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ABSTRACT

An uncapacitated multisource Weber problem involves finding facility locations for known customers. 
When this problem is restated as finding locations for additional new facilities, while keeping the 
current facilities, a new solution approach is needed. In this study, two new and cooperative fuzzy 
clustering algorithms are developed to solve a variant of the uncapacitated version of a multisource 
Weber problem (MWP). The first algorithm proposed is the extensive version of the single iteration 
fuzzy c-means (SIFCM) algorithm. The SIFCM algorithm assigns customers to existing facilities. The 
new extended SIFCM (ESIFCM), which is first proposed in this study, allocates discrete locations 
(coordinates) with the SIFCM and locates and allocates continuous locations (coordinates) with the 
original FCM simultaneously. If the SIFCM and the FCM, show differences between the successive 
cluster center values are still decreasing, share customer points among facilities. It is simply explained 
as single-iteration fuzzy c-means with fuzzy c-means. The second algorithm, also proposed here, 
runs like the ESIFCM. Instead of the FCM, a Gustafson-Kessel (GK) fuzzy clustering algorithm 
is used under the same framework. This algorithm is based on single-iteration (SIGK) and the GK 
algorithms. Numerical results are reported using two MWP problems in a class of a medium-size-
data (106 bytes). Using clustering algorithms to locate and allocate the new facilities while keeping 
current facilities is a novel approach. When applied to the big problems, the speed of the proposed 
algorithms enable to find a solution while mathematical programming solution is not doable due to 
the great computational costs.

Keywords
Big Data Analysis, Multisource Weber problem (MWP), Single-Iteration Fuzzy C-means (SIFCM), Single-
Iteration Gustafson-Kessel

INTRODUCTION

Arabani and Farahani (2012) divided application of fuzzy approaches in facility location problems 
into two categories, which are selection of facility location (a decision-making problem), and the 
location-allocation problem (an optimization problem). For the first category, multi-criteria decision-
making methods such as Fuzzy Analytical Hierarchy Process (AHP), Fuzzy TOPSIS (The Technique 
for Order Preference by Similarity to Ideal Solution) are applied (Kahraman et al., 2010; Temur et al., 
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2014). These approaches are fuzzy extension to the well-known classical decision-making methods. 
A recent study with the classical methods employs DEMATEL-ANP integrated method for location 
decision problem (Sharma et al., 2018). Problems in the second category can be also categorized 
as continuous or discrete, capacitated or uncapacitated, and single and multi-facility problems. 
Mathematical programming, heuristics and metaheuristics are the most common methods used for 
the second category problems. Statistical methods can also be applied to this category (Kuruvilla et 
al., 2011). If problem is discrete, facility must be located in a specific point. However, in continuous 
problems the required number of facilities can be located anywhere in a plane. Metaheuristics, of 
which handles values in real number space, can be applied to both discrete and continuous problem 
spaces. Nevertheless, Samanta and Jha (2012) applied genetic and ant colony algorithms, which are 
combinatorial in their nature, to the continuous search spaces, too.

In this study a new type of facility location problem, which is in between the discrete and the 
continuous are defined. Here, existing facilities are handled with a discrete fashion, allocation of 
customers to the existing facilities is under consideration and at the same time a predefined number 
of new facilities are to be opened on a planar space. This type of problem has not been defined and 
solved in the literature.

In multisource Weber problems (MWP), also known as location-allocation problem, we are 
interested in finding the location of p facilities in continuous space in order to serve customers at n 
fixed points as well as the allocation of each customer to the facilities so that total transportation costs 
are minimized (Salhi and Gamal, 2003). Solving the MWP and its variants such as uncapacitated 
or capacitated, weighted or unweighted, continuous or discrete are much studied problem in facility 
location literature (Brimberg et al., 2008). Optimization skills of exact solution algorithms are not 
sufficient to find an optimal solution due to NP-hard nature. In real world problems, especially 
when struggling with very large data (classified by Hathaway and Bezdek (2006) as in Table 1), it 
is very complicated to find optimum solutions. This evokes hybrid and heuristics-based solution 
approaches to these types of problems. Li et al. (2012) proposed a two staged approach to solve the 
p-median problem. The first part uses a greedy search method to find an initial solution; the second 
part sequentially substitutes medians in the initial solution with additional vertices to reduce the total 
travel cost. In recent years one may find numerous papers related to the MWP but only few of them 
involves with large data sets. Taillard (2003) proposes three heuristic algorithms to solve p-median, 
sum of squares and the MWP problems including PLA85900, largest data set in all classes investigated, 
consists of 85900 customer points and 15000 facilities but there is no information that which category 
this dataset falls into according to Table 1. Küçükdeniz and Esnaf (2016) used the same data with 
1000 facilities in medium to large data with 1.7 x 106 bytes, to compare new focal particle swarm 
optimization (FPSO) with K-means, the FCM-based clustering and classical PSO algorithms.

In this study, it is aimed to work on another variant of the MWP, which assumes new facilities 
determined from infinite points of plane, to add to the existing locations. For this purpose, two 
algorithms called extended Single-Iteration Fuzzy C-Means (ESIFCM) and extended Single-Iteration 
Gustafson-Kessel (ESIGK) deal with existing and new unknown locations of facilities in every 
clustering iteration are developed. ESIFCM is based on Esnaf et al.’s (2014) Single-Iteration Fuzzy 
C-Means (SIFCM) algorithm which uses fixed cluster center solution approach to an uncapacitated 
facility location problem (UFLP). The logic of the SIFCM is copied to the SIGK algorithm. The 

Table 1. Size of the data sets after Huber (1996) (Adapted from Hathaway and Bezdek, 2006)

Bytes 
“sizes”

(102)
tiny

(104)
small

(106)
medium

(108)
large

(1010)
huge

(1012)
monster

(10n>12)
VL(very large)

﻿
infinite
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ESIFCM, and the ESIGK are cooperative algorithms and based on the SIFCM and the FCM, and 
ESIGK and GK algorithms respectively. The proposed ESIFCM and ESIGK employ allocation abilities 
of the SIFCM and SIGK, and location allocation abilities of the FCM, and GK. SIGK allocates 
customers to existing facilities and GK first locates then allocates customers to required number of 
new facilities to be opened simultaneously like the SIFCM and FCM does. Unlike other algorithms, 
demand of a customer should not be satisfied by a single facility. To verify the applicability of the 
algorithm, first dataset called PLA85900 is taken from TSPLIB compiled by Reinelt (1995). In this 
dataset locations of 85900 cities are defined. Size of the first data set is 1.285 megabytes. Second 
problem instance is from a real-world data including 88572 customers and 81 existing and 3 new 
totally 84 facilities. Size of this data is 1.746 megabytes.

LITERATURE REVIEW

MWP related studies usually ignores to look at existing facilities with new ones. The lack of methods 
that combine existing facilities with finding new facility locations problem is handled by Mohammadi 
et al. (2010). They introduce a new variant of capacitated MWP assumed new facility centers are to 
be located while considering existing centers. All centers in a plane but location of newly offered 
facilities to be opened selected from a predetermined potential, facility alternatives like p-median 
problems. Like Mohammadi et al.’s model (2010), Esnaf et al. ‘s (2014) Single-iteration Fuzzy 
C-Means (SIFCM) algorithm solves a similar model for uncapacitated facility location problems 
(UFLPs) like Mixed-integer programming models do.

Kazakovtsev et al.’s (2015) study employs genetic algorithm with greedy heuristic for solving 
large sized location discrete and continuous p-median problems. They transform continuous p-median 
problem into a k-means problem by using squared Euclidean distance metric.

In this paper, FCM and GK based fuzzy clustering algorithms are applied to the combined crisp 
and continuous facility location allocation problems first time. Large problem instances are handled 
and this size of data is solved first time as a Multisource Weber Problem. Definition of Single Iterated 
GK algorithm and its application to the facility location and allocation problem is also mentioned 
first time in this study.

The rest of paper organized as follows. A new variant of the uncapacitated Multisource Weber 
problem and its non-linear programming model is described in the second section. In the third and 
fourth sections, extended Single-iteration Fuzzy C-means and extended Single-iteration Gustafson-
Kessel algorithms are explained respectively. In the fifth section, proposed algorithms are applied to 
two medium-sized (106) problem. Conclusions are discussed in the sixth and last section of the paper.

PROBLEM DEFINITION

In case of extending the existing locations with new facilities, Multisource Weber problem can be 
modeled as a non-linear program which is adapted from Salhi and Gamal (2003), Klose and Drexl 
(2005), and Mohammadi et al. (2010) and can be formulated as in formula (1), (2) and (3).

V w d X a z w d x a
k

p

j

n

kj k j kj
i p

c

j

n

ij i jMWP Min( ) = ( ) + ( )
= = = + =
∑∑ ∑∑
1 1 1 1

, , zzij 	 (1)
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Where wkj is the quantity assigned from existing facility k to fixed customer point j also denoting 
the allocation of customers to the existing facilities, d(Xk, aj) is the Euclidean distance from the 
discrete, in other words, location (coordinates) of existing facility k, (Xk, Yk) to the location of a 
customer at fixed point j, (xj, yj), and wij is the quantity assigned from facility i to fixed point j also 
denoting the allocation of customers to the open facilities, d(xi, aj) is the Euclidean distance from the 
continuous, in other words, unknown location (coordinates) of facility i, (Xi, Yi) to the location of a 
customer at fixed point j, (xj, yj). This model works under the assumption that there are no capacity 
constraints at the new facilities hence the customers may split their demand between two or more 
facilities. zkj is a variable denotes the fraction of demand from existing facility k to customer j, zij is 
another variable that denotes the demand fraction of customer j will be served by new and unknown 
location of facility i. cmax is the maximum number of new facilities to be opened. It should be noted 
that the capacitated model for MWP proposed by Mohammadi et al.’s (2010) is very similar to Esnaf 
et al.’s (2014) model for UFL. Contrary to the model presented here as (1) to (3), in both models, 
solutions for new facilities are determined among the predetermined fixed locations of candidate 
facilities. The objective function (1) minimizes the total demand-weighted distance from existing and 
new facilities to customers. Constraint (2) ensures that all demands are met by existing or/and new 
facilities. The equation (3) control that exactly p new facilities to be located. Also, it should be noted 
that, in mathematical modelling approach demand sharing among multiple facilities is impossible 
when there is not a capacity constraint. Because the minimization mechanism of the model will always 
assign customers to a single facility to ensure the minimum total cost. But in some real-life problems, 
demand sharing between multiple facilities may be a necessity to increase customer service level. 
Proposed two fuzzy clustering-based approaches in this study enables this requirement by its nature.

THE EXTENDED SINGLE-ITERATION FUZZY C-MEANS ALGORITHM

Exact solution algorithms have limited applicability due to the non-polynomial (NP) nature of the 
problem and when large data sets required to be processed, extended version of the SIFCM algorithm 
is developed. ESIFCM as a cooperative algorithm utilizes different abilities of the SIFCM and FCM. 
ESIFCM fulfills allocation function and location and allocation functions are accomplished by FCM 
simultaneously through sharing customer points in two directions; from SIFCM to FCM and vice 
versa. In every clustering iteration, the locations or coordinates of the new facilities are updated and 
for all iterations. If required SIFCM and FCM share the customer points between them with different 
membership degrees until termination conditions for cluster centers are met. The ESIFCM uses the 
same objective function called c-means functional adapted by Esnaf and Küçükdeniz (2014):
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where c is the number of the final clusters, which coincides with the number of rules, 
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vector of the final cluster prototypes, a k nk 1≤ ≤( )  is the data to be clustered, p ∈ ∞( )1,  is a factor 
to adjust the membership degree weighting effect; uik  is the membership value of a point belonging 
to cluster i. Unlike other FCM algorithms V has two subgroups of cluster prototypes such as Vs and 
Vf . Vs is the set of the cluster centers which have fixed values. The cluster centers of Vs remain same 
during the clustering iterations. Vf is the set of the cluster prototypes as defined in the original FCM. 
During the clustering process these prototypes are repeatedly changing until terminated with a stopping 
criterion.
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The final prototypes and the respective membership functions that solve this constraint 
optimization problem are given by the following equations.
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Steps of the Extended Single-Iteration Fuzzy C-Means Algorithm
Equations (9) and (10) develop an iterative optimization procedure, which is described by the 
following steps.
Step 1: 	 Select the number of clusters c, a value for the factor p, fixed values of Vs and initial values 
for prototypes of Vf .
Step 2: 	 Employ Equation (10) to calculate the membership values uik (1 1≤ ≤ ≤ ≤i c k n, ).
Step 3: 	 Calculate the updated cluster center values v v vq

new
q
new

c
new

+ + …1 2
, , .,  using Eq. (9).

Step 4: 	 If max v vi i i
new

err
−{ } < ε  then stop else go to step 2.

Vs and Vf denote the fixed or existing (discrete) locations and unknown (continuous) locations 
of facilities respectively. Total cost function which is given in formula (1) is computed. Facilities 
serve customers according to their membership degree values which represent the assignments of 
demands to facilities using formula (10).

THE EXTENDED SINGLE-ITERATION GUSTAFSON-KESSEL ALGORITHM

Gustafson-Kessel algorithm extends the standard FCM algorithm by introducing an augmented 

version of the Euclidean distance to be in the form d x v A x vGK k i

T

i k i
2 = −( ) −( )  where Ai is calculated 

using a scaled inverse fuzzy covariance matrix from each cluster (Graves and Pedrycz, 2007). 
Gustafson-Kessel algorithm is based on an iterative optimization of the objective function of the 
c-means type (Babuska et al., 2002):

J X U V A Di
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c
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In equation (11), U ik

c N
= 


 ∈




×

µ 0 1,  is the fuzzy partition matrix of the data X Rn N∈ × , V= 
[v1, v2, …, vc], v Ri

n∈  is the cluster prototypes (means) vector and m ∈  ∞)1,  is the parameter 
which determines the fuzziness of the resulting clusters. The distance norm DikAi  can take into account 
different geometric shapes in one data set and be calculated as follows:

�D x v x v A x v
ikA k i A k i

T

k i
2 2
= − = −( ) −( ) 	 (12)

The size of each cluster is defined for the local Ai norm matrix that is used in the formula (11) 
as one of the optimization variables. This allows the distance norm to adapt to the local topological 
structure of the data. The minimization of the GK objective functional is achieved by using the 
alternating optimization method that is suggested by Gustafson Kessel (1979) as based on GK 
algorithm (Babuska et al., 2002).

In this clustering algorithm, data samples are small or data in a cluster are linearly related to each 
other, covariance matrix may become singular. To solve this problem in a simple and effective way, 
Babuska et al. (2002) modified the GK algorithm, as given in the following details:
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For the given X data set, c m i, , ,ε ρ  standard parameters, β  threshold numbers of conditions and 
γ  weight parameter is chosen. Initial values of partition matrix are determined and covariance matrix 
F

0
 is calculated for all data set.

Repeat for l = …1 2, ,

Step 1: Compute cluster prototypes (means):
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Step 2: Compute the cluster covariance matrices:
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Add a scaled identity matrix:
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Step 3: Compute the distances:

D x v det F F x vikA k i
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i i

n

i k i
l

i

2
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1= −( ) ( )( ) −( )( ) − ( )ρ
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1≤ ≤i c , 1≤ ≤k N 	

Step 4: Update the partition matrix:

For 1≤ ≤k N
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If DikAi > 0  for 1≤ ≤i c ,
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otherwise.	

Run on until U U
l l( ) −( )− <1 ε  (Babuska et al., 2002)

As in the ESIFCM algorithm, extended single-iteration Gustafson-Kessel Algorithm (ESIGK) 
employs current locations as static cluster centers and applies Gustafson-Kessel fuzzy clustering 
algorithm to find additional cluster centers by making reallocations in the solution space.

Conversion of the model inputs and variables for a new variant of MWP and proposed ESIFCM/
ESIGK algorithms can be seen in Table 2.

NUMERICAL STUDY

Proposed methods are applied to two big datasets. The first dataset, PLA85900, (Figure 1) can be 
found in the TSPLIB compiled by Reinelt (1995). This dataset consist of the locations of 85900 cities.

Table 2. Conversion of the model inputs and variables for a new variant of MWP and proposed ESIFCM/ESIGK algorithms

Definition New variant of 
MWP ESIFCM/ESIGK

Demand w
ij

Computed by fuzzy 
membership values: 
u
ik ik
or µ

Distance from existing facilities to the customers d X a
k j
,( ) a v i Vk

i s
− ∈2,

Distance from new facilities to the customers d X a
i j
,( ) a v i Vk

i f
− ∈2,

Location of existing facilities (Xk, Yk) v i V
i s
, ∈

Location of new facilities (Xi, Yi) v i V
i f
, ∈

The fraction of demand from existing facilities to customers z
kj u i V

ik ik s
or µ , ∈

The demand fraction of customers will be served by new and unknown 
facilities

z
ij

u i V
ik ik f
or µ , ∈
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On the PLA85900 dataset, a numerical study is conducted by first selecting 100 random locations 
from PLA85900 as the current facility locations for each dataset. Then the proposed algorithm is 
executed to find five additional facility locations. The analysis has conducted ten times while choosing 
different random locations for 100 existing facilities at each run. Total calculated costs and CPU times 
of the proposed algorithms can be seen in Table 3.

As it can be seen in Table 3, ESIGK algorithm reaches better total cost values than the ESIFCM 
algorithm in 9 out of ten trials. However, in case of computational cost ESIFCM is faster than the 
ESIGK algorithm.

The second dataset (Figure 2) is provided from a Turkish distribution company and used after 
cleaned. There are 81 distribution centers of a company with 88,572 franchisees. In the solution, there 
will be X, Y coordinates of 3 new distribution centers to be determined, and the problem of assigning 
customers to the 81 existing and 3 new distribution centers with the closest distance will be obtained.

The number of variables or size of the solution matrix solved by the proposed algorithm in this 
problem is 88572x84=7440048. In other words, we have 7440048 assignment integer variables to be 
clustered. The size of the MWP problem in our case is 1746035 bytes or 1.746 megabytes. This size 
according to Hathaway and Bezdek (2006), which is given in Table 1, makes data set of our case, is 
medium (106). Location (coordinates) of new distribution centers will be added to existing facilities 
are computed and given in Table 4 and Table 5.

Figure 3 and Figure 4 shows the cluster maps of ESIFCM and ESIGK algorithms for 81 existing 
and 3 new distribution centers to be opened respectively. Table 6 shows the cost of obtained solutions 
for each proposed method. In this dataset, ESIFCM is better than the ESIGK algorithm in terms of 
both total cost and computational time.

Figure 1. PLA85900 data set
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Table 3. Total costs and CPU times of the proposed algorithms

ESIFCM ESIGK

Problem set Total costs CPU times Total costs CPU times

1 476,174,966,351 81.71 479,362,394,562 266.87

2 509,029,777,806 48.02 482,510,805,574 120.32

3 494,970,552,617 50.84 472,091,842,269 521.33

4 497,350,046,883 38.95 486,355,740,125 151.70

5 505,417,101,144 45.61 495,309,825,273 286.44

6 500,845,455,841 49.73 486,658,662,123 329.36

7 498,136,631,650 45.87 483,319,144,004 363.40

8 492,177,407,834 41.78 484,000,595,263 256.58

9 495,066,828,549 44.80 482,510,758,541 239.84

10 507,629,786,355 34.04 507,160,156,554 142.44

Average 497,679,855,503 48.07 485,927,992,429 267.83

Figure 2. The data of Turkish distribution company
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Table 4. Location (coordinates) of new distribution centers for ESIFCM

X Y

New Distribution Center 1 (82) 44.19 37.63

New Distribution Center 2 (83) 31.49 38.27

New Distribution Center 3 (84) 42.71 41.11

Table 5. Location (coordinates) of new distribution centers for ESIGK

X Y

New Distribution Center 1 (82) 35.15 36.95

New Distribution Center 2 (83) 31.08 38.28

New Distribution Center 3 (84) 42.73 41.10

Figure 3. Cluster maps of ESIFCM algorithm for 81 existing and 3 new distribution centers
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The computer that was used during test runs in section 5 has the following configuration; Intel 
CPU at 2.4 GHz with 16 GB of RAM. Codes of the ESIFCM and ESIGK algorithms were developed 
and executed by MATLAB R2017a. The main inputs for the ESIFCM and the ESIGK algorithms 
are X and Y coordinates of customer points and existing facilities. The EISFCM and the ESIGK are 
applied to an uncapacitated new variant of MWP using weighting exponent, p, is taken as 2 and 
termination tolerance is determined as 10-6.

CONCLUSION

In this study, two new and cooperative algorithms, the ESIFCM and ESIGK, are developed for a new 
variant of multisource Weber problem. The new variant of the MWP assumes new facility centers are 
to be located in a plane and changing during clustering while existing facilities having fixed locations 
are taken into consideration. This combined approach to the facility location allocation problem is 

Figure 4. Cluster maps of ESIGK algorithm for 81 existing and 3 new distribution centers

Table 6. Total cost of proposed algorithms

Method Total Cost CPU Time

ESIFCM 74572.82 23.19

ESIGK 80006.54 231.73
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solved first time by using the FCM and GK based fuzzy clustering algorithms. Large problem instances 
are handled and this size of data is solved first time as a Multisource Weber Problem.

EISFCM uses different features of the SIFCM; and the FCM and ESIGK uses different features 
of the SIGK and GK, concurrently. Customer coordinates are already known a priori. The sizes of the 
data sets experimented here were 1.285 and 1.746 megabytes, which are in the medium (106 bytes) 
size category. One of the datasets is gathered from a distribution company in Turkey. ESIFCM and 
ESIGK are applied to this data set and the coordinates of the new locations are computed.

When the results on experimental studies analyzed, in the first dataset the ESIGK algorithm was 
better than the ESIFCM with a 2.42% lower total transportation cost. However, in the second dataset 
ESIFCM algorithm has reached 6.79% lower total transportation cost than ESIGK. These results 
show that in large problems, locations of the customers affect the solution performance because of 
the different distance metrics employed by different clustering methods. A good approach for the 
location and allocation problem would be trying different clustering algorithms, which have different 
distance measures, on the data and then comparing the results.

Adding new facilities, whose planar locations are not known priori, to a supply chain while 
maintaining the existing facilities is a special kind of supply chain management problems. The 
proposed algorithms are capable of solving these types of problems in real life we face with such 
as locating spare part logistics, relay stations, recycling centers, disaster relief stations, search and 
rescue headquarters, healthcare waste disposal facilities, cell towers, renewable energy systems, and 
medical emergency units etc. Due to the high number of decision variables, big problems are difficult 
and computationally expensive to solve with mathematical programming techniques. In this study 
clustering analysis-based solution methods are proposed which are combining existing locations with 
the process of finding new locations for the new facilities. As the experimental studies show that 
proposed algorithms are suitable for the stated business problem. Future research will be focused on 
much larger data sets sized of large (108 bytes), huge (1010 bytes), and monster (1012 bytes).
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