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ABSTRACT

In this study, an oven assembly line that is planning to re-establish manufacturing to increase the 
efficiency of the assembly process. The importance of the problem emerges from a real-world 
application consisting of product-oriented restrictions. These multiple restricted problems address the 
single model assignment restricted ALB problem with positional constraints. A cost-based objective 
function is used to cope with this problem. The number of platformed and non-platformed stations, the 
number of direction changes in a station, the number of stations in which both connector and combiner 
are used are the cost factors of the objective function. Also, the main objective of the problem is to 
minimize the total number of stations while satisfying the restrictions. A simulated annealing-based 
hyper-heuristic is adapted and applied to the balancing problem of oven manufacturing process with 
assignments and operational restrictions with multiple objectives. The results show that better solutions 
can be found in the current line balance level while satisfying more restrictions. It is also observed 
that line balance can be improved depending on the relaxation of the restrictions.
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INTRODUCTION

The assembly line balancing (ALB) problem determines the workstations, which tasks are assigned 
to, by considering precedence constraints and cycle time so as to optimize predetermined performance 
measures (Ghosh & Gagnon, 1989). Many researchers have studied ALB problem since the first 
time it was introduced in the literature. Baybars (1986) classified ALB problems into two groups: 
simple assembly line balancing problem (SALBP) and generalized assembly line balancing problem 
(GALBP). In the SALBP, task times are considered as deterministic and a task can only be assigned 
to one station. While SALBP-1 aims to minimize the number of workstations for predetermined cycle 
time, SALBP-2 aims to minimize the cycle time for a given station number. GALBP signifies the 
any other ALB problem that generalizes SALBP by eliminating some assumptions. There are also 
many other classifications of ALB problems. The shape of the assembly line is one of the common 
classifying criteria for ALB problems. Miltenburg & Winjngaard (1994) and Erel, Sabuncuoğlu & 
Aksu (2001) studied U-line ALB problems. In addition to the single model assembly lines, mixed 
model (Yano & Bolat, 1989; Bard, Dar-El, & Shtub, 1992) and multi model (Burns & Daganzo, 1987; 
Dobson & Yano, 1994) assembly lines allow to produce similar or different products on the same line 
(Bukchin, Dar-El, & Rubinovitz, 2002). A detailed literature review can be found in Becker & School 
(2006) and School & Becker (2006). Additionally, some other specialized features such as parallel 
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workstations (McMullen & Frazier, 1998), two sided lines (Bartholdi, 1993), parallel assembly lines 
(Gökçen, Ağpak, & Benzer, 2006), incompatibilities and bounded loads (Pastor & Corominas, 1999), 
designing assembly lines with equipment selection (Buckhin & Rubinovitz, 2003) and equipment 
costs (Buckhin & Tzur, 2000) are presented in the assembly line literature.

All these problem types arise from the goal of meeting the real-world problem requirements. 
Although the ALB literature is very rich, there is still a gap between theoretical studies and real-
world applications (Becker & School, 2006; Boysen, Fliedner, & Scholl, 2008). Position and/or 
accessibility constraints (Lapierre & Luiz, 2004; Essafi, Delorme, Dolgui, & Guschinskaya, 2010) 
are considered as task assignment restrictions in addition to cycle time and precedence constraints. 
A certain station – task assignment may occur when the position of the assembling product cannot 
be changed due to weight or size of the product (School, Fliedner, & Boysen, 2010). Furthermore, 
zoning constraints can be applied when some group of tasks should be assigned to the same station or 
incompatible tasks should be assigned to different stations. All these constraints appear in real world 
applications, so these constraints should be taken into consideration while balancing the assembly 
lines. In this article, a real-world assembly line balancing problem is handled. An oven producer 
decided to redesign their assembly lines. They need to learn that whether it is possible to balance 
the assembly line in higher efficiency level while satisfying the production restrictions learned from 
previous assembly experiences.

ALB is an NP-hard problem (Karp, 1972) due to its computational complexity. Although 
technological developments allow us to handle different sized problems, it is still far away to deal with 
real world large sized problems. Gökçen et al. (2006) stated that the optimal solution of deterministic 
parallel ALBP was found for only small sized problems. Since the number of operations in real world 
ALB problems is very high, heuristic solution algorithms have been used to produce solutions within 
an acceptable time. The meta-heuristics have been widely used in many areas such as vehicle routing 
problem (Layeb, 2015), supply chain optimization (Gupta, Kundu, & Gupta, 2017) and other subjects 
are reviewed in Sensuse & Cahyaningsih (2018).

The meta-heuristic approaches such as simulated annealing (Erel, Sabuncuoğlu, & Aksu, 2001; 
Baykasoğlu, 2006; McMullen & Frazier, 1998; Suresh & Sahu, 1994), ant colony optimization 
algorithm (McMullen & Tarasevich, 2003; Sabuncuoğlu, Erel, & Alp, 2009; Özbakır, Baykasoğlu, 
Görkemli, & Görkemli, 2011) have been used in many ALB problems in the literature. The meta-
heuristics provide a generic solution mechanism and they are designed and implemented for the 
problem itself by considering problem specific information. In this study, a hyper-heuristic (HH) 
solution approach is used to solve the real-life manufacturing line balancing problem concerning 
the task and station restrictions. Hyper-heuristics are considered as automated solution process that 
solves the generalized problems independent of problem domain as a high-level solution approach 
(Burke et al., 2013). Hyper-heuristics provides efficient solutions to the task and station restricted 
ALB problem due to learning abilities and applicability of general problem area.

This study is an application of simulated annealing based hyper-heuristic approach to the real-life 
ALB problem. The addressed ALB problem is different from simple ALB problem by the restrictions 
about the direction of assembly, usage of lifter and operation type. These restrictions are formulated 
as a mathematical programming approach, but the size of the problem makes heuristic approaches 
more useful. The developed solution algorithm produces solutions according to the priorities of the 
company. Decision makers can evaluate alternative solutions for different priorities. The proposed 
solution approach can be easily adapted and applied to various types of ALB problems with different 
restrictions.

The paper is organized as follows: the ALB problem handled in this paper is described in detail in 
section 2. The restrictions on ALB problem and the mathematical model are explained. The proposed 
hyper-heuristic method and the literature review are given in section 3. The classification of hyper-
heuristic methodologies and application examples are also discussed. In section 4, the results obtained 
by hyper-heuristic algorithm are compared with the current assembly line balances. Properties of the 
suggested solution are discussed, and some advise is given to the managerial board of the company.



International Journal of Operations Research and Information Systems
Volume 10 • Issue 3 • July-September 2019

46

STATEMENT OF THE PROBLEM

The firm produces three different oven models. All three models are similar with each other and 
the company does not consider them as independent products. So, these models are considered as 
a single model, which some tasks have zero task time regarding the model characteristics. The task 
times are determined as 0 for the tasks, which are not included in the specific oven model. Actually, 
in real world production applications most of the producers apply this perspective. This situation also 
causes some task – station restrictions.

The task times vary from 4 to 85 for all models. The main difference among the models is 
the number of tasks to be performed. The F-ratio, indicating the flexibility of network diagram, is 
calculated as just about 0.69 for all models. This means relatively less precedence constraints and 
higher flexibility in generating valid solutions. All these information addresses the single model ALB 
problem with station and task assignment restrictions.

The assumptions of the problem considered in this paper are given as follows:

•	 A single model is produced in the straight assembly line
•	 The precedence relations among tasks are known
•	 The task times are known and deterministic
•	 A conveyor belt type transporter is used to move the work piece with a certain speed
•	 Transportation times are negligible and assumed to be included in the task times

Problem Constraints and Restrictions
The problem can be classified as a special version of single model deterministic ALB problem. The 
restrictions, which make problem difficult to solve, are the requirements of the company about the 
assembly line and products. The preferences of the company are expressed as follows:

•	 The assembly of some components is bounded up with the direction of the product/semi product 
on the line. While some operations can be performed from both sides, others can be operated 
from front or back side. So, the company requests that the tasks that are assigned to the same 
station should be operated from same side. This means that the product/semi product should 
not turn its direction within a station. This situation decreases the time of direction change of 
product/semi product.

•	 The assembly operations may require operating from top of the product. The platform is used 
to reach the top of the product/semi product to perform the related operations. Two types of 
platforms, low and high platforms, are used to achieve predetermined height for assembly. So, 
a station should be designed as a platformed or non-platformed station.

•	 Some components of oven can be assembled by combiner or connector. Four types of combiner 
and two types of connector are used. Changing the tool in a station may cause waste of time. It 

Table 1. Properties of problem data

Model 1 Model 2 Model 3

Number of tasks 116 108 83

Min task time 4 4 4

Max task time 85 85 85

Average task time 23.29 26.74 29.05

F ratio 0.686 0.690 0.695
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is preferred that only same type of assembly operations (combiner or connector) are performed 
within the same station.

•	 A few predefined tasks need to be assigned to a station that is not earlier than a predefined 
station. This helps the company to make small modifications on similar models. Also, some 
tasks should be assigned to same stations to minimize the process differentiations of producing 
different models.

While new parts/components used in the assembly, some new task assignment restrictions 
and positional constraints arise. These restrictions are learned by trial and error method during the 
production process. The firm handled this problem by considering swapping the tasks or combining/
separating the stations. This approach did not meet all the restrictions and constraints as well as 
it decreased the production rate (increase in the cycle time). It should not be forgotten that these 
restrictions are preferences of the company and they can be sacrificed according to their priorities.

The restrictions and constraints mentioned above cause some new assumptions and characteristics 
as follows:

•	 Some tasks should be assigned to the same station due to need for performing these tasks together 
or need for the usage of platform

•	 Some tasks should be assigned to a certain station even if there are available previous stations 
to be assigned

Except those, in addition to the main objective that minimizes the number of stations for a given 
cycle time, problem contains multiple objectives with different priorities.

Problem Formulation
The general mathematical model of the type I ALB problem aims to minimize the number of stations 
by considering the precedence relations and cycle time restriction. The station/task restrictions 
regarding the preferences of the company are included in the model as constraints. The general integer 
programming model of the problem is formulated below. The notation used in the formulation is 
described in Table 2.

The proposed mathematical model formulation is as following:
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Table 2. Problem notation

C Cycle time

N Total number of tasks

i Task index

j Station index

ti Operation time of task i (i=1,…,N)

xij 1 if task i assigned to station j, 0 otherwise

aj Station index for non-platformed stations

bj Station index for combiner used (connector free) stations

M A very big number

Ap Set of precedence relations between tasks (m,n) with m,n ∈ i

Yj Usage of station j

B* Set of tasks that can be operated from back side of the work piece

F* Set of tasks that can be operated from front side of the work piece

M* Set of tasks that can be operated from both back and front side of the work piece

P* Set of tasks that can be operated by platform

SR* Set of tasks that can be assembled by a connector

WS* Set of work stations which task i can be assigned to

T* Set of tasks that should be assigned to same station
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The objective of the model is to minimize the number of stations. Constraint 2 ensures that each 
task is assigned to exactly one station. Constraint 3 satisfies the cycle time restriction that workload 
of each station cannot exceed the predefined cycle time. Constraint 4 provides that all precedence 
relations are satisfied. Constraints 5a and 5b ensure that only tasks that can be operated from same 
side (front or back) are assigned to same station. Constraint 6a and 6b ensure that the tasks that need 
platform are assigned to same station, and vice versa. Constraint 7a and 7b ensure that the tasks, which 
assembled by connectors, are assigned to same station. It is also valid for combiners. Constraint 8 
ensures that a task cannot be assigned before the assignable station. Constraint 9 ensures that some 
tasks should be assigned to the same stations. Constraint 10 describes the binary variables. Also note 
that WS* depends on i.

Since the problem is NP-Hard, the time needed for the solution rises by the number of tasks 
increase. Nevertheless, under the hard constraints and restrictions, any solution may not be provided. 
The relaxation of the constraints makes model more flexible. The deviation from the constraints 
and restrictions can be a measure of how a good solution is reached. An efficient way to calculate 
the deviation from objectives (constraints and restrictions) is to use a cost based objective function. 
Using cost based objective function is an efficient way to solve the ALB problems especially with 
multiple objectives (Amen, 2001). The cycle time can be used as a common penalizing measure for 
violations of goals. The objective function for solving the problem in proposed solution approach is 
determined as follows:

Cost1 (minimizing the number of stations) = cycle time (C) x number of stations (∑Yj)	
Cost2 (minimizing the number of direction change in a station) = cycle time (C) x number of 

direction change in a station (R)	
Cost3 (minimizing the number of stations having both equipped with platform and not equipped 

with platform) = (cycle time (C) / 2) x number of station with and without equipped with platform 
(P)	

Cost4 (minimizing the number of combiner/connector changes within a station) = (cycle time (C) 
/3) x number of combiner/connector change in a station (SR)	
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R: number of direction turns in a station (R=1…r)	
P: number of platform changes in a station (P=1…p)	
SR: number of combiner/connector in a station (SR=1….sr)	

As seen from the cost function, objectives are weighted by the ratio of cycle time according to 
their priorities, which are defined by the company preferences. Task times, operation direction of 
tasks to be performed, need for the platform and the combiner/connector changes are the parameters 
of problem and are already known. Some tasks can be performed from both directions while others 
should be performed from one direction. The solution should determine the station assignments 
of tasks with direction changes, the usage of platform in the station and the usage of combiner or 
connector within the station.

THE PROPOSED SOLUTION METHOD

A hyper-heuristic algorithm based on simulated annealing is used to solve the problem. The developed 
hyper-heuristic algorithm by Seçme (2015) operates independent of ALB specifications. The proposed 
algorithm does not need particular problem domain knowledge. Therefore, it can be easily applied 
to other types of ALB problems with minor changes. The hyper-heuristic module evaluates the low-
level heuristics without any domain dependent information. The problem specific restrictions and 
properties can be added to the task selection and assignment module. This makes the hyper-heuristics 
more general and adaptive.

Hyper-heuristics
Hyper-heuristic is defined as “a search method or learning mechanism for selecting or generating 
heuristics to solve hard computational search problems” (Burke et al., 2010). Hyper-heuristic is a 
general problem-solving approach and it is independent from problem domain (Burke et al., 2003). 
The goal of the hyper-heuristics is to solve the problems with automated processes in higher generality 
levels (Burke et al., 2007). Hyper-heuristic performs a search on the space of low-level heuristics 
rather than the solution space of the problem (Burke et al., 2010; 2013). The main idea is to develop 
a generic applicable algorithm to solve problems without any specifications (Burke et al., 2013).

The motivation behind the hyper-heuristic research is heuristics having own strengths and 
weaknesses on different types of problems. If the good combination of heuristics can be found or a 
new heuristic can be developed by combining heuristics, this new heuristic performs better at general 
problem domain.

A hyper-heuristic can be considered as a high-level heuristic which selects (meta-) heuristics 
to solve the given optimization problem. A hyper-heuristic can be seen as an algorithm (on a higher 
level), which ‘‘picks’’ appropriate heuristics (at a lower level) to be applied to the problems in hand 
(Burke et al., 2013). A hyper-heuristic is concerned with searching on the low-level heuristics space 
instead of directly searching on the solution space of the problem.

The classification of hyper-heuristics has two dimensions, i) the nature of heuristic search space, ii) 
the source of feedback information, which is orthogonal to each other (Burke et al., 2010). The nature 
of the search space can be divided into two methodologies i) heuristic selection methodologies, ii) 
heuristic generation methodologies. Each methodology consists of two same subgroups, i) constructive 
heuristics, ii) perturbative heuristics. Perturbative heuristics deal with complete candidate solution 
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and reaches new candidate solution by making small changes in solution components. Constructive 
heuristics consider partial solutions by iteratively extending them.

•	 The nature of heuristic search space
•	 Heuristic selection methodologies

◦◦ Constructive heuristics
◦◦ Perturbative heuristics

•	 Heuristic generation methodologies
◦◦ Constructive heuristics
◦◦ Perturbative heuristics

•	 The source of feedback information
•	 Online learning
•	 Offline learning
•	 No learning

A learning mechanism can be used as a guide to select efficient heuristics into the hyper-heuristic. 
While the learning takes place during the search process in online learning, information that gathered 
from a set of training instances before the search process is an example of offline learning. This 
classification does not restrict with the methodologies in any of categories. Hybrid methodologies can 
include both constructive and perturbative strategies or heuristic selection and heuristic generation 
(Burke et al., 2013).

Hyper-heuristics are successfully applied to many optimization problems including educational 
timetabling, production scheduling, bin packing, constrained satisfaction, and vehicle routing. Detailed 
information and literature review can be found in Burke et al. (2013).

The Hyper-Heuristic Algorithm to the Constrained/Restricted ALB Problem
The developed SA based hyper-heuristic method has two modules, simulated annealing module, and 
task selection and assigning module (Figure 1). The simulated annealing module works as a high-level 
meta-heuristic to search on the order of low-level heuristics. It also produces neighborhood solutions 
and calculates the performance of the ordered low-level heuristics. The task selection and assignment 
module searches on the problem solution space and selects feasible solution to the problem which 
provides task – station assignment.

The procedure of assigning tasks to the stations is based on the COMSOAL (Arcus, 1966), a 
well-known heuristic for the ALB problems that selects the tasks from an assignable task list randomly. 
While determining the assignable tasks, constraints and restrictions are also taken into consideration. 
The performance of the neighborhood solution is calculated by the objective function in the task 
selection and assignment module.

The well-known sequencing heuristics are used to select a task from the assignable tasks set. 
These low-level heuristics are determined as listed below:

•	 Shortest Processing Time (SPT)
•	 Longest Processing Time (LPT)
•	 Maximum Total Number of Successor Tasks (MaTNST)
•	 Maximum Total Time of Successor Tasks (MaTTST)
•	 Maximum Total Number of Predecessor Tasks (MaTNPT)
•	 Maximum Total Time of Predecessor Tasks (MaTTPT)
•	 Minimum Total Number of Successor Tasks (MiTNST)
•	 Minimum Total Time of Successor Task (MiTTST)
•	 Minimum Total Number of Predecessor Tasks (MiTNPT)
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•	 Minimum Total Time of Predecessor Tasks (MiTTPT)

The sequence of the low-level heuristics with respect to assignment position is the main factor on 
the performance of a solution. For tracking the performances of various low-level heuristic sequences, 
a HRM – heuristic rating matrix is used (Figure 2). During the iterative progress of algorithm, these 
values diverge from each other by updating them according to the heuristic sequence and success 
or failure of the solution. The values in the HRM display the ratio of eligibility of the low-level 
heuristics in the heuristic vector in assigning the tasks to the corresponding position. At the beginning 
of the iterations, all the values in HRM matrix are determined as equal. The values would change by 
iterations according to the performance of generated solutions by the sequence of low-level heuristics.

The performance of the neighborhood solution is evaluated by the value of objective function 
(cost). The better objective function value means that the sequence of the low-level heuristics, 

Figure 1. Hyper-heuristic mechanism

Figure 2. Heuristic rating matrix
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which moves the algorithm to the better solution, provides low cost solution. The performance of 
low-level heuristics sequence is recorded with respect to quality of solution at each iteration step. A 
well performed low-level heuristics sequence promoted to make it more eligible at next iteration. As 
opposed to that, low-level heuristics, which produced a non-improved solution, is penalized to decrease 
the eligibility. Hyper-heuristic selects a combination of low-level heuristics, which is applied to the 
problem with respect to its performances. A roulette wheel selection method is used to select a low-
level heuristic for a certain position of assignment. For more detailed explanation of the algorithm 
execution, please refer to Seçme (2015).

EXPERIMENTAL RESULTS AND DISCUSSION

The developed hyper-heuristic algorithm coded in Matlab and applied to the real-world problem that 
is addressed in this study. The data of three models are executed on the algorithm. The parameters 
used in the algorithm are determined by the previous research presented by authors about the SA and 
hyper-heuristics (Seçme, 2015). The algorithm is executed on Intel Core i3 3.10 GHz PC with 4 GB 
RAM. The termination criterion of the algorithm is specified as to reach successive 500 non-improved 
solutions. A number of experimental trials are executed to determine the temperature level and other 
standard parameters for SA algorithm. The experimental results and observations are as follows:

•	 The solutions obtained by the hyper-heuristic solution approach are better than the currently 
applied system. Even the current system does not consider the restrictions; algorithm provides 
lower station numbers with fully meeting the direction change and platform usage restrictions.

•	 The algorithm produced solutions compatible with objective function. The solutions with lower 
cost contributions are preferred by the algorithm. Therefore, the effect of cost parameters is taken 
into account by the solution process.

•	 The ratings (eligibility) of the low-level heuristics are clearly separated from each other. This 
means that the hyper-heuristic used the low-level heuristics properly and deliberately.

•	 The cost based objective function provided the algorithm to drive the solution according to the 
priority (coefficients) of the restrictions and constraints.

•	 When the problem solved as a single model ALB problem without specified restrictions, the 
solutions with less number of stations are found. The problem specific preferences are affecting 
the solutions directly and the solution approach properly operates regarding these restrictions.

The results of solution algorithm for different cycle times can be seen in Table 3. When the 
first two restrictions (direction and platform changes) are relaxed, better line balances are obtained. 
In addition, because of stability and lower weights in objective function of the last two restrictions 
(combiner change and connector change), we can say that they have relatively low effect on the 
problem solution. This is a natural result due to the preferences of the company. Without a real-life 
application case, effects of different objectives could be evaluated by normalizing the components 
of objective function.

The proposed hyper-heuristic algorithm provides better results than company’s current production 
system. Furthermore, the flexibility of solution approach enables to run different scenarios to help 
the decision makers. Future research may use same data set for different solution approaches to find 
out the effectiveness of solution approaches.

The effectiveness of proposed approach can also be evaluated by comparing with other meta/
hyper-heuristics. Simulated annealing meta-heuristic, independent from hyper-heuristic framework, 
is used for more fair comparisons. The learning capabilities of hyper-heuristic can be evaluated by 
this comparison. The performance comparison of SA based Hyper-heuristic and simulated annealing 
algorithm itself is presented in Table 4.
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As seen from the Table 4, hyper-heuristic and simulated annealing solution approaches produce 
similar results but simulated annealing never reaches the values resulted by hyper-heuristics. When 
the cycle time decrease, the range between the results is widened. The hyper-heuristic approach 
outperformed the simulated annealing even in the lower cycle times. This presents that the learning 
mechanism of hyper-heuristics affects the solution more than simulated annealing in lower cycle time 
values. The hyper-heuristic approach outperforms the simulated annealing with respect to the specified 
restrictions. It is clear that hyper-heuristic meets the restrictions better than simulated annealing.

CONCLUSION

In this study, an ALB problem with product and station constraints and restrictions is addressed. 
Since the problem is real world application problem, the problem specific restrictions that reflect 
company’s preferences are integrated into general single model ALB problem structure. Ten different 
sequencing heuristics are implemented for solving the problem by hyper-heuristic approach. While 
the low-level heuristics search in the solution space of the problem, hyper-heuristic searches over the 
proper order of low-level heuristics.

Table 3. Results for different cycle times

Cycle time (c) Minimum 
station 

number (K)

Line balance Number of 
direction 

changes in 
the line

Number of 
platform 

changes in 
the line

Number of 
combiner 
changes in 

the line

Number of 
connector 
changes in 

the line

114 23 0.71 0 0 8 2

108 24 0.72 0 0 8 2

105 25 0.71 0 0 5 2

98 27 0.70 0 2* 4 4

93 29 0.69 0 2* 9 3

90 25 0.82 6** 2* 8 2

* The restriction about the platform usage is relaxed.
** The restriction about direction changes is relaxed.

Table 4. The comparison of HH and SA solution approaches

Cycle 
time 
(c)

Minimum 
station 

number (K)

Line 
balance

Number of 
direction 

changes in the 
line

Number of 
platform 

changes in the 
line

Number of 
combiner 

changes in the 
line

Number of 
connector 

changes in the 
line

HH SA HH SA HH SA HH SA HH SA HH SA

114 23 23 0.71 0.71 0 0 0 0 8 12 2 4

108 24 24 0.72 0.72 0 0 0 1 8 12 2 4

105 25 25 0.71 0.71 0 1 0 1 5 8 2 6

98 27 28 0.70 0.68 0 1 2* 5 4 9 4 4

93 29 29 0.69 0.69 0 3 2* 5 9 14 3 6

90 25 26 0.82 0.79 6** 8 2* 5 8 12 2 6
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The proposed solution method obtains less station numbers than the company’s current system. 
Also, the preferred goals are met with these station numbers. The performance of the proposed hyper-
heuristic algorithm is also compared with the performance of simulated annealing algorithm. The 
hyper-heuristic approach significantly outperformed the simulated annealing algorithm in terms of 
number of stations and line balance. It also provides better solutions, which meet the problem specific 
restrictions such as minimum number of direction, platform, combiner, and connector changes during 
the assembly process. It is concluded from the results and evaluations that the proposed hyper-heuristic 
approach can be used effectively in the solution of the specialized ALB problems consisting product 
and station restrictions due to its flexible and adaptive structure.
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