Realization of a New Robust and Secure Watermarking Technique Using DC Coefficient Modification in Pixel Domain and Chaotic Encryption

Realization of a New Robust and Secure Watermarking Technique Using DC Coefficient Modification in Pixel Domain and Chaotic Encryption

Shabir A. Parah, Javaid A. Sheikh, Nilanjan Dey, G.M. Bhat
Copyright: © 2017 |Pages: 23
DOI: 10.4018/JGIM.2017100106
OnDemand:
(Individual Articles)
Available
$37.50
No Current Special Offers
TOTAL SAVINGS: $37.50

Abstract

The proliferation of information and communication technology has made exchange of information easier than ever. Security, Duplication and manipulation of information in such a scenario has become a major challenge to the research community round the globe. Digital watermarking has been found to be a potent tool to deal with such issues. A secure and robust image watermarking scheme based on DC coefficient modification in pixel domain and chaotic encryption has been presented in this paper. The cover image has been divided into 8×8 sub-blocks and instead of computing DC coefficient using Discrete Cosine Transform (DCTI, the authors compute DC coefficient of each block in spatial domain. Watermark bits are embedded by modifying DC coefficients of various blocks in spatial domain. The quantum of change to be brought in various pixels of a block for embedding watermark bit depends upon DC coefficient of respective blocks, nature of watermark bit (0 or 1) to be embedded and the adjustment factor. The security of embedded watermark has been taken care of by using chaotic encryption. Experimental investigations show that besides being highly secure the proposed technique is robust to both signal processing and geometric attacks. Further, the proposed scheme is computationally efficient as DC coefficient which holds the watermark information has been computed in pixel domain instead of using DCT on an image block.
Article Preview
Top

1. Introduction

The advancement in communication and networked and multimedia technologies and exponential rise in the users of internet world-wide has resulted in reproduction and distribution of multimedia content likeaudio, images and videos easier. In such a protection of multimedia content has become one of the prominent issues. Various encryption techniques are being used to encrypt the multimedia information before actual data transmission to avert various security and Intellectual Property Right (IPR) problems. However, the disguised look of the scrambled data makes the attacker more suspicious and hence the chances of a malicious attack from the adversary get increased. Given the significance of the problem some serious work needs to be done in order to ensure security and maintain the easy availability of multimedia content. In recent years digital watermarking has received most attention for security and protect multimedia data (Cox et al, 1998; Djurovic et al, 2001; Parah et al, 2014a). A digital watermark is a special data such as logo, imperceptibly embedded in multimedia content like an image etc. to prove its ownership. Since images are one of the prominent members of multimedia content, most of the developed watermark schemes reported till date use images as cover media (Ghouti, et al, 2006). Depending upon visibility of watermark, watermarking schemes are classified into two classes viz.; visible and invisible techniques. Most generally invisible (imperceptible) watermarking is used for copyright protection. Ina typical imperceptible watermarking technique,the watermark or special information datais embedded inside a cover image in such a way that it is imperceptible. Thus, it does not catch the attention of human visual system and protectsthe cover image from common signal processing and geometric attacks. The aim is to create a watermarked image that looks precisely same to a human eye but ensures ownership claim whenever necessary. Digital watermarking has been successfully validated to be very suitable in identifying thesource; creator, owner and distributor of a digital multimedia object (Shih, 2008).

Complete Article List

Search this Journal:
Reset
Volume 32: 1 Issue (2024)
Volume 31: 9 Issues (2023)
Volume 30: 12 Issues (2022)
Volume 29: 6 Issues (2021)
Volume 28: 4 Issues (2020)
Volume 27: 4 Issues (2019)
Volume 26: 4 Issues (2018)
Volume 25: 4 Issues (2017)
Volume 24: 4 Issues (2016)
Volume 23: 4 Issues (2015)
Volume 22: 4 Issues (2014)
Volume 21: 4 Issues (2013)
Volume 20: 4 Issues (2012)
Volume 19: 4 Issues (2011)
Volume 18: 4 Issues (2010)
Volume 17: 4 Issues (2009)
Volume 16: 4 Issues (2008)
Volume 15: 4 Issues (2007)
Volume 14: 4 Issues (2006)
Volume 13: 4 Issues (2005)
Volume 12: 4 Issues (2004)
Volume 11: 4 Issues (2003)
Volume 10: 4 Issues (2002)
Volume 9: 4 Issues (2001)
Volume 8: 4 Issues (2000)
Volume 7: 4 Issues (1999)
Volume 6: 4 Issues (1998)
Volume 5: 4 Issues (1997)
Volume 4: 4 Issues (1996)
Volume 3: 4 Issues (1995)
Volume 2: 4 Issues (1994)
Volume 1: 4 Issues (1993)
View Complete Journal Contents Listing