
PC = number of partially-cut large objects (PC ≤ N), PC ≥ 0 and integer	
Xj = number of times cutting pattern j is used, i.e., number of large objects cut 	
    according to cutting pattern j, Xj ≥ 0 and integer, j = 1, …, J	

3.2. Objective Functions
The first objective (1) is to minimize the total trim loss TL, and the second objective 
(2) is to minimize the number of partially cut large objects PC:

Minimize TL = w X
j j

j

J

=
∑
1

	 (1)

Minimize PC = b X
j j

j

J

=
∑
1

	 (2)
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3.3. Constraints
Customer demands for each order (size) must be satisfied:

a X q
ij j

j

J

i
=
∑ ≥
1

i = 1, …, I	 (3)

The number of used large objects is equal to the total frequency of all cutting patterns:

X N
j

j

J

=
∑ =
1

	 (4)

The trim loss of cutting pattern j is the difference in lengths between the large 
object and all small items cut from it:

w L a s
j ij i

i

I

= −
=
∑
1

j = 1, …, J	 (5)

L.bj ≥ wjj = 1, …, J	 (6)

Although the above ILP model looks fairly simple, it is quite difficult to construct 
and to solve optimally due to several factors. First, the generation of cutting patterns 
alone is a challenging task. For a given large object length L, the number of possible 
patterns increases exponentially with the number of orders (sizes) I. Second, the 
inclusion of two objectives in the above model is a significant complicating factor that 
makes optimum solution more difficult. Handling the two objectives by pre-emptive 
goal programming would require two stages of optimum solution in the order of two 
priorities. Third, the pure integer optimization model is difficult to solve for large-
size industrial problems. Finally, the nonlinearity of the second objective function (2) 
adds another dimension of difficulty, as nonlinear optimization problems are generally 
far more formidable than linear problems. Based on the difficulty in obtaining the 
optimum solution, heuristic methods constitute the only practical option to solve the 
problem. In this paper, logical heuristic rules are used to develop a two-stage least-
loss solution algorithm, which is presented below.

4. TWO-STAGE LEAST-LOSS ALGORITHM (LLA)

4.1. Algorithm Notation

D = allowed trim loss for the given iteration	
RM = remainder (actual trim loss) for the given pattern	
k = number of small items in each large object	
MXi = maximum number of small items in each large object if size si is included	
S = vector of required small item sizes = (s1, s2, …, sn)	
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Q = vector of the quantity (number required) of small item sizes = (q1, q2, …, qn)	
δk,i = one pattern (combination) of k small items including si, δk,i ∈ ∇(k,i)	
∇(k,i) = set of all different patterns δk,i containing k small items including si,	 
    such that all sizes are not less than si, and the sum of their sizes is not greater than L	
PF(δk,i) = pattern frequency, i.e., number of times pattern δk,i is used	
nsjδ = number of times size sj is used (cut) in pattern δk,i	

4.2. Stage 1: Decreasing Order of Size
In order to solve the problem, the heuristic least-loss algorithm (LLA) proceeds in 
two stages. In the first stage, the small items are arranged in decreasing order of size. 
This decreasing order has been found to provide the best start for the algorithm, as it 
generally leads to the best heuristic solutions. Due to the effectiveness of the decreasing 
size order, it is used in several widely-used CSP solution methods, including the well-
known first-fit-decreasing (FFD) heuristic (Eilon and Christofides, 1971). The FFD 
algorithm arranges small items in decreasing order of length, and then assigns them 
individually to the first available large object. According to Dyckhoff (1990), the FFD 
algorithm is quite efficient, having a time complexity of O(I log I) and a worst-case 
performance of 18.2% trim-loss increase above the optimum.

During the first stage, the least-loss algorithm proceeds in decreasing order of small 
item sizes (s1 > s2 > s3 > … > sn). Starting with size 1 (largest item), the algorithm 
first finds all possible combinations of the current size (i) and smaller sizes (si, …, 
sn) that produce zero trim-loss (D = 0). After assigning all available small items to 
these combinations, the remaining sizes and quantities are determined. Next, the 
algorithm moves to the next (smaller) item size to find and assign all combinations 
of the remaining small items sizes for which D = 0. After going through all sizes, the 
algorithm starts again at size 1 to finds all possible combinations of the remaining 
items that produce a one-unit loss (D = 1). The process is repeated until all small 
items have been assigned to large items, i.e., all customer orders have been satisfied. 
Steps of the least-loss algorithm are depicted in Figure 1, and details of these steps 
are described below.

Initialization step:

Set TL = 0	
Set N = 0	
Set PC = 0	

4.2.1. Step 1: Initial Order

Arrange small items in decreasing order of size:

s1 > s2 > s3 > … > sn	
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Figure 1. Flowchart of the least-loss algorithm
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4.2.2. Step 2: Least-Loss Assignments

For D = 0, …, L – sn

  For i = 1, …, n
 
              MXi

 = 
L s

s
i

n

−














+1,

              Where a = largest integer ≤ a
       For k = 2, …, MXi

          For all δ
k,i
 ∈ ∇(k,i)

              RM = L – s
j

j k i∈
∑
δ ,

 

              If RM = D
                   Select pattern δ

k,i

 
                   PF(δk,i

) = min
,j

j

j
k i

q

ns∈































δ
δ

                   q
j
 = q

j
 – ns

jδ
×PF(δ

k,i
), j ∈ δ

k,i
 

                   If qj = 0, remove item j from arrays S and Q
                   TL = TL + D×PF(δk,i

)
                   N = N + PF(δk,i

)
                   If D ≠ 0, PC = PC + PF(δk,i

)
                 If RM ≠ D
                   Ignore pattern δk,i and go to the next pattern
              End if 
          End for δk,i

       End for k
  End for i
End for D

If the first stage of the LLA heuristic produces a satisfactory solution, then a 
second stage is not required. In order to consider the first-stage solution satisfactory, 
the number of large objects used, N, should be no more than 5% percent above the 
optimum lower bound Nmin. This 5%-threshold is a heuristic parameter that has been 
determined based on extensive numerical experiments.

If:

100
5

( )
%min

min

N N

N

−
> 	

go to Phase 2, where:

Nmin = 1
1L
q s
i j

i

I

=
∑











 	 (7)
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If this condition is not satisfied, then the algorithm proceeds to the second stage 
to try to obtain a better solution.

4.3. Stage 2: Modified Initial Order
The second stage of the algorithm is similar to the first, but it starts with a different 
order of small items. After arranging small items in decreasing order of size, the 
middle-ranked item is moved to the beginning of the sequence. This second-stage 
rearrangement of small items is selected from several reordering options on the basis 
of extensive numerical experimentation.

This modified sequence usually leads to better solutions if the first-stage solution 
is found unsatisfactory. The second stage is a neighborhood search around the first-
stage solution, where the neighborhood move is defined as a permutation of the order 
of small items. At the end of the second stage, the algorithm selects the better of the 
two solutions produced in stages 1 and 2.

4.3.1. Step 1: Initial Order

Arrange small items in decreasing order of size, and then bring the item in the middle 
to the beginning of the sequence. If the number of sizes is even, take the second item 
from the two sizes in the middle. As usual with all heuristic procedures, this rule was 
developed based on extensive trial-and-error and numerical experimentation:

s s s s s s
n n n n+


 +


− +


+

> > > > > > >
1 2 1 2 1 2 1 1 2 1

… … 	

4.3.2. Step 2: Least-Loss Assignments

Same steps as in Stage 1.

5. BENCHMARKING AND INDUSTRIAL APPLICATION

5.1. Benchmarking Analysis
In order to test the least-loss algorithm (LLA), we searched for benchmark CSP 
problems described in the literature. In spite of the abundance of published studies 
reporting computational experiments with numerous CSP test problems, very few 
papers provide full descriptions of the test problems. As an exception, Liang et 
al. (2002) provide complete descriptions of 20 test problems they used in their 
computational experiments. Out of these 20 problems, we used 10 problems that have 
a single large-object length. This set of 10 problems contains 5 smaller problems (1-
5) originally described by Hinterding and Khan (1995), in which the number of sizes 
range is (I = 8-18) and the number of items range is (Σqi = 20-126). The remaining 
5 problems (6-10) are larger, in which the number of sizes range is (I = 18-36) and 
the number of items range is (Σqi = 200-600). Size dimensions of the 10 benchmark 
problems are shown in Table 1.
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Computational experiments with the 10 benchmark problems were performed to 
evaluate the proposed two-stage least-loss algorithm (LLA) in term of two criteria. 
The first criterion is efficiency (computational performance, or solution time), while 
the second criterion is effectiveness (i.e. solution quality, or values of the objective 
functions). To assess computational efficiency, solution times of the least-loss 
heuristic are shown in Table 1. These times were obtained using MATLAB 2011a, or 
version 7.12.0 I, on a laptop PC running on Windows 8, with the following hardware 
specifications (Intel(R) Core(TM) I7 CPU, 2.20 GHz, 8.00 GB RAM). Unfortunately, 
comparative and up-to-date computational time data for these problems is not 
available. However, the solution times are clearly very reasonable, given the large 
dimensions of the test problems. Even the largest problems, involving 36 sizes and 
600 ordered small items, are solved in less than 1 minute, indicating a high level 
of computational efficiency.

In terms of the solution quality, the proposed least-loss heuristic is compared to 
both the optimum solution and the Liang et al. (2002) solution. The optimal solutions 
of the 10 test problems are not available, but we used the theoretical bound Nmin 
to represent the optimal number of large objects, N. Table 2 shows the values of N 
obtained by three methods: the optimum bound (Nmin), Liang et al. procedure, and 
the least-loss algorithm (LLA). Judging by the values of N, the least-loss algorithm 
produces solutions that are either optimum or very nearly optimum. The least-loss 
algorithm solution is optimum for 5 test problems and it increases N by an average 
of only 1.16% above optimum. On the other hand, the solution procedure of Liang 
et al. (2002) is optimum for 4 test problems and increases N on average by 2.49% 
above optimum. It should be noted that the LLA solutions might be actually even 
closer to optimality, because the optimum solution might be in some cases greater 
than the lower bound Nmin.

Table 1. Size dimensions and solution times of benchmark problems

Problem Number Number of Sizes: I No. of Items: Σqi
Large Object 

Length: L
LLA Solution Time 

(sec)

1 8 20 14 0.125

2 8 50 15 0.1094

3 8 60 25 0.1406

4 8 60 25 0.2969

5 18 126 4300 1.8906

6 18 200 86 0.9219

7 24 200 120 5.0781

8 24 400 120 6.125

9 36 400 120 46.813

10 36 600 120 52.688
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Table 3 compares the solution quality of the least-loss algorithm (LLA) to the 
EP heuristic of Liang et al. (2002) in terms of two objectives: trim-loss quantity TL, 
and number of partially-cut large objects PC. For the trim-loss objective TL, the LLA 
heuristic produced better solutions for all 10 test problems, reducing TL by an average 
of 26.4%, and a maximum of 87.5% compared to the solutions of Liang et al. (2002). 
For the number of partially cut large objects PC, the LLA heuristic produced better 
solutions in 9 out of 10 problems, reducing PC by an average of 30.5% and a maximum 
of 85.9% compared to Liang et al. solutions. In general, the least-loss algorithm (LLA) 
seems to provide a greater advantage of over the Liang et al. solutions as the problem 
size increases.

In summary, comparisons with the solutions by Liang et al. (2002) confirmed 
the superiority of the proposed LLA heuristic in term of the solution quality and 

Table 2. Number of large objects used N for benchmark problems

Problem Nmin Liang LLA % Liang > Nmin % LLA > Nmin

1 9 9 9 0 0

2 23 23 23 0 0

3 15 15 15 0 0

4 19 19 19 0 0

5 51 54 53 5.88 3.92

6 78 82 81 5.13 3.85

7 68 69 68 1.47 0

8 143 149 145 4.20 1.40

9 149 155 152 4.03 2.01

10 215 224 216 4.19 0.47

Table 3. Trim-loss TL and partially-cut objects PC for benchmark problems

Problem 
Number Liang TL LLA % LLA < 

Liang Liang PC LLA % LLA < 
Liang

1 3 3 0 2 2 0

2 13 13 0 4 4 0

3 0 0 0 0 0 0

4 11 11 0 1.2 1 16.67

5 11966 11450 4.31 22.8 23 - 0.88

6 309.4 275 11.12 33.7 28 16.91

7 189.6 84 55.70 15.34 4 73.92

8 788 332 57.87 76.68 32 58.27

9 730 382 47.67 48.4 22 54.55

10 1037.2 130 87.47 70.7 10 85.86
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computational performance. The results show significant improvements over the 
Liang et al. (2002) algorithm, with greater improvements for larger sizes problems. 
The results also show that the least-loss algorithm provides near-optimum solutions 
in short computation times.

5.2. Industrial Application
Having proven its comparative superiority, the LLA heuristic was then applied to 
a real-life large trim-loss problem. The company facing this trim-loss problem is a 
leading manufacturer of office furniture. The company needs to cut 6m-long bars 
of extrusion profiles used to make office partitions in order to satisfy demands 
from different customers. To solve such problems, the company has been using 
a commercial trim-loss software package that applies an undisclosed (black-box) 
heuristic. For a given planning period, data was obtained on actual typical demands 
for different small sizes of extrusion profiles from three branches of the company. 
This data represents a large-size trim-loss problem, in which the number of ordered 
items Σqi is equal to 7,764. This problem was solved by both the LLA heuristic and 
the company’s software package.

Table 4 compares the LLA heuristic solution with the results produced by the 
commercial software package. Using (7), the theoretical lower bound on the minimum 
number of large objects required Nmin is equal to 1454. In the LLA heuristic solution, 
the number of objects used is 1473, which is only 1.3% above Nmin. This proves that 
the LLA heuristic is able to produce near-optimum solutions for large-size industrial 
problems. Moreover, compared to the company’s software package, the LLA heuristic 
reduces the total trim loss by 14.2% and the number of used large objects by 4.6%. 
For both the LLA solution and the company’s solution, it should be noted, all the used 
large objects are partially cut, i.e. N = PC. Reductions in the total trim loss lead to 
hundreds of thousands of savings in material costs each year. Moreover, reductions in 
the number of used large objects result in additional savings in labor hours, material 
handling, and storage costs.

5.3. Managerial Insights
The results of both the benchmark study and the industrial case application confirm 
that the proposed algorithm significantly outperforms previous techniques published 
in the literature as well as an existing commercial software. In particular, the industrial 
application presented in this section shows that our least-loss algorithm (LLA) 

Table 4. Trim-loss and number of large objects for the industrial application

TL (mm) N PC % N > Nmin

Co. 570,542 1544 1544 6.2

LLA 489,457 1473 1473 1.3

% LLA < Co. 14.2 4.6 4.6 4.9
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heuristic is valid and very beneficial in large-scale real-life industrial applications. For 
production managers dealing with one-dimensional trim-loss problems, the proposed 
LLA algorithm provides a viable option to make near-optimum daily decisions. 
Obviously, these managers must aim to achieve the two prioritized objectives of 
the LLA heuristic: minimum trim-loss, and minimum number of partially-cut large 
objectives. If this is the case, then the LLA heuristic has the potential to provide huge 
savings in terms of the material, labor, and inventory costs. Lowering the number of 
partially-cut large objects also reduces the processing and operational costs, simplifies 
planning, and reduces managerial overhead.

6. CONCLUSION

A new, bi-objective, one-dimensional cutting-stock problem (1D-CSP) has been 
modeled and solved. The two objectives, in the order of priority, are minimization 
of trim-loss quantity, and minimization of the number of partially cut large objects. 
Assuming that a single standard length is specified for all large objects, the 
integer-programming model of this multi-objective 1D-CSP has been formulated. 
As the optimum solution of this problem is not easy to find, especially for large 
industrial applications, a new heuristic least-loss algorithm (LLA) has been 
presented to efficiently produce near-optimum solutions. Based on comparative 
experiments with benchmark problems, the new LLA heuristic demonstrated 
significant advantage over previous approaches in the literature. Computational 
tests also confirmed the near-optimality and computational efficiency of this two-
stage heuristic algorithm. The significant reductions obtained by the proposed 
algorithm in trim-loss and number of partially cut large objects mean huge savings 
in material, processing, and inventory costs.

Several alternatives to extend this work are possible for future research. These 
include the consideration of several standard lengths of large objects instead of only 
one standard length. Another possibility is to apply a modified least-loss approach 
to higher-dimensionality problems such as 2-D CSP and 3-D CSP. An additional 
interesting extension would be to include explicit cost objectives such as setup cost 
and inventory cost. Many other logical extensions are available, including considering 
multiple time periods, shortages, and time-varying or stochastic customer demands 
for the small items.
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