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ABSTRACT

In this paper, techniques of statistical computing were applied to data logs to investigate the patterns
in students’ play of The Fuzzy Chronicles, and how these patterns relate to learning outcomes with
regards to Newtonian kinematics. This paper has two goals. The first goal is to investigate the basic
claims of the proposed Two-System Framework for Game-Based Learning (or 2SM) (Martinez-
Garza & Clark, 2016) that may serve as part of a general-use explanatory framework for educational
gaming. The second goal is to explore and demonstrate the use of automatically collected log files of
student play as evidence through educational data mining techniques. These techniques could also find
general use, and this paper offers a demonstration of plausible methods and processes that are suited
for game play data. These goals were pursued via two research questions. The first research question
examines whether students playing The Fuzzy Chronicles showed evidence of dichotomous fast/slow
modes of solution. The 2SM theorizes that slow modes of solution will correlate to higher learning
gains. Congruent with the 2SM, students who use mainly fast iterative solution strategies achieved
lower learning gains than students who preferred slow, elaborate solutions, or a more balanced mix
of the two. A second research question investigates the connection between conceptual understanding
and student performance in conceptually-laden challenges. The finding was that students generally
improve their performance in these challenges as gameplay progresses, but that this improvement is
strongly moderated by their prior knowledge of physics. Implications of these findings in terms of
educational game design, analysis of gameplay logs, and further refinement of the 2SM are discussed.
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INTRODUCTION

Digital games are potentially powerful vehicles for learning (Gee, 2007; Prensky, 2006; Mayo, 2009;
Shaffer, Squire, Halverson, & Gee, 2005; Rieber, 1996; Squire et al., 2003), and numerous empirical
studies have linked classroom use of educational games to increased learning outcomes in science
(e.g., Annetta, Minogue, Holmes, & Cheng, 2009; Dieterle, 2009; Neulight, Kafai, Kao, Foley,
& Galas, 2007; Squire, Barnett, Grant, & Higginbotham, 2004). Several reviews have concluded
that game-based learning offers numerous theoretical and practical affordances that can help foster
students’ conceptual understanding, engagement, and self-efficacy (Aldrich, 2003; Cassell & Jenkins,
1998; Kafai, Heeter, Denner, & Sun, 2008; Kirriemuir & Mcfarlane, 2004; Martinez-Garza, Clark, &

DOI: 10.4018/1JGCMS.2017070101

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,
provided the author of the original work and original publication source are properly credited.



International Journal of Gaming and Computer-Mediated Simulations
Volume 9 ¢ Issue 3 « July-September 2017

Nelson, 2012, Munz, Schumm, Wiesebrock, & Allgower, 2007). That said, not all games effectively
support learning for all learners (Young et al., 2012). Clark, Tanner-Smith, and Killingsworth (2015)
find favorable support for the use of educational games overall, but particularly in cases where games
are augmented through the application of sound learning theory.

While the general question of whether games can provide productive contexts for learning
is approaching consensus, how and why and when games work are more open questions. A large
number of constructs receive attention as potentially important for game-based learning (Linehan,
Kirman, Lawson, & Chan, 2011; Dondlinger, 2007), including constructs as varied as fun, feedback,
engagement, flow, problem-solving, narrative, etc. Several scholars have proposed design principles
to optimally leverage some or all of these constructs (e.g. Annetta, 2010; Kelle, Klempke, & Specht,
2011; Tobias & Fletcher, 2007; Plass, Homer, & Kinzer, 2014). Also, educational games claim a
broad spectrum of possible learning outcomes (Martinez-Garza, Clark, & Nelson, 2013b) which,
when combined with the wide range of gaming genres, gaming populations, and technology platforms
educational researchers have available, creates a vast and constantly changing space of inquiry that
resists generalized claims. Furthermore, digital games also present unique assessment challenges.
Since games often incorporate novel student activities for which there are no well-established existing
measurement methods, measures often need to be developed along with the game in an iterative fashion
(Harpstead, Myers, & Aleven, 2013). Thus, some scholars have called for increased methodological
rigor and emphasis on usable (i.e. generalizable) knowledge in educational games research (Dede,
2011; Foster & Mishra, 2008).

Regardless of the variations in theoretical framing, methods, or learning outcomes, the common
denominator of all game-based learning research is the act of students’ play. Thus, a general claim
of game-based learning research can be phrased as “if a student plays this particular game, he or
she will learn this particular thing.” Much inquiry into game-based learning is directed towards
explicating other issues that influence and structure educational gaming (e.g. design considerations,
materials and curricula to support educational games, and detection of learning outcomes), although
not so much play itself, i.e. what choices the student has available, what informs those choices, and
what feedback the game offers in response. Generally speaking, the act of play as the central driver
of learning is somewhat under-examined in the educational gaming literature. Among the possible
reasons for this lack of focus are (1) the general difficulty of observing, encoding, and analyzing play
systematically, and (2) the limitations of general theoretical frameworks that might help operationalize
play in meaningful actionable ways.

Previous educational research efforts that analyzed digital game play at the individual level
have relied primarily on observational methods (e.g., Annetta, Minogue, Holmes, & Chang, 2009;
Hou, 2012; Sengupta, Krinks, & Clark, 2015). Observational studies that aim for thick description
(Geertz, 1973) of gamers at play explicate this richness and often succeed in building strong cases for
learning (e.g. Squire, DeVane, & Durga, 2008). However, investigations of play that use a student’s in
situ performance as an indicator of the learning are generally limited in scope and scale by the costs
and demands of observation and coding. A possible way to address this limitation involves the use
of log file data. Students’ actions within the game environment, when recorded and compiled, can
potentially produce a rich and detailed account that can be productively analyzed using methods of
statistical computing (Martinez-Garza, Clark, & Nelson, 2012). These statistical computing methods,
variously known as learning analytics (LA), or educational data mining (EDM), could be used
not only for assessment of learning (as we proposed in Clark, Martinez-Garza, Biswas, Luecht &
Sengupta, 2012) but also to find underlying structure and regularity in students’ play that may inform
meaningful generalizations about what constitutes learning through play in a game environment. Using
a combination of log file data and learning analytics, educational games scholarship could potentially
transcend the limitation of cost, time, and human effort without abandoning deep qualitative analysis
(Berland, Baker, & Blikstein, 2014).
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GOAL AND STRUCTURE OF THIS PAPER

This paper has two goals. The first goal is to investigate the basic claims of the proposed Two-System
Framework of Game-Based Learning (Martinez-Garza & Clark, 2016), a cognitive perspective that
may serve as part of a general-use explanatory framework for educational gaming. The second goal is
to explore and demonstrate the use of automatically collected log files of student play as evidenced by
educational data mining techniques. These techniques have drawn interest from researchers seeking a
more nuanced understanding of student action within digital environments. The data mining techniques
featured in this paper could potentially find general use, and this paper aims at offering a demonstration
of plausible methods and processes that are suited for the specific challenges of game play data.

The context for this research is an educational game intended to help middle school students
develop a better understanding of Newtonian kinematics. Among its other functionalities, this
particular game stores all student actions and collects them in a central database. The Conceptual
Framework section describes this game, titled The Fuzzy Chronicles, in some detail. Then, a
summary of the Two-System Framework (or 2SM) is presented, followed by specific discussion of
the implications of the 2SM in the context of The Fuzzy Chronicles. A brief overview of current
research that makes use of log files from digital educational environments as evidence rounds out
the Conceptual Framework section.

Plan of Work

After laying out the necessary groundwork, we articulate goal of investigating the central claims of
the 2SM more specifically as two research questions. Research Question 1 (RQ1) asks, “can the two
epistemic stances theorized in the 2SM be observed through the study of log files gathered from
student play?” The epistemic stances described in the 2SM are best suited as general descriptions of
styles or strategies of play, and thus, a more targeted approach is warranted to investigate the effects
of these styles on specific conceptual understandings that gameplay intends to promote. Research
Question 2 (RQ2) provides this specificity by asking, “Do differences in gameplay in the specific
game situations correlate with differences in performance on a conceptual knowledge test?” Each
question is investigated in its own section, with separate Results and Discussion subsections. In the
Conclusions, we outline some of the opportunities and difficulties of using educational data mining
on digital game play logs, future directions for this kind of research, and also propose improved
design factors for educational games that might better promote students’ behaviors during play to
more closely align with those behaviors found linked to positive learning outcomes.

CONCEPTUAL FRAMEWORK

Overview of the Game Environment: The Fuzzy Chronicles

For this study, we used the educational game titled The Fuzzy Chronicles, codenamed EPIGAME
(Clark, 2012; Clark, Sengupta, Brady, Martinez, & Killingsworth, 2015). The Fuzzy Chronicles
is the third iteration of the SURGE line of digital games intended to help students advance their
understanding of Newtonian kinematics. The Fuzzy Chronicles (hereafter, EPIGAME) takes the form
of a series of puzzles presented as a science fiction adventure. Students play as the space navigator
Surge, who must find and rescue space capsules piloted by Fuzzies, adorable but somewhat hapless
creatures who are stranded in space. In order to accomplish these rescues, the student must navigate
Surge’s spaceship through a two-dimensional spatial grid (see Figure 1 and Figure 2) by tracing a
Trajectory to the stationary Fuzzy, then placing Actions at Waypoints along that Trajectory. Most
Actions take the form of Boosts that propel Surge’s ship in one the four cardinal directions with an
amount of force that the student chooses. Gameplay is divided into Levels, each comprising a separate
navigational and/or rescue challenge. All Levels have a Start Point and an End Gate, and may also
optionally contain obstacles, such as impenetrable Nebulas and Radiation, as well as Velocity Gates
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Figure 1. Anatomy of an EPIGAME level. (1) Start Point (2) Velocity Gate (3) Laser Deactivator (or “Button”) (4) Nebula (5) Matching
Button and Laser (note green color of both) (6) End Gate (7) available Actions.

Instantaneous effect
Rocket Boost

Propel your ship
horizontally or vertically.

and Mass Gates that impede Surge’s progress. These Gates signal an attribute of Surge’s capsule
(i.e., a specific velocity or mass) that the student is required to match before the Gate will open.
Colliding with a Nebula, a Radiation field, or a Gate causes the destruction of the Surge capsule and
any rescued Fuzzies, and failure of the Level.

The interactive structure of EPIGAME has two phases - a planning phase and an action phase. In
the planning phase, students decide their trajectory and place their actions appropriately. The student
signals the end of the planning phase by hitting the run lever, thus starting the action phase. In this
phase, Surge’s capsule follows the student’s plan, which may result either in a successful navigation to
the end gate and the rescue of any stranded Fuzzies or the destruction of Surge’s capsule. If successful,
the student moves on to the next level. If the student is not successful and Surge’s capsule is destroyed,
he or she is returned to the planning phase in order to change the planned trajectory and/or add or
remove actions before triggering a new action phase. Together, a planning phase and its resultant
action phase are called an atfempt (which may be successful or unsuccessful).

In theory, a student may complete the game having needed only one attempt, (i.e. one planning
phase and one action phase) per level. In reality, students often require multiple attempts before they
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Figure 2. An attempt in process. The student is setting direction (8) and force (9) parameters on an action. The student has set a
trajectory (10) through several waypoints (a-e). To begin the attempt, the student presses the launch lever (11).
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successfully advance. In a given level, the student is free to construct a plan for the entire trajectory
for the entire level and place all necessary actions before first activating of the run lever. Alternatively,
students may choose to segment the trajectory and place only a few actions at a time, thereby solving
the level incrementally (i.e., draw part of a trajectory, place a few actions, activate the Run Lever, see
what happens, and adjust and extend the trajectory and actions iteratively through multiple cycles
of attempts). The game neither suggests nor encourages either approach, so a student may select
whichever method he or she finds more suitable.

A full game of EPIGAME as designed for this study consists of 32 levels of generally increasing
complexity. Each subsequent level more often than not requires more actions than the previous ones,
contains more challenges and obstacles, and demands more effort by the player to plan and strategize
for success. Because of this, it is likely that any students of EPIGAME will find at least one level that
requires multiple attempts in order to succeed. Some levels, particularly near the end of the game,
allow only a very limited margin of error. Therefore, progress in the game requires the student to
be persistent at times, take several different approaches when faced with apparently insurmountable
levels of difficulty, and explore and experiment with different combinations of actions to find a
correct solution for each level.
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The Two-System Framework of Game-based Learning

A goal of this paper is to investigate a theory of game-based learning called the Two-Stance Model
framework, or 2SM (Martinez-Garza & Clark, 2016). The 2SM framework seeks to support a more
sophisticated understanding of how and what people learn from digital games. It was motivated by the
contrast between recent scholarship that finds uneven evidence that people learn much from digital
games (Young et al., 2012) and the observation that students inhabit rich ecologies of knowledge
about the games they play (Gee, 2007) that include often-impressive feats of cognition.

Many digital games can be accurately described as software models of scientific phenomena
encased within game-like structures that are intended to increase student engagement. In the case
of educational games, the intention is that students develop an understanding of the principles that
underlie these phenomena through the thoughtful and purposeful exploration of their scientific models.
The premise of the 2SM framework is that students of educational games do not necessarily form
accurate mental analogues of the software models that drive the phenomena they experience in-game
(i.e. the encased “simulation”); rather, they create a second-order model (as in, a model of a model
of a phenomenon) that is oriented towards explaining the functioning of the encased simulation,
predicting its future states, and allowing the student to feel that he or she understands the simulation
or game, and has some measure of control over it.

These two stances can be conceptualized further using features from the two-system model of
cognition (Evans, 2008). Two-system models of cognition distinguish between effortless thought, or
“intuition”, and deliberate purposeful “reasoning”. These modes of cognition are neutrally labeled as
System 1 and System 2, respectively. The former is described as fast, automatic, associative, emotional,
and opaque; the latter as slower, controlled, serial and self-aware. In the 2SM framework, System 1
is associated with the “player” stance and System 2 with the “learner” stance.

Students might have two distinct goals when interacting with a game’s encased simulation. The
first involves develop their second-order model to better understand the simulation and use it as a
laboratory the objects and relationships within the simulation can be investigated. The second goal
involves executing various game actions to manipulate the simulation to create the desired state
(i.e., success). These two sets of goals imply different forms of thinking about the information being
presented by the digital game. Our hypotheses are that (a) the first goal prioritizes or incentivizes
an inquiry stance oriented towards the purposeful and systematic investigation of the operating
principles of the encased simulation and that (b) the second goal prioritizes or incentivizes a heuristic-
driven problem-solving stance oriented towards efficiently achieving the player’s goals. A student
in the inquiry (or “learner”) stance might probe the simulation for information that confirms their
understanding. A student in the problem-solving (or “player”) stance might only engage in exploratory
actions and observe whether these actions lead to positive results.

Starting from the two-system model of cognition, we proposed the following mechanistic
explanation for how people play and learn from digital games. A person begins play, and a goal will be
suggested to the player’s thinking, immediately triggering a self-query, “how do I achieve this goal?”
The self-query shifts the person towards the learning stance, and in response to the query a second-
order model is constructed. This model’s functional requirement is that it suggest actions that would
bring the state of the game closer to what the person has identified as a goal state. These actions are
rendered as execution steps (“Do that”) and enacted in the simulation through the game’s interface.
Actions that prove effective are reinforced and actions that have a negative effect are rephrased as
avoidance steps (“Don’t do that”). With repeated reinforcement, effective rules are matched to the
context cues from the environment and stored as conditionals, i.e. “If this, do that.” These conditionals
are easy to remember, quick to access, and require nearly no cognitive effort to execute: they fit the
functional definition of heuristics.

Whenever the student finds herself in a situation that is covered by a stored rule, she will in most
cases default to doing what that rule stipulates. In other cases, the student must shift to a learner
stance, reinstate the second-order model, and use it to find new possible actions. If the student always
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knows the rule to apply, the model is most likely deactivated and the student will default to System
1-style processing, or fast, effortless, intuitive heuristics. Thus, through play, a person gathers three
forms of knowledge about the game: (a) the conditions that the game presents, (b) a set of heuristics,
or rules of action with activation criteria that match these conditions, and (c) a second-order mental
model i.e., an idiosyncratic explanation of how the game produces the observed conditions. In the
case of educational gaming, these three forms of knowledge combine to form part of the learning
benefit that students may develop from playing the game.

The 2SM is a novel application of the two-system theory of reasoning to educational games.
There are suggestive findings from adjacent programs of research have examined forms of reasoning
within and around digital learning environments that hint at its validity (e.g. Parnafes & Disessa, 2004;
Gijlers & de Jong, 2013). One of the goals of this paper is to explore the fundamental claims of the
2SM, namely that traces of students’ System 1 and System 2 reasoning can be observed during play,
and that preference for one stance over another has a significant effect on learning. These possible
effects are explored in more detail in the following section.

Implications of the 2SM for Learning

In the 2SM, stances are defined as collections of resources (Hammer & Elby, 2003). The framework
stipulates that the two stances can be associated with cognitive processes described in the two-system
theory of cognition (Sloman, 1996; Stanovich, 1999; Kahneman, 2003; Evans, 2008). Thus, a stance
or collection of resources organized around System 1 would be optimized for processing speed and
effortless thought, while a stance organized around System 2 would be primed for information use
and deliberative reasoning. Stances, like resources, are cued around task demands; certain tasks,
e.g. driving a car, are structured in a way that they discourage analytic reasoning, while others, like
academic writing, are less amenable to quick, associative thinking. That said, human beings are
biased in general towards System 1 reasoning as an effort-saving and time-saving strategy (Reyna
& Ellis, 1994).

The question then becomes, which of the two stances is most conducive to learning? Intuitively,
it would seem that the effortful, analytic processes described as System 2 that drive the learner
stance would be preferred over faster, less deliberate thinking. This would be particularly true in the
case of games that are conceptually integrated (Clark & Martinez-Garza, 2012) because such games
are designed in such a way that thinking about game rules and challenges closely parallels thinking
about science concepts and relationships. However, it is unlikely that an educational game can sustain
System 2-type processing over long periods. First, students will tend to find ways to save time and
effort when negotiating cognitively-demanding challenges, i.e. the “cognitive miser” of Fiske and
Taylor (1991). Secondly, players facing a game they consider foo challenging may simply disengage,
thus negating any educational benefit the game might offer. Thus, a “happy medium” may be more
desirable in which players both (a) reflect deeply about concepts and ideas represented in the game
and (b) put their understanding into practice in motivating and interesting ways.

As many educational games, EPIGAME is intended to invite learners to think and reason about
the concepts and relationships the game portrays and not to merely passively experience them. Players
of EPIGAME encounter obstacles and situations of increasing difficulty that are designed not only to
provide opportunities for learning but also to adapt to players’ increasing knowledge and proficiency
over the course of the game. Ideally, students encounter game levels whose difficulty matches but
does not significantly exceed their own skill - this alignment keeps interest and engagement high
even in the face of ostensibly higher cognitive demands (cf. “flow” in Csikszentmihalyi, 1991). This
adaptation is not perfect: students may encounter game levels that are too difficult or too easy. The
goal is ultimately not to shield students from difficulty but to provide enough scaffolding and feedback
so that the perceived difficulty remains manageable.

We propose that a student’s response to perceived difficulty cues the stances. Which stance is
cued may depend largely on each student’s developing understanding of the concepts and relationships
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underlying the game. Early in the game, the perceived difficulty may be influenced by the student’s
prior experience with similar games or familiarity with the game’s targeted concepts and relationships.
Thus, the student’s prior knowledge of the game or the principles behind the game’s encased simulation
may also be a significant factor that cues and organizes the stances. For instance, students with low prior
knowledge might prefer a slower, more methodical approach, while students who feel confident in their
understanding might play faster, and with less tentativeness, because they may have a more detailed
and functional internal model. Later in the game, once all students have had similar opportunities to
engage with the game’s challenges, these differences might not be so stark, or they may disappear
altogether. Therefore, it becomes important to examine the students’ gameplay to ascertain how the
game’s varying set of structures and experiences influence students’ learning.

Learning Analytics in Educational Gaming

Digital environments that promote learning should prompt a change in student behavior within that
environment. If an educational game is designed in such a way that students are able to apply what
they learn in the context of the game, then these changes in behavior should be reflected not only in
external measures of learning but in play itself. If so, then these changes are potentially recoverable and
traceable from log data post hoc. However, even comparatively simple games allow for a broad range
of student interactions, all of which leave their varied and distinct traces. Changes in student behaviors
that signal learning can, therefore, be easily lost in the vastness and complexity of the available data.
Methods based on learning analytics (LA) can provide researchers with tools to classify, predict, and
discover latent structural regularities even in data sets as voluminous and idiosyncratic as game play
logs (Berland et al., 2014). LA techniques not only can help us characterize and describe learning
behavior, but they can also deploy Markov-type approaches, such as Bayesian knowledge tracing and
performance factors analysis, to provide some insight into latent student knowledge. Interestingly,
these Markov-type models could be used for prediction, and not just description; for example, they
could be used to guide adaptive scaffolding and feedback. That said, while more research is required
for these applications to achieve their full promise, significant ongoing work is already exploring and
refining the use of learning analytics on data logs from educational environments.

The use of in-game performance data as evidence of learning outcomes has been proposed by
Shute (Shute & Ventura, 2013) and others. Shute and colleagues propose that a learner’s actions within
the game environment can be used as a form of assessment when evaluated against an evidence model,
as per the evidence-centered design (ECD) assessment framework (Mislevy, Almond, & Lukas, 2003).
Under this framework, evidence models are preceded by activity models, which are contextualized and
tailored to the particular affordances and constraints of the learning environment. One implementation
of EDC which seems particularly suited to educational games, “stealth assessment”, aims to collect
model data directly from the learning environment, bypassing the need for overt knowledge testing
that may detract from the play experience. Using this methodology, Shute and Ventura have measured
both learning of specific knowledge, e.g. as qualitative physics (Ventura, Shute, & Small, 2014), and
also broad cognitive skills and traits, such as persistence (Ventura, Shute, & Zhao, 2013) and 21st-
century skills (Shute, 2011).

Activity models can become highly complex, especially in the case of games in which many
different interactions are possible. This complexity often leads to a large number of observable
variables, which in turn complicates the task of formalizing them into an evidence model. For
this reason, researchers have found value in machine-learning (ML) techniques of computational
statistics that can make finding patterns and relationships between large numbers of variables more
tractable. Examples of educational games where researchers have used ML techniques to analyze
student performance data along an EDC paradigm are the investigation of systems thinking in
SimCityEDU (Mislevy et al., 2014) and inquiry skills in Mission Biotech (Lamb, Annetta, Vallett, &
Sadler, 2014). ECD models that are focused on content-specific outcomes that apply ML techniques
are also feasible, such as the investigation of student learning of biological processes of stem cells
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in Progenitor X (Halverson & Owen, 2014); of fraction arithmetic in Save Patch (Kerr & Chung,
2012) and of Newtonian mechanics in Impulse (Rowe, Asbell-Clarke, & Baker, 2015). There are
several more exemplars of ML techniques that are used to characterize students’ performance in
digital environments, although these focus either on learning environments that are simulation-based
(rather than game-like) or do not align exactly with an EDG paradigm. Researchers have successfully
applied ML techniques, for example, to describe (a) students’ science inquiry activity in Science
Assessments (Gobert, Sao Pedro, Baker, Toto, & Montalvo, 2012) and in Virtual Performance
Assessments (Baker & Clarke-Midura, 2013; Clarke-Midura & Dede, 2010); (b) students’ developing
engineering thinking in Nephrotex (Chesler et al., 2015); and (c) students’ understanding of genetics
in BioLogica (Buckley et al., 2004).

RESEARCH QUESTIONS

The groundwork laid thus far has discussed the 2SM as a theoretical perspective for examining
gameplay and discussed learning analytics as an approach for analyzing game play through data logs.
The next step is to articulate the specific hypotheses and the kinds of evidence that might support
them. As mentioned in the Goals section, this paper has two research questions, which we expand
upon in greater detail in the following paragraphs.

Question 1: Can the Two Stances of the 2SM, as Specified
by the Framework, be detected in Game Play Data?

The first question is intended to test a cornerstone claim of the 2SM, while also evaluating whether
the 2SM is a useful lens for interpreting game play data as recorded in The Fuzzy Chronicles. The
hypothesis is that game play logs exhibit an underlying interpretable structure when features relevant
to the 2SM are selected and analyzed. Alternatively, in the case of the null hypothesis, there will be
no such structure, or it will not be easily interpretable, or the structures revealed do will not correlate
significantly with learning outcomes. Such a result would indicate that gameplay is more like a
stochastic process, or idiosyncratic, or that players are using purely reactive or irrational processes
rather than those grounded in cognitive models of performance.

Question 2: How Do Changes in Students’ Functional Understanding of the
Game Relate to Performance on a Test of Conceptual Understanding?

The second question refers to the feasibility of directly assessing students’ emergent understanding of
the concepts of Newtonian kinematics represented in The Fuzzy Chronicles based on their solutions
to small, localized challenges. Each maneuver the students are asked to make in EPIGAME (starting
and stopping, changing directions, keeping to a set velocity, picking up or throwing an object, etc.)
is designed to reify a relevant concept or cognitive resource. By identifying and analyzing students’
actions with regard to challenges of the same type, both within a student and over time, or between
students, we can better understand how these challenges focus thought and learning for individual
students. Since EPIGAME is intended to be a conceptually-integrated game (Clark & Martinez-Garza,
2012), the hypothesis is that improved performance in these conceptually-laden challenges indicates
a greater understanding of the underlying principles of Newtonian kinematics. If the null hypothesis
is true, variations in student performance will not correlate significantly with learning outcomes.

METHODS

Studies and Participants

To investigate the research questions, we performed two experimental runs using EPIGAME in the
months of March and April 2015. The first run was used to address possible confounds as well as
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pilot the gameplay data “pipeline,” or the entire process of collecting, collating, testing, and analyzing
EPIGAME logs. We report on study 1, the pilot study, only briefly as foundation and comparison
for study 2. The second study, which is the focus of the current manuscript, deployed the full data
analytic process to investigate both research questions. The two studies used the same EPIGAME
version, the same assessments, and had roughly the same duration.

Study 1 (Pilot Study)

The participants were 86 9th grade students from a public high school in Middle Tennessee. In this
study, the students were divided into four groups, each randomly assigned into a Solomon four-group
design (Solomon, 1949) (Figure 3). The two non-treatment groups participated in their normal
classroom curriculum on the topic of force and motion, while the treatment groups only played the
game for three 90-minute sessions. Approximately 20 minutes were reserved at the beginning and
end of the entire study for a 21-item multiple-choice test intended to assess the students’ conceptual
and qualitative understanding of Newton’s First and Second Law. Two of the groups, one treatment
and one non-treatment, completed pre-tests; all four groups completed post-tests 5 days after the
experiment began.

The 4-group Solomon experimental design was used in order to obtain a test of the internal validity
of the posthoc effect sizes and test for interactions between the pre-test and the intervention. Our
initial conjecture, in line with the 2SM, was that high pre-test score indicating high prior conceptual
understanding of physics would enable students to form more advanced play strategies. The use of
these strategies would then be reflected in post-test gains. However, students might also be primed
by the relationships and situations that appear in the pre-test, and post-test gains might correspond
not to differences in gameplay or in prior knowledge, but in a testing effect. Thus, the goal of Study
1 was (1) to determine whether the version of EPIGAME was effective as a learning experience,
(2) to investigate any possible testing effects, and (3) to prototype the data collection protocol and
some of the analytical techniques. The statistical treatment of the four-group design that allows this
disentanglement can be found in Braver and Braver (1988):

Two-way within-subjects ANOVA (Table 1) performed on the assessment data showed that
students in Study 1 made significant pre-post gains (F = 10.61, df = 104, p < 0.01), with no strong
evidence in favor of testing effects (F = 1.11, df = 104, p = 0.29) or interactions between pre-test
scores and treatment (F = 0.36, df = 104, p = 0.55). This represents strong evidence that whatever

Figure 3. The Solomon 4-group design. Graphic from Braver & Braver (1988).
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Table 1. Two-way within-subjects analysis of variance for Study 1

Effect DF, DF, F y/) ges
pretest 1 104 1.1161 0.29 0.01061
treatment 1 104 10.614 0.002 ** 0.09260
pretest:treatment 1 104 0.3552 0.55 0.00340

knowledge students are bringing into gameplay was not gleaned from the pre-test, nor did the pre-test
prime students as to which relationships or interactions were important and thus biasing performance
in the post-test.

Study 2 (Research Study)

Study 1 helped to discard two competing hypotheses: that EPIGAME is not effective as a learning tool,
so any patterns or changes in gameplay cannot affect learning, and that pre-testing rather than gameplay
is the source of any observed pre- to post-test gains. The remaining hypothesis, that differences in
gameplay are the source of pre- to post-test gains, is the focus of Study 2. In this second study, 123
7th grade students from a public middle school in Middle Tennessee used the EPIGAME software as
part of their normal classroom instruction for five consecutive class periods lasting 45 minutes each.

As in the prior study, each student had his or her own computer and was specifically instructed
to avoid sharing information. The blanket policy was to provide encouragement or hints in lieu of
direct assistance, but help was provided to students who appeared intractably stuck, were having
technical issues, or had urgent questions about the game interface. As in study 1, approximately 20
minutes were reserved at the beginning and end of the intervention for a 21-item test of conceptual
understanding of force in motion. In this study, all students who were present at the first and last day
of the intervention were asked to complete the assessment.

Thus, students who participated in each of the two studies generated two forms of data: pre-post
assessment data and game play data. The pre-post assessment data was anonymized and students with
missing pre- or post-test scores were dropped from the study. In the case of students with complete
pre- and post-test scores, a unique ID was generated for each; that unique ID was used to link the
assessment data with the game play data.

Of the 123 students who participated in the study, 104 provided both pre- and post-tests. A
matched-pairs #-test showed a statistically significant increase in test performance (r = 11.702, df =
103, p < 0.0001) (Figure 4). The value of Cohen’s d suggests a large effect size (d = 1.62).

Emulating the Evidence-Centered Design Approach

In the Learning Analytics in Educational Gaming section (above), a significant portion of the research
reviewed that used learning analytics to make sense of students’ process or log data used an evidence-
centered design (ECD) framework for assessment as well. ECD offers several notable advantages
for this form of research, viz.:

1. The Student Model serves to constrain the number of latent variables that the ML algorithm
must infer, aiding in model fit.

2. The Evidence Model pro